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Partial deduction in the Lloyd-Shepherdson framework cannot achieve cer-

tain optimisations which are possible by unfold/fold transformations. We
introduce conjunctive partial deduction, an extension of partial deduction
accommodating such optimisations, e.g., tupling and deforestation.

We first present a framework for conjunctive partial deduction, extending
the Lloyd-Shepherdson framework by considering conjunctions of atoms
(instead of individual atoms) for specialisation and renaming. Correct-
ness results are given for the framework with respect to computed answer
semantics, least Herbrand model semantics, and finite failure semantics.

Maintaining the well-known distinction between local and global control,
we describe a basic algorithm for conjunctive partial deduction, and refine
it into a concrete algorithm for which we prove termination. The problem
of finding suitable renamings which remove redundant arguments turns out
to be important, so we give an independent technique for this.

A fully automatic implementation has been undertaken, which always ter-
minates. Differences between the abstract semantics and Prolog’s left-
to-right execution motivate deviations from the abstract technique in the
actual implementation, which we discuss. The implementation has been
tested on an extensive set of benchmarks which demonstrate that conjunc-
tive partial deduction indeed pays off, surpassing conventional partial de-
duction on a range of small to medium-size programs, while remaining
manageable in an automatic and terminating system.
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1. INTRODUCTION

Two approaches to transformation of logic programs have received considerable
attention over the last few decades: the unfold/fold approach and partial deduction.
Unfold/fold transformations have been studied by Tamaki and Sato, Pettorossi
and Proietti, and others [74, 62], and was originally introduced by Burstall and
Darlington [12] in functional programming. Partial deduction was developed by
Komorowski [33] and formalised by Lloyd and Shepherdson [55]. Partial deduction
is also referred to, in slightly different contexts, as partial evaluation or program
specialisation [20, 29, 14], and was also introduced in functional programming first.

The relation between these two streams of work has been a matter of research,
discussion, and controversy over the years. It has already been studied by several
authors [5, 65, 62, 70], but with an emphasis on how specialisation of logic programs
can be understood in an unfold/fold setting. Pettorossi and Proietti [62] describe
a technique for partial deduction based on unfold/fold rules. Their technique re-
lies on a simple folding strategy involving no generalisation, so termination is not
guaranteed. Similar approaches are described in [64, 65] (in [65] generalisation is
present in the notion of “minimal foldable upper portion” of an unfolding tree).

In the context of definite logic programs, partial deduction is a strict subset of
the unfold/fold transformation. In essence, partial deduction refers to the class of
unfold/fold transformations in which “unfolding” is the only basic! transformation
rule; other rules, such as “definition”, “lemma application” or “goal replacement”,
are not supported.

Most partial deduction methods make use of renaming transformations. Again,
renaming is closely related to unfold/fold. Roughly stated, renaming can be for-
malised as a two-step unfold/fold transformation involving a “definition” step (the
new predicate is defined to have the truth-value of the old one), immediately fol-
lowed by a number of folding steps (appropriate occurrences of the old predicate
are replaced by the corresponding new one).

In spite of these connections, there are still important differences between the
unfold/fold and partial deduction methods. One is that there is a large class of
transformations which are achievable through unfold/fold, but not through partial
deduction. Typical instances of this class are transformations that eliminate “re-
dundant variables” (see [62, 64]). For example, consider the following program for
appending two lists.

app([ ], Vs, Ys).
app([H | Xs|, Ys, [H|Zs]) « app(Xs, Ys, Zs).

One way to append three lists is to use the goal app(Xs, Ys,T), app(T, Zs, R), which
is simple and elegant, but inefficient to execute. Given Xs, Ys, Zs and assuming left-
to-right execution, app(Xs, Vs, T) constructs from Xs and Ys an intermediate list

1One might argue that a (weak) implicit folding step is used by partial deduction, which
becomes explicit when one wants to reuse e.g. the unfold/fold correctness results.
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T which is then traversed to append Zs to it. Construction and traversal of such
intermediate data structures is expensive. In the following less obvious program,
the goal da(Xs, Ys, Zs, R) appends three lists more efficiently.

da([ ]’ Ys, Zs, R) — (lpp( Ys, Zs, R)
da([H|Xs|, Ys, Zs,[H |Rs]) < da(Xs, Ys, Zs, Rs).
app([ ], Ys, Ys).

app([H|Xs], Ys,[H|Zs]) «— app(Xs, Ys, Zs).

Partial deduction techniques within the framework of Lloyd and Shepherdson [55]
cannot substantially improve the conjunction app(Xs, Ys, T'), app(T, Zs, R) because
they transform the two atoms independently. The transformation requires merging
the conjunction app(Xs, Ys, T), app(T, Zs, R) into one new atom da(Xs, Ys, Zs, R).
For some other illuminating discussions, concerning limitations of partial deduction,
we refer to [61, 76, 36].

On the other hand, partial deduction has advantages over unfold/fold as well.
Due to its more limited applicability, and its resulting lower complexity, the trans-
formation can be more effectively and easily controlled. For instance, while the
unfold/fold approach allows an arbitrary mizture of transformation rules which can
make use of any prior program within the transformation sequence, partial de-
duction performs operations in a more tractable manner, never making use of the
intermediate programs (leading to a much lower space and time complexity).

Furthermore, control issues have obtained considerable attention in partial de-
duction research, and, in the current state-of-the-art, have obtained a level of re-
finement which goes beyond mere heuristic strategies, as we find in unfold/fold.
Indeed, formal frameworks have been developed, analysing issues of termination
and of code- and search-explosion, and efficiency gains have been obtained [11, 58,
23, 24, 40, 50]. Several fully automated systems (SP [22], SAGE [27], PADDY|[63],
MIXTUS [67], ECCE [40, 50, 51, 53]) as well as semi-automated ones (LOGIMIX [60],
LEUPEL [39, 46], COGEN [30]) have been developed and successfully applied to at
least medium-size applications [46, 49, 18, 37]. A similar development of automated
techniques and systems has not been undertaken in the context of unfold /fold trans-
formations.

The aim of this paper is to bring the advantages of these two approaches to pro-
gram transformation together. We therefore develop an extension of conventional
partial deduction, called conjunctive partial deduction. The close relationship with
partial deduction implies that some of the well-studied automated techniques from
partial deduction can be extended to the new setting, although new problems do
arise. At the same time, the new setting accommodates powerful unfold/fold trans-
formations. Thus, we combine the benefits of automated techniques known from
partial deduction with the power of unfold/fold transformations.

As the name suggests, conjunctive partial deduction does not automatically split
up goals into constituting atoms, but attempts to specialise the program with re-
spect to entire conjunctions of atoms. Sometimes, splitting a goal into subparts is
still necessary to guarantee termination, but, in general, it is avoided when possi-
ble. The technique approaches more closely techniques for the specialisation and
transformation of functional programs, such as deforestation [77], and supercompi-
lation [75, 72]. Especially the latter constituted, together with unfold/fold transfor-
mations, a source of inspiration for the conception and design of conjunctive partial
deduction.
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The present paper offers an up to date, comprehensive, and uniform presentation
of conjunctive partial deduction as developed in [48, 26, 52, 31]. We proceed in a
top-down manner presenting conjunctive partial deduction from theory to practice.
First, foundation and correctness results are given, then control and algorithmic
topics are discussed in depth, and finally, implementation issues and benchmark
results round the presentation off. In detail, the paper is organised as follows.

1.

Framework and correctness. We present a framework for conjunctive
partial deduction, analogous to the Lloyd-Shepherdson framework for con-
ventional partial deduction, and give correctness results with respect to com-
puted answer semantics, least Herbrand model semantics, and finite failure
semantics.

The most important aspect of the extension is that we consider conjunctions
of atoms, instead of individual atoms, for specialisation and renaming. This
provides a setting that—based on our current empirical evaluation—seems
powerful enough to achieve the results of most unfold/fold transformations
involving unfolding, folding and definition only. We also present improved
correctness conditions, which, in contrast to current results for unfold/fold,
allow the preservation of finite failure while not imposing certain potentially
disastrous (non-determinate) unfolding steps.

Basic and concrete algorithms. We develop a basis for the design of con-
crete algorithms within our extended framework. Since partial deductions
are computed for conjunctions of atoms, rather than for separate atoms,
novel control challenges specific to conjunctive partial deduction arise.

We present a basic algorithm for conjunctive partial deduction and refine it
into a fully automatic one and prove termination; correctness follows from
the framework. The algorithm uses an unfolding rule for controlling local
unfolding and an abstraction operator for controlling global termination.

Redundant argument filtering. Automatically generated programs often
contain redundant parts, and the above mentioned concrete algorithm for
conjunctive partial deduction, even though it performs argument filtering
and redundant clause removal, fails to remove all redundant arguments. This
means that, in contrast to many unfold/fold techniques, the above method
cannot get rid of all the overhead of unnecessary variables.

To remedy this problem, we formalise the notion of a redundant argument
and give a safe, effective approximation for redundant argument filtering.

Implementation and benchmarks. After having elaborated foundations
and algorithms, we endeavour to put conjunctive partial deduction on trial.
We report on extensive experiments with an implementation of our algo-
rithms, describe various concrete control options used, look at abstraction
in a practical Prolog context, and discuss an extensive set of benchmark
results.

Related work and overall conclusions. After the presentation of founda-
tions, algorithms and results, we thoroughly discuss the relationship between
conjunctive partial deduction and some of the most well-known unfold/fold
transformation techniques, as well as point out our main achievements.
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1.1. Preliminaries

We assume familiarity with basic notions in logic programming, e.g. as presented
in [54]. Throughout the paper, we consider definite programs and goals, except
when explicitly stated otherwise.

A Horn clause has the form A « @, where A, Ag, etc. denote atoms and @, Qo,
etc. conjunctions of atoms. G, Gy, etc. denote goals of the form «+ @, and B, By,
etc. conjunctions when these appear as bodies of some clauses. QAQ’ denotes the
conjunction of ) and @Q’, where A is assumed associative throughout the paper.
An atom is considered a special case of a conjunction. @’ is an instance of @ (Q is
more general than Q'), written @ = @', iff @' = Q8 for some . Similarly, @ < Q'
denotes that @’ is a strict instance of @ and Q = Q’ denotes that ) is a variant of

Q'

2. FOUNDATIONS

In this section we provide extensions of the basic definitions in the Lloyd-Shepherdson
framework and of renaming transformations. We also illustrate how these exten-
sions are sufficient to support the transformations referred to in the introduction.

2.1. Resultants

Let us first recapitulate essential notions from conventional partial deduction. As
usual in partial deduction, we assume that the standard notions of SLD-trees and
SLD-derivations are generalised [55] to allow them to be incomplete: at any point
we may decide not to select any atom and terminate a derivation. Within an SLD-
tree, leaves of this kind will be called dangling [58]. Also, we will call an SLD-tree
trivial iff its root is a dangling leaf. The following basic notion is adapted from [55]
and associates a first-order formula with a finite SLD-derivation.

Definition 2.1. Let P be a program, < ) a goal and D a finite SLD-derivation
for P U {«< Q} with computed answer 6 and leaf goal < B. Then the formula
Q0 — B is called the resultant of D.

This concept can be extended to SLD-trees in the following way:

Definition 2.2. Let P be a program, G a goal and let 7 be a finite SLD-tree for
P uU{G}. Let Dy,...,D, be the non-failing SLD-derivations associated with
the branches of 7. Then the set of resultants resultants(r) is the union of the
resultants of Dy,...,D,. We also define the set of bodies, bodies(T), to be the
conjunctions @; of the leaf goals « Q; of Dy,..., D,.

Note that, in general, resultants are not clauses: their left-hand side may contain
a conjunction of atoms. In the partial deduction notion introduced in [55] (there
referred to as partial evaluation), the SLD-trees and resultants are restricted to
atomic top-level goals. This restriction ensured that the resultants are indeed
clauses. We omit this restriction here and define partial deduction of conjunctions.

Definition 2.3. Let P be a program and @ a conjunction. Let 7 be a finite, non-
trivial and possibly incomplete SLD-tree for P U {« @Q}. The set of resultants
resultants(t) is called a conjunctive partial deduction of Q in P (via 7).
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Example 2.4. Let P be the following program.

(C1)  max_length(X, M, L) «—max(X, M) Alength(X, L)
(C2)  max(X, M) —maxl(X,0, M)

(Cs)  maxl([],M,M) «

(Cy) maa:l([H|T] N,M)—H <N Amazl(T,N, M)
(Cs) maxl([H|T],N,M) —H > N Amazx1(T,H, M)
(Cs) length([],0) «—

(C7)  length([H|T),L) «length(T,K)ANL is K +1

Let Q = {maz_length(X, M, L), max1(X, N, M) A length(X,L)}. Consider
the finite SLD-trees 71,72 depicted in Figure 1 (where arcs have been labelled
with clause numbers used for the derivation steps) for the elements of Q. The
associated conjunctive partial deductions are then resultants(r) = {Ry 1} and
resultants(te) = {Ra,1, Ra,2, Ra 3} respectively, where the individual resultants
are as follows:

(Ri1)  maxlength(X, M, L) «max1(X,0, M) A length(X, L)
(R2,1)  maxl([],N,N) Alength(]],0) <
(Ra2)  maxl([H|T),N, M) Alength([H|T], L) «

H < N Amazxl(T,N,M) Alength(T, K) NL is K +1
(R2,3)  maxl([H|T),N, M) Alength([H|T], L) «

H > N Amazl(T,H, M) Alength(T, K) AL is K +1

If we take the union of the conjunctive partial deductions of the elements
of Q we obtain the set of resultants Po = {Ri,1, Ra1, R2 2, Ra3}. Clearly Pg
is not a Horn clause program. Apart from that Pg has the desired tupling
structure (except that the variable X still has multiple occurrences). The two
functionalities (max/3 and length/2) in the original program have been merged
into single traversals.

— mazx_length(X, M, L) — mazxl(X, N, M) A length(X, L)
o o e NG

— max(X, M) Alength(X,L) « length([],0) — H < NA — H > NA
max1(T, N, M)A max1(T, H, M)A
l Cs C(‘)l length([H|T], L) length([H|T], L)

C7 C7
— mazl(X,0, M) Alength(X, L) o l l

— H < NA — H > NA

maz1(T, N, M)A maz1(T, H, M)A\
length(T, K)A length(T, K)A
Lis K+1 Lis K+1

FIGURE 1. SLD-trees 71 and 12 for Example 2.4
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2.2. Partitioning and Renaming

In order to convert resultants into a standard logic program, we will rename con-
junctions of atoms by new atoms. Such renamings require some care. For one
thing, given a set of resultants Pg, obtained by taking the conjunctive partial
deduction of the elements of a set Q, there may be ambiguity concerning which
conjunctions in the bodies to rename. For instance, if Py contains the clause
p(X,Y) — r(X)Aq(Y)Ar(Z) and Q contains r(U) A q(V), then either the first
two, or the last two atoms in the body of this clause are candidates for renaming.
To formally fix such choices, we introduce the notion of a partitioning function.

To this end we introduce a bit of terminology. If A is a set, M(A) denotes
all multisets composed of elements of A and =, denotes syntactic identity, up to
reordering, on conjunctions. If M is a multiset then we also use notations like
Ngem@ to denote some conjunction constructed from the elements in M, taking
their multiplicity into account. Of course, this notation is defined only up to re-
ordering. For instance, for the multiset M = {p,p, q}, Agem @ refers to either of
the conjunctions p ApA g, pAgAp, or g A\pAp.

Definition 2.5. Let C denote the set of all conjunctions of atoms over the given
alphabet. A partitioning function is a mapping p : C — M(C), such that for any
Cecl: C=, /\er(C)Q-

For the max_length example, let p be the partitioning function which maps any
conjunction C' =, max1(X, N, M)Alength(X, L)AB1A...ABy, to {maz1(X, N, M)A
length(X, L), By, ..., By}, where By, ..., B,, n > 0, are atoms with predicates dif-
ferent from max1l and length. We leave p undefined on other conjunctions.

Note that the multiplicity of literals is relevant for the computed answer semantics?
and we therefore have to use multisets, instead of just simple sets, for full generality
in Definition 2.5 above.

Even with a fixed partitioning function, a range of different renaming functions
could be introduced, all fulfilling the purpose of converting conjunctions into atoms
(and therefore, resultants into Horn clauses). The differences are related to poten-
tially added functionalities of these renamings, such as:

e elimination of multiply occurring variables (e.g. p(X, X) — p/(X)),
e climination of redundant data structures (e.g. g(a, f(Y)) — ¢'(Y)),
e elimination of existential or unused variables.

Below we introduce a class of generalised renaming functions, supporting the
first two functionalities stated above, but we abstract from details of whether and
how they are performed. We will also present a post-processing, supporting the
third functionality, in Section 4.

Definition 2.6. An atomic renaming « for a given set of conjunctions Q is a map-
ping from Q@ to atoms such that
o for cach Q € Q: vars(a(Q)) = vars(Q) and
e for Q,Q" € Q such that @ # Q’: the predicate symbols of a(Q) and a(Q’)
are distinct.

Note that with this definition, we are actually also renaming the atomic elements

2Take for example P = {p(a, X) < p(X,b) «}. Then P U {« p(X,Y) A p(X,Y)} has an
SLD-refutation with computed answer semantics {X/a,Y/b} while P U {<—p(X,Y)} has not.
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of Q. This is not really essential for converting resultants into clauses, but it proves
useful for various other aspects (e.g. dealing with independence).

Definition 2.7. Let a be an atomic renaming for Q and p a partitioning function. A
renaming function pq,p for Q (based on « and p) is a mapping from conjunctions
to conjunctions such that:

Pap(B) =r /\Ciep(B) a(Q;)0; where each C; = Q,6; for some Q; € Q.
If some C; € p(B) is not an instance of an element in Q then p, ,(B) is undefined.
Also, for a goal «Q, we define p, (< Q) = pa,p(Q).

Observe that we do not necessarily have that a(Q) = pa.p(Q). Indeed, there are
two degrees of non-determinism in defining p,,, once o and p are fixed. First, if
Q contains elements @) and @’ which share common instances, then there are sev-
eral possible ways to rename these common instances and a multitude of renaming
functions based on the same atomic renaming a and partitioning p exist. Secondly,
the order in which the atoms «(Q;)60; occur in pq p(B) is not fixed beforehand and
may therefore vary from one renaming function to another. Usually one would
like to preserve the order in which the unrenamed atoms occurred in the original
conjunction B. This is however not always possible, namely when the partitioning
function assembles non-contiguous chunks from B. Take for instance the conjunc-
tion B = ¢1 A g2 A\ g3, a partitioning p such that p(B) = {q1 A g3, ¢2} and an atomic
renaming « such that a(g1 A g3) = ¢¢ and a(g2) = ¢. Then pop(B) = qq A g
and pf, ,(B) = q A qq are the only possible renamings and in both of them go has
changed position. Fortunately the order of the atoms is of no importance for the
usual declarative semantics, i.e. it does neither influence the least Herbrand model,
the computed answers obtainable by SLD-resolution nor the set of finitely failed
queries. The order might, however, matter if we restrict ourselves to some specific
selection rule (like LD-resolution). We return to this issue in Section 5.1.

2.3. Conjunctive Partial Deduction
We are now in a position to give a definition of conjunctive partial deduction.

Definition 2.8. Let P be a program, Q = {Q1,..., @,} be a finite set of conjunc-
tions, and p,p, be a renaming for Q based on the atomic renaming a and the
partitioning function p. For each i € {1,...,n}, let R; be a conjunctive partial
deduction of @; in P and let Pg = {R; | i € {1,...,n}}. Then the program

{a(Q:)0 — pap(B) | Qi@ —BeR N1<i<n A pap(B) is defined }

is called the conjunctive partial deduction of P wrt Q, Pg and pa p.

Returning to our example, we introduce a different predicate for each of the two
elements in Q via the atomic renaming a:
o «(max_length(X, M, L)) = maz_length(X, M, L) and
o «(maxl(X,N, M) Alength(X,L)) = mi(X,N,M,L).
Q does not contain elements with common instances and for the resultants at
hand there exists only one renaming function p, , for Q based on o and p. The
conjunctive partial deduction wrt Q is now obtained as follows.
The head maz_length(X, M, L) in the single clause of R; is replaced by itself. The
head-occurrences maz1([], N, N)Alength([],0) and maz1([H|T], N, M)Alength([H|T], L)
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are replaced by mli([], N, N,0) and ml([H|T], N, M, L).
The body occurrences maz1(X, 0, M) A length(X, L), maz1(T, N, M) A length(T, K)
as well as maz1(T, H, M) Nlength(T, K) are replaced by mi(X,0, M, L), ml(T, N, M, K)
and ml(T, H, M, K) respectively.
The resulting program is:
max_length(X, M, L) «— ml(X,0,M, L)
ml([], N, N,0) «
ml([H|T],N,M,L) — H< N AmI(T,N,M,K)\NLis K +1
ml([H|T),N,M,L) — H>N Aml(T,H,M,K)\NLis K+1

Ezample 2.9. (double append, revisited) Let P = {C1, Cs} be the well known append
program.
(Cl) app(“,L,L) —
(C2)  app([H|X],Y,[H|Z]) — app(X,Y, Z)

As discussed in Section 1, the goal G =—app(X,Y,I) A app(I, Z, R) can be
used to (inefficiently) concatenate three lists. We now show how conjunctive
partial deduction, as defined above, offers salvation.

Let Q@ = {app(X,Y,I) Napp(I,Z, R),app(X,Y,Z)} and assume that we con-
struct the finite SLD-tree 7 depicted in Figure 2, again labelling arcs with
applied clause numbers, for the query «—app(X,Y,I) A app(I,Z, R) as well as a
simple tree 7o with a single unfolding step for «app(X,Y, Z). Let Pg consist of
the clauses resultants(me) = {C1, Ca} as well as the resultants resultants(r):

(R1)  app([],Y,Y) Aapp(Y, Z, R) < app(Y, Z, R)
(R2)  app([H|X'],Y, [H|I'))\ app([H|I'), Z, [H|R']) —
app(X", Y, I") Napp(I', Z, R')

—app(X,Y,I) Napp(I, Z, R)

AV K
— app(Y, Z, R) — app(X', Y, I") N app([H|I'], Z, R)

e

— app(X', Y, I") Napp(I', Z, R')

FIGURE 2. SLD-tree for Example 2.9

Suppose that we use a partitioning function p such that p(B) = {B} for
all conjunctions B. If we now take an atomic renaming o« for Q such that
a(app(X,Y, I)Aapp(I, Z, R)) = da(X,Y, I, Z, R) and a(app(X,Y, Z)) = app(X,Y, Z)
(i.e. the distinct variables have been collected and have been ordered according
to their first appearance), the conjunctive partial deduction P’ of P wrt Q, Pg
and p, , will contain the clauses C, Cy as well as:

(C3)  da([],Y,Y,Z,R) « app(Y, Z, R)
(Cy)  da([HIX'Y,[H|I'), Z,[H|R]) « da(X",Y,I', Z, R')
In the conjunctive partial deduction, the inefficiency caused by the unneces-
sary traversal of I is avoided as the elements encountered while traversing X and



242

Y are stored directly in R. However, the intermediate list I is still constructed,
and if we are not interested in its value, then this is an unnecessary overhead.
This can be remedied through a post-processing phase to be presented in Sec-
tion 4. The resulting specialised program then contains the clauses C7,C5 as
well as:

(Cs)  da([],Y,Z,R) < app(Y, Z, R)

(Cy) da([HIX'],Y,Z,[H|R]) « da(X",Y,Z,R)

It coincides with the desired program as shown in Section 1; the unnecessary vari-
able I, as well as the inefficiencies caused by it, have now been completely removed.

Now that we have defined conjunctive partial deduction, the next few sections
establish its correctness (Proposition 2.15 and Theorem 2.19).

2.4. Mapping to Transformation Sequences

Standard partial deduction is a strict subset of the (full) unfold/fold transformation
techniques as defined for instance in the survey paper [62] by Pettorossi and Proi-
etti. It is therefore not surprising that correctness can be established by showing
that a conjunctive partial deduction can (almost) be obtained by a corresponding
unfold/fold transformation sequence and then re-using correctness results from [62].

Note that, in contrast to [62], we treat programs as sets of clauses and not as
sequences of clauses. The order of clauses makes no difference for the semantics
we are interested in. In the remainder of this section, we will use the notations
hd(C),bd(C) of [62] to refer to the head and the body of a clause C respectively.

As stated in [62], a program transformation process starting from an initial pro-
gram Py is a sequence of programs Py, ..., P,, called a transformation sequence,
such that program Pj41, with 0 < k < n, is obtained from P} by the application
of a transformation rule, which may depend on Py, ..., P;. The following transfor-
mation rules and concepts are defined in [62]:

o Unfolding rule [62, (R1)]. We will use the terminology of “unfolding a clause
C wrt a literal A (in the body of C), using (clauses Dy,..., D, in) the
program P;”. For example, given Py = {p < ¢ Ar,q «— r}, we can unfold
p «<—q A r wrt q using Py, giving as a result the clause p «r A 7.

e Folding rule [62, (R2)]. We will apply this rule only for single clauses and
therefore use the terminology of “folding a clause C' wrt bd(D)# (in the body
of C), using a clause D in the program P;”. In essence, folding is the inverse
of the unfolding operation. For example we can fold p «<—q A r wrt r using
q <1 in Py above, giving as result the clause p <q A q.

The TéS-Folding rule [62, (R3)] is a restricted form of folding. We refer to
it as “T'&S-folding a clause C wrt bd(D)#, using a clause D in the program
P

o Definition [62, (R4)] and TéS-Definition rule [62, (R15)]; as well as the
associated concepts of old and new predicates.

e The concept of fold-allowing [62, Definition 7].
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Due to space restrictions, we have to refer the reader to [62] for the actual definitions
(the T&S-folding and -definition rules are initially from the paper [74] by Tamaki
and Sato).

In Definition 2.10 below, we map a conjunctive partial deduction to a transforma-
tion sequence. Basically the conjunctive partial deduction P of P wrt Q, Pg and
Pa,p can be obtained from P using 4 transformation phases. In the first phase, one
introduces definitions for every conjunction in Q, using the same predicate symbol
as in «. In the second phase, these new definitions get unfolded according to the
SLD-trees for the elements in Q: exactly one unfolding step for each corresponding
resolution step in the SLD-trees. In the third phase, conjunctions in the bodies of
clauses are folded using the definitions introduced in phase 1. Finally, in the fourth
phase, the original definitions in P are removed. The first three phases can be
mapped to the unfold/fold transformation framework of [62] in a straightforward
manner. Phase 4 will have to be treated separately because the clause removals do
not meet the requirements of definition elimination transformations as defined in
[62].

In Definition 2.6 of an atomic renaming, we did not require that the predicate
symbols of the renamings were fresh, i.e. it is possible to reuse predicate symbols
that occur in the original program P. This is of no consequence, because the original
program is “thrown away”. However, in unfold/fold, the original program is not
systematically thrown away and in definition steps one can usually only define fresh
predicates. To simplify the presentation, we restrict ourselves in a first phase to
atomic renamings which only map to fresh predicate symbols, not occurring in the
original program P. Those atomic renamings will be called fresh. At a later stage,
we will extend the result to any atomic renaming satisfying Definition 2.6.

Definition 2.10. Let P" be the conjunctive partial deduction of P wrt Q, Pg and
Pa,p- A transformation sequence for P’ (given P, Q, Pg and p, ;) is a transfor-
mation sequence Fy,...,FPy,...,P,,..., Py, such that Py = P, and

1. Py,...,P; contains only definition introductions, namely exactly one for
every element Q € Q: P, = P,_; U{a(Q) «— Q}.

2. Py,..., P, contains only unfolding steps using clauses of Py, namely exactly
one for every resolution step in the SLD-trees constructed (in order to obtain
Pg) for the elements of Q: i.e. if this resolution step in a tree for @ € Q
resolves a selected literal A with clauses Dy, ..., D,, we perform an unfolding
step of a clause a(Q)0 «+— F, A, G in some P; wrt A, using D1,..., D, in P,.

3. P,,..., Py contains only folding steps, namely exactly one for every renamed
conjunction C' in the body of a clause of Pg: i.e. for C = @0, such that
Q€ QNC € pB) A pap(C) = a(Q)f, where H — B € Pg, we fold
a corresponding clause H «— B’ wrt Qf, (where B’ =, Q0 A R) using the
definition a(Q) <« Q in Py, yielding the new clause H « B” (with B"” =,
a(@Q)0 A R).

Observe that unfolding always uses clauses in Py and folding always uses new
definitions in P,. The following example illustrates the above definition.

Ezample 2.11. Let P = Py = {C1,Cs} be the append program of Example 2.9
and let Q, pa,p, Po and P’ be defined as in that example except that we adapt
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a slightly such that a(app(X,Y,Z)) = app’(X,Y, Z) (to make « fresh). Then
the transformation sequence Py, Pi, P2, P, Py, Ps, Ps, Pr, Py, shown below, is a
transformation sequence for P'. P, = Py U {Def1} and P, = P, U{Defs} are
obtained by a definition introduction, where
(Def1) da(X,Y,I,Z,R) «— app(X,Y,I) Aapp(I,Z, R)
(Defa) app'(X,Y,Z) — app(X,Y, Z)
Py = PyU{Uy,Us, Defs} is obtained by unfolding clause Def; wrt app(X,Y, I),
using Py, where
(Uy) da([],Y,Y,Z,R) « app(Y, Z, R)
(U2)  da([H|X')Y,[H|I'], Z, R) < app(X",Y,I') N app([H|I'], Z, R)
P, = Py U {U1,Us, Defa} is obtained by unfolding clause Uy wrt the atom
app([H|I'], Z, R), using Py, where
(Us)  da([H|X']Y, [H|I'], Z,[H|R']) — app(X",Y,I') Napp(I', Z, R')
Ps = Py U{U;,Us,Uy,Us} is now obtained by unfolding clause Defs wrt the
atom app(X,Y, Z) using Py, where
(Us)  app/([], L, L)
(Us) app'([H|X]Y,[H|Z]) — app(X,Y, Z)
Ps = PyU{U1, U}, Uy, Us} is obtained by folding the clause Us wrt (app(X,Y, I)A
app(I,Z, R))0, using clause Def; from P;, where § = {X/X', I/I',R/R’} and
(UL  da([H|X'),Y,[H|I'], Z,[H|R]) « da(X", Y, I', Z, R)
Finally, after two more folding steps using Defs from P; we obtain the final
program Py = Py U{U{, U5, Uy, UL}
(Cl) app([],L,L) —

(C2)  app([H|X],Y,[H|Z]) < app(X,Y, Z)

(U{) da(H,Y,Y, Z, R) — app/(yv Z, R)

(U3)  da([H|X'],Y,[H|I'], Z,[H|R]) « da(X",Y,I', Z, R')
(Us) app'([], L, L) «

(Us)  app([H|X],Y,[H|Z]) — app’(X,Y, Z)

The steps from Py to P; and P; to P, are applications of the T&S definition
introduction rule. The last 3 steps are T&S-folding steps as defined in ([62];R3).
However, e.g. the folding step from P5 to Ps is not an instance of the reversible
folding rule (R13) of [62] (which would require app(X',Y,I') Aapp(I’, Z, R') to
be folded with a clause in P5 and different from Us). Also note that Py\ P = P’.

2.5. Fair SLD-Trees

In Definition 2.3, (as in standard partial deduction [55]) we required the SLD-trees
to be non-trivial. In the context of (standard) partial deduction of atoms, this
condition avoids problematic resultants of the form A <« A and is sufficient for total
correctness (given independence and coveredness). In the context of conjunctive
partial deductions, we need (for correctness wrt the finite failure semantics) an
extension of this condition:

Definition 2.12. (inherited, fair) Let the goal G’ =— (A1 A... A;_1A By A...Bi A

Aiy1 N ... Ap)0 be derived via an SLD-resolution step from the goal G =«
AiN.. AN ... A, and the clause H <+ By A... By, with selected atom A;. We
say that the atoms A10,..., A;_10, A;110,..., A0 in G are inherited from G in
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G’. We extend this notion to derivations by taking the transitive and reflexive
closure.

A finite SLD-tree 7 for P U {G} is said to be fair iff no atom in a dangling
leaf goal L of 7 is inherited from G in L.

The conjunctive partial deduction P’ of P wrt Q, Pg and pq,p is fair iff all
the SLD-trees used to construct Pg are fair.

The above means that every atom occurring in the top-level goal of an SLD-tree
has to be selected at some point in every non-failing branch. For SLD-trees for
atomic goals this notion coincides with the one of non-trivial trees (i.e. trees whose
root is not a dangling leaf). Also, for the folding steps that we will perform (in
the transformation sequence associated with a conjunctive partial deduction), this
corresponds to conditions of fold-allowing in [62] or inherited in [69]. All these con-
ditions ensure that we do not encode an unfair selection rule in the transformation
process, which is vital when trying to preserve the finite failure semantics (for a
more detailed discussion see e.g. [69]).

Sometimes however, this definition, as well as the one of fold-allowing in [62] or
the one of inherited in [69], imposes more unfolding than strictly necessary. In some
cases this forces one to perform non-leftmost, non-determinate unfolding, possibly
leading to disastrous effects on the efficiency of the specialised program. Also,
the tree 7 of Example 2.9 depicted in Figure 2 does not satisfy Definition 2.12,
although the resulting program is actually totally correct. In order to make 7 fair,
one would have to perform one more unfolding step on «—app(Y, Z, R).

The following, weaker, notion of fairness remedies this problem.

Definition 2.15. (weakly fair) Let P’ be the conjunctive partial deduction of P wrt
Q, Pg and pa,p. For Q € Q let Leavesg denote the dangling leaf goals of the
SLD-tree for P U {<Q} used to construct the corresponding resultants in Pg.
We first define the following (increasing) series W.F; of subsets of Q:

e Q € WF, iff Q € Q and for each L € Leavesg no atom is inherited from
—Qin L.

o Q€ WFiy iff Q € Q and for each L € Leavesg and each C € p(L) which
contains an atom inherited from < ) in L and which gets renamed into
a(Q)0 (with C = Q'8 and Q' € Q) inside p, (L) we have that Q' € WFy,.

Then P’ is weakly fair iff there exists a number 0 < k < oo such that Q = WFy.

Note that if every SLD-tree 7 is fair (i.e. P’ is fair) then P’ is weakly fair,
independently of the renaming function p, ;, (because no atom in a leaf is inherited
from the root goal and thus WFy = Q). Intuitively, the above definition ensures
that every atom in a conjunction @ in Q is either unfolded directly in the tree 7(Q)
or it is folded on a conjunction @’ in which the corresponding atom is guaranteed
to be unfolded (again either directly or indirectly by folding and so on in a well-
founded manner).

Example 2.14. Let Pg be the resultants for the set Q = {app(X,Y,I)Aapp(I, Z, R),
app(X,Y, Z)} of Example 2.9. The simple tree for P U {«—app(X,Y, Z)} is fair.
Therefore app(X,Y, Z) € WF, independently of p, .

Let 71 be the SLD-tree for P U {G}, with G = «— app(X, Y, I) ANapp(I, Z, R),
of Figure 2. The conjunctions in the dangling leaves of 7 are { L1, Lo}, with L; =
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app(Y, Z, R) and Lo = app(X', Y, I') Napp(I', Z, R"). The SLD-tree 71 is not fair,
but for p,, of Example 2.9, we have that app(X,Y,I) Aapp(I,Z, R) € WF:
e app(X' Y, I') and app(I', Z, R') are not inherited from G in <« Lo.
e app(Y, Z, R) is inherited from G in « L4, but pap,(L1) = a(app(X,Y, Z))6
and, as we have seen above, app(X,Y, Z) € WFy.
So for k = 1 we have that Q@ = WF} and P’ is thus weakly fair.

2.6. Correctness of Conjunctive Partial Deduction

We now have the necessary apparatus to actually prove correctness of conjunctive
partial deduction.

Proposition 2.15. Let Py, ..., P; be a transformation sequence for the conjunctive
partial deduction P’ of Py wrt Q, Pg and pa.p based on a fresh atomic renaming.
Then, for every goal G, such that its predicates occur in Py, we have that

o Py U{G} has an SLD-refutation with computed answer 0 iff Py U {G} has.
If in addition P’ is weakly fair then
o PyU{G} has a finitely failed SLD-tree iff Pf U{G} has.

PrOOF. The following proof frequently refers to [62]. A more self-contained, but
considerably longer, presentation can be found in [41]. First we show two lemmas.

In Lemma 1 below, we first establish a necessary condition in order to apply some
of the theorems from [62], namely that the definition steps in Definition 2.10 are
T&S-Definition steps [74, 62].

Lemma 1. Let Py, ..., Py be a transformation sequence for P’ constructed using a
fresh atomic renaming. All the definition introduction steps of Fo,...,Ps are
TES definition steps.

All definition steps are of the form: P, = P,_; U {a(Q) < @}. The conditions
imposed on « guarantee that the predicate of «(Q) does not occur in Py,..., P
(point 1 of R15 in [62]). Point 2 of R15 requires that all the predicates in the
body of the introduced clause are only old predicates. According to the definitions
in [74], all predicates in Py are old and hence this condition is trivially satisfied.
However, for the slightly modified definitions used in [62], this is not always the
case, but we can use the following simple construction to make every predicate in
P an old predicate. Let the predicates occurring in P be p1,...,p;, and let fresh
and fail be distinct propositions not occurring in P, nor in the image of a. We
simply define Py = PU {Cy} where Cy = fresh «— fail,pi(t1),...,p;(t;) and the
t; are sequences of terms of correct length. By doing so, we do not modify any of
the semantics we are interested in, but ensure that all the predicates in P are old
according to the definition in [62]. We implicitly assume the presence of such a
Cy in the following lemmas and propositions as well (in case we want to apply the
modified definitions used in [62]). This concludes the proof of Lemma 1.

The following shows that, due to our particular way of defining renamings, the
folding steps in a transformation sequence are TéS-Folding steps [74, 62].
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Lemma 2. Let Py,..., P be a transformation sequence for the conjunctive par-
tial deduction P’ of Py wrt Q, Pg and pa.p based on a fresh atomic renaming.
Then the folding steps in Py, ..., Pr are TES-folding steps which satisfy the re-
quirements of Theorems 8 and 10 in [62]. If in addition P’ is fair, then the
TES-folding steps also satisfy the requirements of Theorem 12 in [62].

In order to prove that the folding steps of Definition 2.10 are T&S-folding steps,
we have to show that points 2 and 3 of R3 in [62] hold. Point 3 states that the
predicate symbol of a(Q) should occur only once in P; (where Py is the program
of Definition 2.10 obtained after all definitions have been introduced), which holds
trivially by construction of the definitions in P; and because the atomic renaming «
is fresh. Also, point 2 of R3 states that variables removed by the renaming should
be existential variables. Because we imposed vars(a(Q)) = vars(Q) for atomic
renamings, no variables are removed and the criterion is trivially satisfied.

The fact that we have non-trivial SLD-trees ensures that at least one atom in B is
fold-allowing and hence, the requirements of Theorem 8 and 10 hold. Furthermore,
if P’ is fair, then every atom in B wrt which T&S-folding is performed (i.e. every
atom in @) is fold-allowing, and the requirements of Theorem 12 are met.

This concludes the proof of Lemma 2. If P’ is only weakly fair then the require-
ments of Theorem 12 in [62] are not met. We will have to deal with that special
case separately later on.

Lemmas 1 and 2 ensure that the prerequisites of Theorem 10 in [62] are met. Hence
the computed answer semantics Semc 4 is preserved under the above conditions and
Py U {G} has an SLD-refutation with computed answer 6 iff P U{G} has.?

If P’ is fair we can use the same Lemmas 1 and 2 combined with Theorem 12 of
[62] to deduce that the finite failure semantics Sempp is preserved, i.e. Py U {G}
has a finitely failed SLD-tree iff Py U {G} has.

As already mentioned earlier, in case P’ is only weakly fair we cannot directly
apply Theorem 12 of [62]. We therefore do a specific proof by induction on the
minimum number min such that @ = WF,,;,, where the W, are defined as in
Definition 2.13.

Base Case: If min = 0 then for every Q) € Q no leaf contains an atom inherited
from + ) and thus P’ is fair. Hence, by the above reasoning, we can deduce the
preservation of finite failure.

Induction Hypothesis: The finite failure semantics is preserved for all P’ which
are weakly fair and such that min < k.

Induction Step: Let min = k+ 1 and let W C Q be defined as W = WFi11 \
WZFi. The idea of the proof is to unfold the clauses for the elements of W so
that, according to Definition 2.13, they become elements of W in the unfolded
program PJZ. This will allow us to apply the induction hypothesis on Pj’c. The details
are elaborated in the following. As in Definition 2.13, we denote by Leavesg (with
Q@ € Q) the dangling leaf goals of the SLD-tree for P U {«< @} used to construct
the corresponding resultants in Pg. Let Pj’c be obtained from P; by performing the
following unfolding steps for every element @ € W:

3Note that Lemmas 1 and 2 also ensure that Theorem 8 of [62] can be applied and thus,
given a fixed first-order language £ p, the least Herbrand model semantics Semy is also preserved
(restricted to the predicates occurring in the original program Py). We will not use this property
in the remainder of this paper however.
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for each L € Leavesg and each C' € p(L) which contains an atom inherited
from «+ @ in L and which gets renamed into a(Q’)f, unfold the clause
corresponding to L wrt «(Q")8 (i.e. the renamed version of C inside pq (L))
using the definition of a(Q’) in Py.
Note that PJQ can be obtained by a transformation sequence for a partial deduction
P” based on the same atomic renaming o and the same set Q as P’ but based
on SLD-trees with a deeper unfolding for the elements of W*. Each element of
Q\ W is still in WFy, (as well as in WF,,i < k if it was in WF; for Py) because
the associated trees and resultants remain unchanged. We also know that every Q'
above must be in Q\W = WF, because the second rule of Definition 2.13 could be
applied to deduce that Q € WFj1. Hence in P” associated with PJQ, each element
of W is now in WF}, due to the unfolding. Hence we can apply the induction
hypothesis to deduce that finite failure is preserved in P”c wrt Py. Now because
unfolding is totally correct wrt the finite failure semantics Sempp, we know that
Py and PJQ are equivalent under Sempp. Thus the induction hypothesis holds for
max =k + 1. a
We are now in a position to state a correctness result similar to the one in [55].
In contrast to [55], we do not need an independence condition (because of the
renaming), but we still need an adapted coveredness condition:

Definition 2.16. (Q-covered wrt p) Let p be a partitioning function and Q a set of
conjunctions. We say that a conjunction Q is Q-covered wrt p iff every conjunc-
tion Q" € p(Q) is an instance of an element in Q. Furthermore a set of resultants
R is Q-covered wrt p iff every body of every resultant in R is Q-covered wrt p.

The above coveredness condition ensures that the renamings performed in Defi-
nition 2.8 are always defined and that the original program P can be thrown away
from the end result of a transformation sequence for the associated conjunctive
partial deduction.

Ezample 2.17. Let @ = {q(z)Ar,q(a)}, Q = g(a) Aqg(b) Ar. Then, for a partitioning
function p such that p(Q) = {q(b) Ar,q(a)}, Q is Q-covered wrt p. However, for
p’ with p/(Q) = {q(a) Ar,q(b)}, Q is not Q-covered wrt p'.

Proposition 2.18 establishes a correspondence between the result Py of the above
transformation sequence and the corresponding conjunctive partial deduction.

Proposition 2.18. Let P’ be the conjunctive partial deduction of P wrt Q, Pg and
Pa,p such that Pg is Q-covered wrt p. Also let Py,..., Py be a transformation
sequence for P'. Then Py \ P = P’, where P is the original program.

Theorem 2.19. Let P’ be the conjunctive partial deduction of P wrt Q, Pg and
Pap- If Po U{G} is Q-covered wrt p then
e PU{G} has an SLD-refutation with computed answer semantics 6 iff P'U
{pap(G)} has an SLD-refutation with computed answer semantics 6.
If in addition P’ is weakly fair then
o PU{G} has a finitely failed SLD-tree iff P' U {pa »(G)} has.

4Possibly a slightly adapted renaming function is needed to ensure that the renamings of the
new leaves of these deeper SLD-trees coincide with the clause bodies obtained by the unfolding
performed on Pj.
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PROOF. Let us first prove the theorem for conjunctive partial deductions con-
structed using a fresh atomic renaming «. Let z1,...,x, be the variables of G
ordered according to their first appearance and let query be a fresh predicate of
arity n. We then define Py = P U {query(x1,...,2,) «— Qg} where G =— Qq¢.
The conjunctive partial deduction of Py will be identical to the one of P except
for the extra clause for query. We can now construct a transformation sequence
Py,...,Ps for the conjunctive partial deduction of Py and then apply Proposi-
tion 2.15 to deduce that query(zi,...,z,) has the same computed answer and
finite failure behaviour in P, and Py. Note that query is defined in Py by the
clause query(zi,...,%n) — pap(Qc). Hence P U {G} has the same behaviour
wrt computed answers and finite failure as Py U {po(G)}. Finally P’ = Py\
{PUquery(z1,...,2n) < pap(Q)}. Hence, the theorem follows from the fact that,
due to Q-coveredness wrt p, the predicates defined in P, as well as the predicate
query, are inaccessible from p, ,(Q) in the predicate dependency graph.

Let us now prove the result for unrestricted renaming. For that we simply
introduce a fresh intermediate renaming and prove the result by two applications
of the above theorem. More precisely, let o’ and o’ be such that o(Q) = " (a/(Q))
for every @Q € Q and such that o' is a fresh atomic renaming for Pg and also such
that o’ is a fresh atomic renaming wrt the range of /. Such renamings can always
be constructed. We can now apply the above result to deduce that the conjunctive
partial deduction P”, obtained from Pg under po/ p, is totally correct for the query
por p(G). The conjunctive partial deduction P’ (as well as the query p, ,(G)) can
be obtained from P” by performing a (standard) partial deduction wrt the set A
= {d/(Q) | Q € Q} and by unfolding every atom in A exactly once. Hence we can
re-apply the above theorem and we obtain total correctness of P’ wrt P. a

Example 2.20. Let Pg, P and P’ be taken from Example 2.9. Consider G =«
app([1,2],[3],I) Aapp(1,[4], R). We have that p, ,(G) = da([1,2],[3],I,[4], R).
It can be seen that Pg U{G} is Q-covered wrt p and indeed PU{G} and P, U
{pa,p(G)} have the same set of computed answers: {{I/[1,2,3],R/[1,2,3,4]}}.
Note that P’, as mentioned in Example 2.14 above, is weakly fair and therefore

finite failure is also preserved.

2.7. Negation and Normal Programs

To conclude Section 2, we briefly discuss how the foundations of conjunctive partial
deduction might be extended to provide for negation.

Now, when negative literals cannot be selected during the transformation, this
is not so difficult: a lot of results from the literature can be reused. For instance,
we can recycle results from the unfold/fold literature to prove preservation of the
perfect model semantics for stratified programs [69] and preservation of the well-
founded semantics for normal programs [70]. If in addition we have fairness, the
conditions of modified (T&S) folding of [69] hold, and we can use preservation of the
SLDNF success and finite failure set for stratified programs. Some further results
from [2] can also be applied. In [8], the correctness results of [69] are adapted for
Fitting’s semantics and the results might also be applicable in our case. The results
of [25] do not seem to be applicable because they use a different folding rule (which
requires the clauses involved in the folding process to be all in the same program
P).
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Lifting the above restriction, however, and allowing general SLDNF-trees during
transformation is more difficult. Note that [69, 70, 62, 2, 8] do not allow the
unfolding of negative literals. Selecting negative literals might be obtained by
goal replacement or clause replacement, but Theorems 15 and 16 from [62] cannot
be applied because different folding rules are used. [68] allows unfolding inside
negation and works with first order formulas, but it still has to be investigated
whether its results (for Kleene’s 3-valued logic) can be used. Also [32] has a negative
unfolding rule (under certain termination conditions), but this rule (along with the
correctness theorems) is situated in the context of deriving definite logic programs
from first order specifications. So, for the moment, there seems to be no conjunctive
equivalent to the correctness theorem of [55] for normal logic programs and partial
deduction based on constructing finite SLDNF-trees. Further work will be needed
to extend the correctness results of the previous section.

3. CONTROL ISSUES AND ALGORITHMS

The framework presented in the previous section incorporates unfold /fold-like trans-
formations through specialisation of entire conjunctions, but does not give an actual
algorithm for conjunctive partial deduction, and in particular does not address con-
trol issues. Focusing on novel control challenges, we will in this section present a
basic algorithm for conjunctive partial deduction, refine it into a fully automatic
concrete algorithm, and prove termination and correctness of the latter.

3.1. Controlling Partial Deduction

In recent years considerable progress has been achieved on the issue of controlling
standard partial deduction. In that context, a conceptual distinction was intro-
duced between local and global control [24, 59].

Local Control

The local control level deals with the construction of (possibly incomplete) SLD-
trees for the atoms to be partially deduced. In essence, it consists of an unfolding
strategy. This may be done by specifying a rule for selecting atoms to unfold, and
unfold until no more atoms are select by the rule. Requirements are: termination,
good specialisation, and avoiding search space explosion as well as work duplication.
Existing approaches have been based on one or more of the following elements:

o determinacy [23, 22]
Only (except once) select atoms that match a single clause head. The strat-
egy can be refined with a so-called “look-ahead” to detect failure at a deeper
level. Methods solely based on this heuristic, apart from not guaranteeing
termination, are often somewhat too conservative.

o well-founded measures [11, 58]
Imposing some (essentially) well-founded order on selected atoms guarantees
termination, but, on its own, can lead to overly eager unfolding.
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e homeomorphic embedding [72, 50]
Instead of well-founded ones, well-quasi-orders can be used [67, 4]. Homeo-
morphic embedding on selected atoms has recently gained popularity as the
basis for such an order.

Global Control

At the global control level, closedness [55] is ensured and the degree of polyvari-
ance is decided: For which atoms should partial deductions be produced? Obvi-
ously, again, termination is an important issue, as well as obtaining a good overall
specialisation. The following ingredients are important in recent approaches:

e characteristic trees [23, 22, 45, 40]
A characteristic tree is an abstraction of an SLD-tree. It registers which
atoms have been selected and which clauses were used for resolution. As
such, it provides a good characterisation of the computation and specialisa-
tion connected with a certain atom (or goal). Its use in partial deduction
lies in the control of polyvariance: Produce one specialised definition per
characteristic tree encountered.

e global trees [59, 50, 51]
Partially deduced atoms (or characteristic atoms, see below) can be regis-
tered in a tree structure that is kept well-founded or well-quasi-ordered to
ensure (global) termination. In general, doing so, while maintaining closed-
ness, requires abstraction (generalisation).

e characteristic atoms [40, 50, 51]
Recent work has shown that the best control of polyvariance can be obtained
not on the basis of either syntactical structure (atoms) or specialisation
behaviour (characteristic trees) separately, but rather through a combination
of both. Such pairs consisting of an atom and an associated (imposed)
characteristic tree are called characteristic atoms.

Finally, subsidiary transformations, applicable in a post-processing phase, have
been proposed, e.g. to remove certain superfluous structures [21, 3] or to reduce
unnecessary polyvariance [51].

The essential aspect of conjunctive partial deduction lies in the joint treatment
of entire conjunctions of atoms, connected through shared variables, at the global
level.

A termination problem specific to conjunctive partial deduction therefore lies
in the possible appearance of ever growing conjunctions at the global level (see
Section 3 of [58] for a comparable phenomenon in the context of local control). To
cope with this, abstraction [24, 50, 26] must allow splitting a conjunction into several
parts, thus producing subconjunctions of the original one. (See also e.g. [65] for a
related generalisation operation in the context of an unfold/fold transformation
technique.) This can be seen as a refinement of abstraction wrt the standard case,
where any conjunction is always split (i.e. abstracted) into its constituent atoms
before lifting the latter to the global level.

Apart from this aspect, the conventional control notions described above also
apply in a conjunctive setting. Notably, the concept of characteristic atoms can
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be generalised to characteristic conjunctions, which are just pairs consisting of a
conjunction and an associated characteristic tree.

In fact, in one sense the control problem for conjunctive partial deduction seems
to be easier than in the conventional setting. Since conventional partial deduction
splits atoms at the global level, it is crucial to have an aggressive local unfolding
mechanism, so as to accommodate communication between different atoms in a
conjunction at this level. In contrast, this splitting is not done in conjunctive
partial deduction, and therefore the local level does not seem equally crucial.®

3.2. A Basic Congunctive Partial Deduction Algorithm

We first present a basic algorithm which computes conjunctive partial deductions
satisfying the conditions of Theorem 2.19. The algorithm uses an unfolding rule
for controlling local unfolding and an abstraction operator for controlling global
termination, respectively.

Definition 8.1. An unfolding rule U maps a program P and a conjunction @ to a
non-trivial SLD-tree for P U {— Q}.

Definition 3.2. An abstraction operator Abs maps any finite set of conjunctions Q
to a finite set of conjunctions Abs(Q) such that if @ € Q, there exist Q; € Abs(Q)
and 0; (i =1...n) with Q =, Q101N ... AQnb,,. For a single conjunction @ we
write Abs(Q) for Abs({Q}).

The following basic algorithm for conjunctive partial deduction is parameterised
by an unfolding rule U and an abstraction operator Abs.

Algorithm 3.3. (basic algorithm)

Input: a program P and a goal «— @
Output: a set of conjunctions Q
Initialisation: Qne. = {Q}
repeat
Qold = Qnew;
for all Q € Quq do
for all B € bodies(U(P,Q)) do

Qnew = AbS(Qnew U {B})

until Quq = Qnew (modulo variable renaming)
output Q := Onew

When @ in goal «— @ is an atom, and the abstraction operator Abs splits every
conjunction into atoms, subsequently performing some generalisation on the result-
ing set, Algorithm 3.3 is essentially Gallagher’s Basic Algorithm [24] restricted to
definite programs.

From a program P and a goal « @, using some unfolding rule U and abstraction
operator Abs, Algorithm 3.3 constructs a set of conjunctions Q, which determines
a conjunctive partial deduction of each @; € Q. From the abstraction, one can
determine a partitioning p such that, for goals G to be solved with the specialised
program, Pgo U {G} is Q-covered wrt p. Then one can determine a renaming, and

5This perhaps explains why analogous transformers for functional programs, e.g., supercom-
pilation, have not found it necessary to operate (explicitly) with a local unfolding level.
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use this to construct a conjunctive partial deduction of P wrt Q, satisfying the
conditions of Theorem 2.19.

3.8. A Concrete Conjunctive Partial Deduction Algorithm

We now refine the above basic algorithm for conjunctive partial deduction into
a concrete one. Following [59, 50] for the conventional case, we introduce a tree
structure to record dependencies among conjunctions in the successive Q¢ and
choose specific unfolding and abstraction operators. Throughout, we adhere to a
conceptual separation between local and global control 24, 59, 50].

Trees for Global Control

As in conventional partial deduction, using global trees instead of just sets brings
the ability to distinguish between unrelated goals during specialisation and thereby
obtain a more specialised program. We start by giving a definition of global trees:

Definition 3.4. A global tree -y is a labelled tree, where every node N is labelled with
a conjunction (). Nodes, denotes the set of its labels, and Leaves,CNodes,
the set of its leaf labels. For a branch 3 in vy, Segqg is the sequence of these
labels, in the order they appear in 3. For a leaf node L € ~, 31 denotes the
(unique) branch in 7 containing L.

If two conjunctions in the global tree are on different branches, they are con-
sidered unrelated, and an abstraction operator can be defined that takes this into
account. This kind of precision seems to be even more crucial here than in the
conventional context (cf. Section 3.5).

Algorithm 3.3 is then refined as follows where each iteration no longer considers
all conjunctions in Q,;4, but only those labelling leaves of 7,4 (all not yet partially
deduced conjunctions in the global tree are indeed leaf labels).

Algorithm 3.5. (concrete algorithm)

Input: a program P and a goal «— @
Output: a set of conjunctions Q
Initialisation: vpew := the global tree with a single node, labelled @
repeat
Yold ‘= Vnew:
for all Q1 € Leaves, ,, do

for all B € bodies(U(P,Qr)) do

{Q1,...,Qn} :={Q € Abs,,,,,.L(B) | BQ" € Nodess,.,, : Q= Q'};
Ynew:=add n children to L with labels Q1,...,Qn In Ynew

until Yo14 = Ynew
output Q9 := Nodes,,,..,

The abstraction operators Abs, ; are applied to a single conjunction at a time
and, when abstracting the body of a new resultant, they may e.g. only take the
conjunctions in the branch 8 in ~ into account, which the new child nodes are
potentially going to extend. Note, however, that we do not add variants of labels
already present anywhere else in the tree.
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What remains is to choose an unfolding rule U and an abstraction operator
Abs, 1, and to discuss termination and correctness for the corresponding conjunc-
tive partial deduction algorithm.

Unfolding Rules

An unfolding rule U constructs, from a program P and a conjunction @, the re-
sultants of a non-trivial SLD-tree for P U {« @}. The bodies of the resultants
(usually) give rise to new conjunctions that may be added to the global tree ~.
So the choice of U for local control determines which new conjunctions will be
considered as potential candidates for specialisation at the global level.

Determining U consists in defining how to extend an SLD-tree with new nodes.
As mentioned above, there exists an extensive literature on this topic in conven-
tional partial deduction. We propose a method which ensures non ad hoc local
termination and provides a good basis for performing the kind of transformations
we have in mind.

The following homeomorphic embedding relation < is taken from [50, 51] where
in turn it was adapted from [72]. The power of < is discussed in [43] and other
ways to improve < in a logic programming context can be found in [44].

Definition 3.6. (strict homeomorphic embedding) Let X, Y range over variables, f
over functors, and p over predicates. Define < on terms and atoms:

XYy

s f(tr, ... tn) <« s <t; for some %

F(s1yeeiy8n) Qf(t1, ... tn) < s, It; for all 4

p(81,.-.y8n) Ip(t1, ..., tn) < s; It; for all ¢ and p(t1, ..., tn) A p(s1,...,5n)

Next, we introduce a selection rule, based on <.

Definition 3.7. (descends) Let the goal G' =— (AyA... A;1A BiA... By ANAj1 A
... A,)0 be derived via an SLD-resolution step from the goal G =« A; A... A; A
... A,, and the clause H «— Bj A ... By, with selected atom A;. We say that
the atoms B16, ... B0 in G’ descend from A; in G as well as that A;0 in G’, for
J # i, descends from A; in G. We extend this notion to derivations by taking
the transitive and reflexive closure.

Definition 3.8. (selectable atom) An atom A in a goal at the leaf of an SLD-tree is
selectable unless it descends from a selected atom A’, with A’ < A.

Finally, we can present our concrete unfolding rule:

Definition 3.9. (concrete unfolding rule) Repeatedly unfold the left-most selectable
atom in each leaf of the SLD-tree under construction until no atom is selectable.

The following theorem is an extension of Higman-Kruskal’s theorem ([28, 35],
see also [17]) proven in [51].

Theorem 3.10. For any infinite sequence Ag, A1, ... of atoms, for some 0 < i < j:
A; <A

And we obtain the following corollary from Definitions 3.6, 3.8 and 3.9, and
Theorem 3.10.
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Corollary 3.11. Let P be a program, G a goal, and U the unfolding rule in Defi-
nition 8.9. Then U(P,G) is a finite, fair SLD-tree for P U {G}. We say the
unfolding rule U is terminating.

Abstraction Operators

We now specify the abstraction operators Abs. 1, deciding which conjunctions are
added to the global tree in order to ensure coveredness for bodies of newly derived
resultants.

Ensuring coveredness is basically simple: add to the global tree all (unchanged)
bodies of produced resultants as new, “to be partially deduced” conjunctions. How-
ever, this strategy leads usually to non-termination, and thus, the need for abstrac-
tion arises. For an element B in bodies(U (P, Qr)), the abstraction operator Abs, r,
should consider whether adding B to the global level may endanger termination.
To this end, Abs, 1 should detect whether B is (in some sense) bigger than an-
other label already occurring in Segg, , since adding B might then lead to some
systematic growing behaviour resulting in non-termination.

According to Definition 3.2, abstraction allows two operations: conjunctions can
be split and generalised. There are many ways this can be done and the concrete
way will (usually) directly rely on the relation detecting growing behaviour.

Since we aim at removing shared, but unnecessary variables from conjunctions,
there is no point in keeping atoms together that do not share variables. We will
therefore always break up conjunctions into mazimal connected subparts (conjunc-
tions)® and abstraction will only consider these. In other words, resultant bodies
will be automatically split into such connected chunks and it will be the latter that
are considered by the abstraction operator proper.

Global termination then follows in a way similar to the local one.

Definition 3.12. (maximal connected subconjunctions) Given a conjunction ¢ =
Ay N ... AN Ay, where Ay,..., A, are atoms, we define the binary relation |q
over the atoms in @ as follows: A; |g A; iff vars(A;) Nwvars(A;) # 0. By Jo
we denote the reflexive and transitive closure of |g. The mazimal connected
subcongunctions of ), denoted by mes(Q), are defined to be the multiset of
conjunctions {Q1,...,Qm} such that

1. Q= Q1 /N...NQnm,
2. A; g A iff A; and A; occur in the same @), and

3. for every Qi there exists a sequence of indices j; < jo < ... < j; such that
Q. ZAjl /\"'/\Ajl'

For two conjunctions @ = A1 A... A A, and Q' = A] A... A A}, where A; and A]
have the same predicate symbols for all 7, a most specific generalisation msg(Q, Q")
exists, which is unique modulo variable renaming.

Given a conjunction @ = Ay A...A Ay any conjunction Q" = A; A...AA;, such
that 1 <14y <...<1i; <k is called an ordered subconjunction of Q.

We now extend the definition of homeomorphic embedding to conjunctions.

6This notion is closely related to those of “variable-chained sequence” and “block” of atoms
used in [64, 65].



256

Definition 3.13. (homeomorphic embedding) Let @ = Ay A ... AN A, and Q" be
conjunctions. We say that @ is embedded in @', denoted by Q < Q’, iff Q' 4
Q@ and there exists an ordered subconjunction A7 A ... A Al of @ such that
A; < A for all i.

This relation < still satisfies Theorem 3.10 (for sequences of conjunctions). This
can be proven easily using the results of [51] combined with Higman-Kruskal’s
theorem ([28, 35], see also [17]) by considering A as a functor of variable arity (i.e.
an associative operator).

To complete the definition of abstraction, it remains to be decided how to split a
maximal connected subconjunction @’ deriving from some B € bodies(U(P,Qr)),
when it indeed embeds a goal @ on the branch g, considered.

Assume that Q = AjA ... AA, is embedded in Q'. An obvious way is to split Q’
into A{A...AA] and R, where each A} embeds A;, and R contains the remaining
atoms of @’. This may not suffice since R can still embed a goal in Seqg,. Thus,
in order to obtain a set of conjunctions not embedding any label in Segg,, we
recursively repeat splitting on R.

There can be several conjunctions in Seqg, embedded in @', and @’ can em-
bed conjunctions in various ways. We cut the Gordian knot by abstracting wrt
the node closest to leaf L. Next, we split in a way that is the best match wrt
connecting variables. Consider two conjunctions @ = p(X,Y)Aq(Y,Z) and Q' =
p(X, T)Ap(T,Y)Nq(Y,Z). @Q embeds @Q and, to rectify this, we can either split
Q" into p(X,T)Ng(Y,Z) and p(T,Y), or into p(X,T) and p(T,Y)Aq(Y,Z). Of
these, the second way is the best match because it maintains the sharing of Y. A
straightforward method for approximating best matches is the following.

Definition 3.14. (best matching conjunction) Let @ be a conjunction and Q be a set
of conjunctions. A best matching conjunction for @ in Q is a minimally general
element of the set

bme(Q, Q) = {msg(Q, Q") | Q' € Q and msg(Q, Q') exists}

The set bmc(Q, Q) may be empty, but when it is non-empty, we denote by
bme(Q, Q) one particular best matching conjunction for @ in Q. It might for
example be chosen as follows. Consider graphs representing conjunctions where
nodes represent occurrences of variables and there is an edge between two nodes iff
they refer to occurrences of the same variable. A best match is then a Q' with a
maximal number of edges in the graph for msg(Q, Q).

Definition 3.15. (splitting) Let Q@ = Ay A ... AN A,, Q' be conjunctions such that
Q < Q. Let Q be the set of all ordered subconjunctions Q" of Q' consisting
of n atoms such that @ < Q”. Then splitg(Q’) is the pair (B, R) where B =
bme(Q, Q) and R is the ordered subconjunction of @’ such that Q' =, B A R.

Before presenting a fully concrete abstraction operation (Definition 3.19), we
define the Abs. -operators in Algorithm 3.5 on an intermediate generic level. This
will be useful in Section 5 of the paper.

Algorithm 3.16. (generic abstraction algorithm) For a global tree v and a node L
in v define Abs., 1, by:

Input: a conjunction Q
Output: a set of conjunctions Quut
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Initialisation: Q... := 0; Q = partition(Q);
while O # () do
select M € Q;
Q:=Q\{M};
if whistle(vy, L, M) then
Q := QU generalise(y, L, M)
else Qout = Qout U {M}a
output Q,u:

The function partition does the initial splitting of the bodies into connected
subconjunctions (or mcs’s or plain atoms for standard partial deduction). Then for
each of the subconjunctions it is checked if there is a risk of non-termination. This
is done by the function whistle. The whistle will look at the labels (conjunctions)
on the branch in the global tree to which the new conjunction M is going to be
added as a leaf and if M is “larger” than one of these, it returns true. Finally, if
the “whistle blows” for some subconjunction M, then M is generalised by using
the function generalise.

To obtain a concrete abstraction algorithm, we first choose a concrete whistle, a
concrete generalisation, and use mes(Q) for partition(Q).

Definition 3.17. (concrete whistle) For a global tree «, a node L, and a conjunction
M define

whistle(y,L,M) = 3B € Seqs, : BIMAB#M

Definition 3.18. (concrete generalise) For a global tree 7, a node L, and a conjunc-
tion M define

generalise(y, L, M) =

let B € Seqp, such that BIM AB# M
(Ml,MQ) = SplitB(M)
in mes(msg(Mi, B)) U mes(Ma);

Algorithm 3.19. (concrete abstraction algorithm) A concrete abstraction algorithm
is defined by Algorithm 3.16 together with the concrete whistle 3.17, the concrete
generalisation 3.18 and mes(Q) for partitioning.

Let us now prove termination of Algorithm 3.19 and 3.5.

Proposition 3.20. Algorithm 3.19 terminates. A conjunction Q € Qo either does
not embed any B € Seqga, , or it is a variant of some such B.

PRrOOF. Upon every iteration, a conjunction is removed from Q, and either replaced
by finitely many strictly smaller conjunctions (i.e. with fewer atoms) or is replaced
by a conjunction which is strictly more general (i.e. the result of generalise).

Let W = msg(M,, B) in generalise. Indeed, if My is not empty or if mes(W) #
W then the conjunctions added to Q will be strictly smaller than the removed M.
Alternatively, if My is empty and mes(W) = W then W must be strictly more
general than M. In fact, if W is a variant of M then M must be more general than
B (by a property of the msg), and even strictly more general because no B is a
variant of M (B # M). This is in contradiction with the definition of <, which
requires that B is not a strict instance of M for B < M to hold.
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As there are no infinite chains of strictly more general expressions (see e.g. [21]),
termination follows.

The second part of the proposition follows from the fact that what we want to
prove is implied by the negation of whistle.

O

Each operator Abs, 1, is an abstraction operator in the sense of Definition 3.2,
abstracting a singleton {Q}. It is this property which ensures the existence of a
partitioning (and a renaming) such that the output of Algorithm 3.5 leads to a
conjunctive partial deduction satisfying the conditions of Theorem 2.19.

So, abstraction according to Algorithm 3.19 is well defined: its use ensures that
no label in a branch of the global tree embeds an earlier label. The following
theorem then is, again, a variant of Higman-Kruskal’s Theorem.

Theorem 3.21 (termination). Algorithm 3.5 terminates if U is a terminating un-
folding rule and the Abs’s are defined as in Algorithm 3.19.

3.4. Refinements of the Algorithm

There are several ways in which the above algorithm can be refined further. At this
point, we briefly mention two. Both techniques can (and should) be tuned in such
a way as to ensure that the resulting partial deductions are weakly fair.

The simplest technique is as follows: If a conjunction Q' at a leaf in an SLD-tree
is a variant (or instance respectively) of a conjunction @ € Nodes,,, then unfolding
stops at that leaf. We call this refinement the variant (instance) check rule. Note
that applying this rule may lead to different specialisation of @', since unfolding Q
may have led to an SLD-tree, different from the subtree that can be built from @',
and its leaves may have been abstracted in another way than those in the latter
(sub)tree would.

Another technique applies variant (instance) checking in a post-processing phase.
At the end of specialisation, it inspects the SLD-trees connected to the conjunctions
in Nodes,, and removes from them all subtrees rooted in nodes whose goal body is
a variant (instance) of a conjunction in Nodes.,. This optimisation can lead to less
specialisation for essentially the same reasons as the one above. We call the second
technique the post variant (instance) check rule.

3.5. Eramples

In this section, we (re)consider examples illustrating optimisations that can be
achieved by conjunctive partial deduction. We will, unless explicitly stated other-
wise, use Algorithm 3.5 with the concrete strategy formulated in Section 3.3, as
well as the variant check rule and the post variant check rule described in Subsec-
tion 3.4.

Double Append

Initially, the global tree contains a single node labelled app(Xs, Ys,T), app(T, Zs, R).
Unfolding produces the fair SLD-tree shown below.
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— app(Xs,Ys, T)Napp(T, Zs, R)

=1, Ys / \\:(9 (H|Xs'],T = [H|T')

— app(Ys, Zs, R) — app(Xs', Ys, T")Napp([H|T"], Zs, R)
=[,R= Zs/ \Y = [H|Ys],R = [H|R'] lR: [H|R']
— app(Ys', Zs, — app(Xs', Ys, T ) Napp(T"’, Zs, R')

Here app(Ys', Zs, R') and app(Xs', Ys, T')ANapp(T’, Zs, R') are the next conjunctions
to be considered. The abstraction operator returns both unchanged. The second
one, however, is a variant of the initial one, and therefore is not incorporated in
the global tree. Since we use the post variant check rule from Subsection 3.4, we
remove (safely) the subtree below app(Ys, Zs, R) in the above SLD-tree. The SLD-
tree of app(Ys', Zs, R') will be identical to the removed subtree (except for variable
renaming). Then no more goals need to be considered, and the algorithm will
terminate. From the result, one can construct the conjunctive partial deduction
containing clauses Cy, Cy, C% and C shown in Example 2.9.

This example also illustrates a point mentioned in Section 3.3: It is even more
crucial to use global trees for conjunctive partial deduction than in a conven-
tional context. Indeed, if we run an algorithm based on sets of conjunctions,
then app(Xs', Ys, T') A app(T’, Zs, R') embeds app(Ys, Zs, R) and abstraction splits
app(Xs', Ys, T") A app(T', Zs, R') into two separate atoms. Consequently, no opti-
misation is obtained.

Rotate-Prune

Consider the rotate-prune program, adopted from [64]:

rotate(I(N), I(N)).

rotate(t(L, N, R),t(L', N, R")) < rotate(L, L"), rotate(R, R').
rotate(t(L, N, R), t(R', N, L")) < rotate(L, L"), rotate(R, R').
prune(l(N), (N)).

prune(t(L, 0, R), i(0)).

prune(t(L, s(N), R), (L', s(N), R')) «— prune(L, L), prune(R, R').

The goal rotate(T'1,T2) is true if the trees T'1 and T2 are equal apart from inter-
changed left and right subtrees in zero or more nodes; prune(T'1,T2) holds for a pair
of trees where T2 can be obtained from T'1 by replacing each subtree of the latter
with label 0 by a leaf labelled 0. Given T'1, the goal rotate(T1,U), prune(U,T2)
first rotates and then prunes 7’1 by means of an intermediate variable U.

Conjunctive partial deduction produces the program below, to be run with the
goal rp(T'1,U, T2).

rp(l(N), [(N),1(N)).
rp(t(L, 0, R), (L', 0, R'),1(0)) —r(L,L),r(R, R).
Tp(t( s(N), R), t(L', s(N), R),¢(L",s(N),R")) « rp(L, L', L"), rp(R, R, R").
rp(t(L, s(N), R), (R, s(N), L), t(R", s(N),L")) < rp(L, L’, L"), rp(R, R', R").
N), [N)).

L,N,R),#L',N,R)) < r(L,L"),r(R, R').
L,N,R L,L

(U
r(#(
r(((L, N, R), R, N, L")) < r(L, L"), r(R, R').
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This result is not entirely satisfactory. Indeed, though no longer used for pruning,
the intermediate rotated tree is still constructed. We develop a remedy to this
problem in the next section.

4. REDUNDANT ARGUMENT FILTERING

As already noted, conjunctive partial deduction as presented so far, produces in
some cases a program that constructs useless intermediate data structures. In this
section we describe a simple post-processing phase which in many cases removes
such structures.

Reconsider Example 2.9. Conjunctive partial deduction of the append program
with respect to the goal « app(X,Y,I) A app(I,Z, R) yielded the new goal «
da(X,Y,I,Z, R) and the program {C, Cs, C%, C}}, where

(Cl) a,pp([],L,L)%

(C2)  app([H|X],Y,[H|Z]) — app(X,Y, Z)

(C3)  da([].Y.Y,Z,R) < app(Y, Z, R)

(Cy)  da([H|X',Y,[H|I'], Z,|[H|R]) « da(X",Y,I', Z, R')
As mentioned in the example, although the result list R now is constructed without
reference to the intermediate list I, the latter is still computed. What we want is
the goal «dda/(X,Y, Z, R) and the program {Cy,C5,C3,Cy}, where

(C3)  dd([],Y,Z,R) < app(Y, Z, R)

(Cy) dd([H|X',Y,Z,[H|R]) « da'(X",Y,Z,R')

Until now, the step from da/5 to da’/4 has been left open. It cannot be obtained
by the renaming operation in [21, 3] which only improves programs in which some
atom in some body contains functors or multiple occurrences of the same variable.
In fact, this operation has already been employed by conjunctive partial deduction
to arrive at the program with da/5. The step also cannot be obtained by other
transformation techniques, such as partial deduction itself, or the more specific
program construction in [56, 57] which calculates more specific versions of programs.
Indeed, any method which preserves the least Herbrand model or the computed
answer semantics for all predicates is incapable of transforming da/5 to da’/4. The
point is that although the list I is redundant in some sense—which is made precise
below—the change of arity also changes the semantics.

Redundant arguments appear in a variety of other situations, e.g., in programs
generated by standard partial deduction with conservative unfolding, and in pro-
grams obtained by re-use of general predicates for more specific purposes—see [52].

In this section we rigorously define the notion of a redundant argument. It turns
out to be undecidable whether a given argument is redundant, so we present an
efficient algorithm which computes a safe approximation of the set of redundant
arguments and removes these. Correctness of the technique is also established. The
resulting algorithm should then be combined with conjunctive partial deduction
proper, removing redundant arguments in a post-processing phase.

4.1. Correct Erasures

Let Pred(P) denote the set of predicates occurring in a logic program P, arity(p)
denote the arity of a predicate p, and Clauses(P) denote the set of clauses in P.
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Also, for a substitution § and a set of variables V', 0 |y denotes the restriction of 6
to V.
First, we formalise redundant arguments in terms of correct erasures.

Definition 4.1. (erasure, full erasure) Let P be a program.
1. An erasure of P is a set of pairs (p, k) with p € Pred(P), 1 < k < arity(p).
2. The full erasure for P is Tp = {(p, k) | p € Pred(P) A1 < k < arity(p)}.

The effect of applying an erasure to a program is to erase a number of arguments
in every atom in the program. For simplicity we assume that, for every program P
and goal G of interest, each predicate symbol occurs only with one particular arity;
this prevents unintended name clashes after erasing certain argument positions.

Definition 4.2. Let G be a goal, P a program, and E an erasure of P.

1. For an atom A = p(t1,...,t,) in Pylet 1 < j; < ... < jr < n be all the
indexes such that (p,j;) € E. We then define A|E = p(t;,,...,t;,).

2. P|FE and G|FE arise by replacing all atoms A by A|E in P and G, respectively.

How are the semantics of P and P|E of Definition 4.2 related? Since the pred-
icates in P may have more arguments than the corresponding predicates in P|E,
the two programs have incomparable semantics. Nevertheless, the two programs
may have the same semantics for some of their arguments.

Ezample 4.3. Consider the programs P and P|E, where E = {(p, 3)}:

p(0,0,0) “ p(0,0) “
p(s(X), f(Y),9(2)) —p(X,Y, 2) p(s(X), f(Y)) —p(X,Y)

The goal G =«p(s(s(0)), B, C) has exactly one SLD-refutation, with computed
answer {B/f(f(0)),C/g(g(0))}. The goal G|E =—p(s(s(0)), B) has exactly one
SLD-refutation, with computed answer {B/f(f(0))}. Thus, although we have
erased the third argument of p, the computed answer for the variables in the
remaining two arguments is not affected. Taking finite failures into account too,
this suggests the following notion of equivalence.

Definition 4.4. (correct erasure) Erasure F is correct for program P and goal G iff

1. PU{G} has an SLD-refutation with computed answer  with 6’ = 6 | 4,5(|E)
iff P|F U{G|E} has an SLD-refutation with computed answer 6'.

2. PU{G} has a finitely failed SLD-tree iff P|E U {G|E} has.

Given a goal G and a program P, we may now say that the i’th argument of
a predicate p is redundant if there is an erasure F which is correct for P and G
and which contains (p,i). However, we will continue to use the terminology with
correct erasures, rather than redundant arguments.

Usually there is a certain set of argument positions I which we do not want to
erase. For instance, for G = app([a], [b], R) and the append program, the erasure
E = {(app, 3)} is correct, but applying the erasure will also make the result of the
computation invisible. In other words, we wish to retain some arguments because
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we are interested in their values. Therefore we only consider subsets of Tp \ I for
some I. Not all erasures included in Tp \ I are of course correct, but among the
correct ones we will prefer those that remove more arguments. This motivates the
following definition.

Definition 4.5. (set of erasures) Let G be a goal, P a program, £ a set of erasures
of P,and E,E' € £.

1. E is better than £/ if E D E'.
2. E is strictly better than E’ iff E is better than E' and F # E’.
3. E is best iff no other E' € £ is strictly better than E.

Proposition 4.6. Let G be a goal, P a program and £ a collection of erasures of P.
Among the correct erasures for P and G in & there is a best one.

PrROOF. There are only finitely many erasures in £ that are correct for P and G.
Just choose one which is not contained in any other. a
Best correct erasures are not always unique. For G =< p(1,2) and P:

p(3,4) «+q

q «—

both {(p,1)} and {(p,2)} are best correct erasures, but {(p, 1), (p,2)} is incorrect.

4.2. Computing Correct Erasures

Unfortunately, best correct erasures are, in general, uncomputable—for a proof,
see [52]. We therefore now introduce the computable approximate notion of a safe
erasure, which captures many interesting cases. To provide some intuition for this
quest, the following examples illustrate some aspects of correctness.

The first example shows what may happen if we try to erase a variable that
occurs several times in the body of a clause.

Ezample 4.7. Consider the programs P and P|E, where E = {(r,2)}:

p(X) —r(X,Y),q(Y) p(X) —r(X),q(Y)
r(X,1) « r(X) «
q(0) < q(0) «

In P the goal G =« p(X) fails finitely, while in P|E the goal G|E =« p(X)
succeeds. Thus F is not correct for P and G. The source of the problem is that
the existential variable Y links the calls to r and ¢ with each other. By erasing
Y in «7(X,Y), we also erase the synchronisation between r and g.

In a similar vein, erasing a variable that occurs several times within the same
call, but is not linked to other atoms, can also be problematic.

Ezample 4.8. Consider the programs P and P|E, where E = {(p,2)}:

p(a,b) — pla)
p(f(X),9(X)) «<p(Y,Y) p(f(X)) <p(Y)
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Here G =—p(f(X), Z) fails finitely in P, while G|E =—p(f(X)) succeeds (with
the empty computed answer) in P|E.
Note that, for E = {(p,1), (p,2)}, P|E is the program:

p.
b <D

Again G|E =« p succeeds in P|E and the problem arises independently of
whether the second occurrence of Y is erased or not.

Still another problem is illustrated in the next example.
Ezample 4.9. Consider the programs P and P|E, where E = {(p, 2)}:

([, 1) — p([) “
p([X|Xs], [X]Ys]) —p(Xs, [0]Ys]) P([X|Xs]) —p(Xs)

In P, the goal G =< p([1,1],Y) fails finitely, while in P|E the goal G|E =«
p([1,1]) succeeds. This phenomenon can occur when erased arguments of predi-
cate calls contain non-variable terms.

Finally, problems may arise when erasing in the body of a clause a variable which
also occurs in a non-erased position of the head of a clause:

Ezample 4.10. Consider the programs P and P|E, where E = {(p,2)}:

p(a,b) pla)
p(X,Y) «p(Y, X) p(X) «p(Y)

Here G =« p(c,Y) fails (infinitely) in P while G|E =« p(c) succeeds in P|E.
The synchronisation of the alternating arguments X and Y is lost by the erasure.

The above criteria lead to the following definition, where (1) rules out Exam-
ple 4.9, (2) rules out Examples 4.7 and 4.8, and (3) rules out Example 4.10.

Definition 4.11. (safe erasure) Let P be a program and E an erasure of P. E is
safe for P iff for all (p,k) € E and all H «—C,p(t1,...,t,),C" € Clauses(P):

1. t; is a variable X.
2. X occurs only once in C,p(ty,...,t,),C".
3. X does not occur in H|E.

This in particular applies to goals:

Definition 4.12. (safe goal) Let P be a program and E an erasure of P. F is safe
for a goal G iff for all (p, k) € E where G =—C, p(t1,...,t,),C" it holds that:

1. t; is a variable X.
2. X occurs only once in in C,p(ty,...,t,),C".

The conditions in Definitions 4.11 and 4.12 occur, in a less obvious formulation,
within the formalisation of T&S-folding (see e.g. [62]). This will allow us to reuse
correctness results from the unfold/fold literature in the proof below. Indeed, the
method of this section can be seen as a novel application of T&S-folding using a
particular control strategy.
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Proposition 4.13. Let G be a goal, P a program, and E an erasure of P. If E is
safe for P and for G then E is correct for P and G.

Proor. We will show that P|E can be obtained from P by a sequence of T&S-
definition, unfolding and folding steps (see also Section 2.4).

Let Py = P U query(X) « Q be the initial program of our transformation
sequence, where G =« @ and X is the sequence of distinct variables occurring
in G|E. First, for each predicate defined in P such that A # A|E, where A =
p(X1,...,X,) is a maximally general atom, we introduce the definition Def, =
A|E — A. The predicate of A occurs in Py, and is therefore old according to the
definitions in [74] (if one wants to use the definitions in [62] one can use exactly the
same “trick” as explained in the proof of Lemma 1). By the conditions we imposed
earlier on P we also know that the predicate of P|E does not occur in Py. Thus
these definition steps are T&S-definition introduction steps.

We now unfold every definition A|E «— A wrt A using the clauses defining A in
Py, giving us the program Py (where k is the number of definitions that have been
unfolded).

For every atom p(t1,...,t,) in the body of a clause C of Py, for which a definition
Def, has been introduced earlier, we perform a folding step of C' wrt p(ti,...,ts)
using Def,. Note that every such atom p(t1,...,t,) is fold-allowing (because either
it has been obtained by unfolding a definition A|EF < A and is not inherited from
A or it stems from the original program). The result of the folding step is that of
replacing p(t1,...,t,) by p(t1,...,t,)|E. This means that after having performed
all the resolution steps we obtain a program P’ = P|EUquery(X) « Q|EUP" where
P are the original definitions of those predicates for which we have introduced a
definition Def,.

Now, as already mentioned earlier, the conditions in Definition 4.11 and Defini-
tion 4.12 are equivalent to the conditions of T&S-folding and therefore P’ can be
obtained from Py by a sequence of T&S-unfolding and then T&S-folding steps on
fold-allowable atoms. Note that here it is vital to define X to be the variables of
G|E in the clause query(X) « Q of Py, otherwise the folding steps performed on
the atoms of @) would not be T&S-folding steps. We can thus apply Theorems 10
and 12 in [62] to deduce preservation of the computed answers and of finite failure.

Finally, as P is unreachable from « query(X) we can remove P” and because
G|E =—Q)|FE, the conditions of Definition 4.4 are verified for P and G. O

The following algorithm constructs a safe erasure for a given program.

Algorithm 4.14. (RAF)

Input: a program P, an initial erasure Ey.

Output: an erasure E with F C FEy.

Initialisation: i := 0;

while there exists a (p,k) € E; and a H —C,p(t1,...,t,),C’ € Clauses(P) s.t.:
1. t is not a variable; or
2. ti is a variable that occurs more than once in C, p(t1,...,t,),C’; or
3. ti is a variable that occurs in H|E;

do Eiy1:=E\{(p,k)}; i:=i+1;

return F;

The above algorithm starts out from an initial erasure Ey contained in Tp \ I,
where I are positions of interest (i.e. we are interested in the computed answers
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they yield). Furthermore Ejy should be safe for any goal of interest. Concretely,
Ej is usually taken equal to T p \ I with I the argument positions of the top=level
goal with respect to which the program is specialised (cf.Examples 4.16 and 4.17
below).

Proposition 4.15. With input Eg, RAF terminates, and output E is a unique era-
sure, which is the best safe erasure for P contained in Ej.

PrOOF. The proof consists of four parts: termination of RAF, safety of E for P,
uniqueness of E, and optimality of E. The two first parts are obvious; termination
follows from the fact that each iteration of the while loop decreases the size of E;,
and safety is immediate from the definition.

To prove uniqueness, note that the non-determinism in the algorithm is the
choice of which (p, k) to erase in the while loop. Given a logic program P, let the
reduction E(p, k)F denote the fact that F is not safe for P and that an iteration of
the while loop may choose to erase (p, k) from E yielding F = E\{(p,k)}.

Now suppose E(p,k)F and E(q,j)G. Then by analysis of all the combinations
of reasons that (p, k) and (g, 7) could be removed from F it follows that F(q,j)H
and G(p, k)H with H = E\{(p, k), (q,j)}. This property implies that for any two
sequences

E(phkl)Fl~~-Fn71(pn7kn)Fn and E(q17¢71)G1Gm71(qm>]m)Gm

there are sequences:
F (Q17]1)G1 Gm I(Qm7,]m)H a‘nd Gm(plakl)FllF;z—l(pnakn)H

with H = F,, N G,,. In particular, if F,, and G,, are safe, so that no reductions
apply, it follows that F,, = G,,,. Hence the output is a unique erasure.

To see that this is the best one among the safe erasures contained in Ej, note
that E(p, k)F implies that no safe erasure contained in F contains (p, k). ]

Ezxample 4.16. In the append example, we augment the original program with the
clause dapp(X,Y, Z, R) <« app(X,Y,I),app(I, Z, R) and subsequently run con-

junctive partial deduction as before. We obtain dapp(X,Y, Z, R) « da(X,Y,1,Z, R)

and the program {C1, Ca, C%, C4} as on page 260. Application of RAF, starting
from Ey = Tp \ {(dapp,i) | 1 < i < 4} (stating the fact that we are only in-
terested in queries to dapp), now yields E = {(da,3)}, showing that the third
argument of da can be safely removed.

Ezample 4.17. For the rotate-prune example in Section 3.5, with a similar top-level
clause containing the rotate-prune query, RAF generates F = {(rp, 2), (p,2)} and
hence the program obtained before will be further transformed into:

rp(l(N),1(N)).

rp(t(L,0, R),1(0)) —r(L),r(R).
7"17(75( ( ): R),t(L',s(N), R')) « rp(L, L"), rp(R, R').
rp(t(L, s(N), R), t(R', s(N), L)) < rp(L, L), rp(R, R').
r(I(N)).
r(t(L, N, R)) —r(L),r(R).

to be run with the goal rp(Ty,T»). This program completely avoids construction
of the intermediate rotated tree. It is equivalent to what unfold/fold transfor-
mations can obtain [64].
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More about redundant argument filtering can be found in [52], including a poly-
variant version of RAF allowing different erasures to be applied in different contexts,
and a variant of RAF (named FAR), detecting further superfluous arguments. The
paper also contains a series of benchmark results exhibiting an average speed in-
crease of 18% and an average code size reduction of 21%, when RAF is run after
conjunctive partial deduction (where the initial erasure Ey contained all argument
positions except those of the top-level query to be specialised), as compared to
running conjunctive partial deduction alone.

Work very much related to RAF is [15], which provides some pragmatics for
removing unnecessary variables in the context of optimising binarised Prolog pro-
grams. Another related technique is truncation of Prolog programs derived by
extended execution [19]. In some cases truncation is more powerful than RAF, but
in order to apply it (soundly), one has to prove termination of the runtime goal
and functionality of the goal to be truncated. Techniques similar to RAF have also
appeared in functional programming, e.g. Chin [13] describes a technique to remove
useless variables using abstract interpretation. Compared to these techniques the
algorithm for redundant argument filtering (RAF) is strikingly simple and very effi-
cient. The obvious drawback of our technique is that it is less precise. Nevertheless,
the mentioned benchmarks show that it performs well on a range of mechanically
generated programs, indicating a good trade-off between complexity and precision.

It would seem that our algorithm RAF for removal of redundant arguments is
related to Proietti and Pettorossi’s work on unfold/fold transformations for re-
moval of unnecessary variables (see e.g.[64]). However, the two should not be
directly compared. RAF is intended as a simple, efficient post-processing phase
for program transformers, in particular for conjunctive partial deduction, whereas
the unfold/fold approach is less efficient, but far more powerful and able to re-
move intermediate data structures from programs. For instance, it can produce
the desired versions of the double-append rotate-prune programs in Examples 4.16
and 4.17. Very roughly, whereas unfold/fold eliminates the production and subse-
quent consumption of intermediate data structures, conjunctive partial deduction
only eliminates the consumption and RAF then removes their production. Thus,
one should rather compare unfold/fold to the composition of conjunctive partial
deduction with RAF. We discuss this further in Section 6.

5. CONJUNCTIVE PARTIAL DEDUCTION FOR PURE PROLOG

In this section, we show how conjunctive partial deduction can be used to transform
pure Prolog programs. We describe different options for the design and the imple-
mentation of a conjunctive partial deduction system and discuss several control
problems that have to be solved in practice. After discussing control in the Prolog
context (Section 5.1), we survey the different methods we tested (Section 5.2), and
discuss experimental results (Section 5.3).

5.1. Control in Pure Prolog

We will be concerned with conjunctive partial deduction for a declarative subset of
Prolog. This means, beside omitting non-pure language features, that we suppose a
fixed (unfair) computation rule. Moreover, we will demand preservation of program
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termination under the given computation rule (in the sequel assumed “left-to-right”,
unless explicitly stated otherwise).

Unfolding Rules

In the given context, determinate unfolding has been proposed as a way to ensure
that partial deduction will never actually worsen the behaviour of the program
[23, 22]. Indeed, even fairly simple examples suffice to show that non-leftmost,
non-determinate unfolding may duplicate computations in the resulting programs.
Leftmost, non-determinate unfolding, usually allowed to compensate for the all too
cautious nature of purely determinate unfolding, avoids the more drastic deterio-
ration pitfalls, but can still lead to multiplying unifications.

Splitting and Abstraction

Contiguous splitting. Abstraction, as presented in Section 3, splits a conjunction
into subconjunctions. However, these subconjunctions are not necessarily contigu-
ous. Let us present a simple example. Consider the two conjunctions @1 and
Q2

Q1 =p(X,Y)N\q(Y, Z)

Q2 = p(f(X), Y)Ar(Z, R)Aq(Y, Z)

If specialisation of () leads to specialisation of ()5, there is a danger of non-
termination (@1 < Q2). The method presented in Section 3 will remedy this by
first splitting Q2 into @ = p(f(X),Y)Aq(Y, Z) and r(Z, R) and subsequently tak-
ing the msg of @ and Q. As a result, only r(Z, R) will be considered for further
specialisation.

Now, given a left-to-right computation rule, the above operation alters the se-
quence in which goals are executed. Indeed, the p- and g-subgoals will henceforth
be treated jointly (they will probably be renamed to a single atom). Consequently,
there is no way an r-call can be interposed.

From a purely declarative point of view, there is, of course, no reason why
goals should not be interchanged, but under a fixed (unfair) computation rule,
non-contiguous splitting can degrade program performance, and even change the
termination behaviour of a program.

In fact, the latter point has already been addressed in the context of unfold/fold
transformations (e.g. [7, 6, 9, 10]). To the best of our knowledge, however, no
satisfactory solution exists, suitable to be incorporated in a fully automatic trans-
formation system. Thus, below we have in all but two methods limited splitting to
be contiguous, that is, we split into contiguous subconjunctions only. (This can be
compared with the outruling of goal switching in [6].) On the one hand, compared
to the basic (declarative) method in Section 3, some opportunities for program im-
provements are not exploited, on the other hand, Prolog programs are significantly
less prone to actual deterioration rather than optimisation.

Static conjunctions. Even though abstraction (splitting) ensures that the length
of conjunctions (the number of atoms) remains finite, there are (realistic) examples
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where conjunctions can get very large. This, combined with the use of homeo-
morphic embeddings (or lexicographical orderings for that matter), can lead to
very large global trees, large residual programs and degrade transformation time
complexity.

A simple way to avoid this practical problem, is to use another, less explosive
strategy on conjunctions, e.g. requiring a decrease in the total term size. Another
way is to limit the size of conjunctions at the global level using static conjunctions.
A static conjunction is any conjunction or a generalisation of any conjunction that
can be obtained by non-recursive unfolding of the goal to be partially evaluated.
A static analysis can be used to compute a set of static conjunctions S from the
program and the goal. During partial deduction only those conjunctions will be
allowed (at the global level) that are instances of an element of S; any disallowed
conjunctions that may occur are split further. (A related technique is used in [65].)

In our implementation, we use a simple-minded method of approximating the set
of static conjunctions, based on counting the maximum number of occurrences of
each predicate symbol in a conjunction in the program or in the goal to be partially
deduced, and disallowing conjunctions surpassing these numbers.

5.2. The System and the Implemented Methods

The partial deduction system which we used to investigate the effects of conjunctive
partial deduction is the ECCE partial deduction system (developed by Leuschel [53]).
The system consists of an implementation of the concrete algorithm 3.5 to which
one may add one’s own methods for unfolding, partitioning, generalisation, etc.
All built-ins handled by the system are supposed to be declarative (e.g. ground is
supposed to be delayed until its argument is ground,...). Some of the built-ins that
are handled are: =, is, <, =<, <, >=, nonvar, ground, number, atomic, call,
\==, \=. In the following we will give a short description of the different methods
that we used in the experiments.

The system implements a variant of the concrete algorithm described in Sec-
tion 3.3. The algorithm uses a global tree v with nodes labelled with (characteris-
tic) conjunctions. When a conjunction @ gets unfolded, then the conjunctions in
the bodies of the resultants of @ (maybe further split by the abstraction) are added
as child nodes (leaves) of @ in the global tree.

After the algorithm terminates the residual program is obtained from the output
by unfolding and renaming (details can be found in [48, 26, 52]).

The Concrete Settings

We have concentrated on three local unfolding rules for U. All unfolding rules were
complemented by a simple more specific transformation in the style of SP [22] and
allow the selection of ground negative literals.

1. Safe determinate (t-det.): do determinate unfolding allowing one left-most
non-determinate step using homeomorphic embedding with covering ances-
tors of selected atoms to ensure finiteness.

2. Homeomorphic embedding and reduction of search space (h-rs): non-left-
most unfolding is allowed if the search space is reduced by the unfolding. In
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other words, an atom p(f) can be selected if it does not match all the clauses
defining p. Again, homeomorphic embeddings are used to ensure finiteness.
Note that, in contrast to 2 and 3, this method might worsen the backtracking
behaviour.

3. “MIXTUS ”-like unfolding (x): See [67] for further details (we used max_rec =
2, max_depth = 2, max finite = 7, maxnondeterm = 10 and only allowed
non-determinate unfolding when no user predicates were to the left of the
selected literal).

The measures that we have used in whistles are the following:
1. homeomorphic embedding (homeo.) on the conjunctions

2. termsize (i.e. the number of function symbols in the terms) on the conjunc-
tions

3. homeomorphic embedding (homeo.) on the conjunctions and homeomorphic
embedding on the associated characteristic trees

4. termsize on the conjunctions and homeomorphic embedding on the charac-
teristic trees

The methods for partitioning are based either on splitting into mes’s (non-contiguous)
or into maximal contiguous connected subconjunctions. Additionally we may limit
the size of conjunctions by using static conjunctions.

An extension wrt [40, 50] relates to built-ins which are also registered in the
characteristic tree. The only problematic aspect is that, when generalising built-ins
which generate bindings (like is/2, =../2) and which are no longer executable after
generalisation, these built-ins have to be removed from the generalised characteristic
tree (i.e. they are no longer selected).

5.3. Results and Discussion

We incorporated the methods into the ECCE partial deduction system [53, 40, 50]
and ran an extensive set of benchmarks. We will now discuss the resulting speedups,
the transformation time and the code size. Also, we shall compare our results to
standard partial deduction with ECCE and to three other partial deduction systems.

Systems

Table 1 gives an overview of the tested partial deduction systems. They fall into
three categories:

e Conjunctive partial deduction. All systems use safe, contiguous splitting
(contig), except two systems that use an unsafe, non-contiguous variant
(mcs). The first two systems, marked (dynamic), do not use static con-
junctions (static) to limit the size of conjunctions at the global level. On
the global control level, we investigate the effect of homeomorphic embed-
dings (homeo) and termsize measures (termsize). Optionally, we employ
characteristic trees (chtree) with homeomorphic embedding, marked (none)
if unused. Local unfolding is always determinate (t-det), except in one case
(h-rs).
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o Standard partial deduction. Disallowing conjunctions on the global level gives
us conventional partial deduction. We tested standard partial deduction with
three different unfolding rules. One system (SE-hh-x) uses the ecological
partial deduction principle [40] to ensure preservation of characteristic trees
upon generalisation.

o FEristing systems. We compare our results with those produced by three
existing systems based on standard partial deduction: MIXTUS [67], PADDY
[63], and SP [22, 24]. The following versions of these systems have been used:
version 0.3.3 of MIXTUS, the version of PADDY delivered with ECLIPSE 3.5.1,
and a version of Sp dating from September 25, 1995.

All ECCE-based systems use the same post-processor which performs redundant
argument filtering, determinate post-unfolding, and removal of unnecessary poly-
variance [50].

Benchmarks

We used a set of small and medium sized benchmark programs taken from [53].
The benchmark programs were carefully selected and/or designed in such a way
that they cover a wide range of different applications, including: pattern matching,
databases, expert systems, meta-interpreters (non-ground vanilla, mixed, ground),
as well as more involved ones: a model-elimination theorem prover, the missionaries-
cannibals problem, a meta-interpreter for a simple imperative language. A few
benchmarks can be fully unfolded. Detailed descriptions can be found in [53, 41].

Together, we claim, the benchmarks give a good impression of the specialisations
and transformations obtained by the different systems.

The entry TT in Table 1 is the total transformation time in minutes to transform
all the benchmarks. The entry > 12h means that the specialisation was interrupted
after 12 hours (though, theoretically, it should have terminated by itself when
granted sufficient time to do so).

We briefly explain the use of co in the tables:

00, SP: this means real non-termination
00, MIXTUS: heap overflow after 20 minutes
00, PADDY: thorough system crash after 2 minutes

Results

The results are summarised in Table 2. We adopted a practical approach and mea-
sured the execution time and the size of compiled code of the specialised programs.
The timings were obtained via special Prolog files which call the original and
specialised programs directly and at least 100 times for the respective run-time
queries, using the time/2 predicate of Prolog by BIM 4.0.12 on a Sparc Classic
under Solaris.
The second column contains the total speedup for all benchmarks:

n
201 orig,

where n is the number of benchmarks and spec; and orig; are the absolute execution

times of the specialized and original programs respectively. The weighted speedups
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System Partition Whistle Unf Total
contig s/d conj chtree TT (min)
Conjunctive Partial Deduction
Cdc-hh-t | contig dyn homeo homeo t-det 62.46
Cdc-th-t contig dyn termsize | homeo t-det 31.18
Csc-hh-t contig | static homeo homeo t-det 29.72
Csc-th-t contig | static | termsize | homeo t-det 5.95
Csc-hn-t contig | static homeo none t-det 35.49
Csc-tn-t contig | static | termsize none t-det 2.67

Cdm-hh-t mcs dyn homeo homeo t-det > 12h 4 110.49
Csm-hh-h mcs static homeo homeo h-rs > 12h 4 73.55

Standard Partial Deduction

S-hh-t - - homeo homeo t-det 3.00
SE-hh-x - - homeo homeo | mixtus 2.96
Existing Systems
MIXTUS - - mixtus none mixtus oo + 2.71
PADDY - - mixtus none mixtus oo + 0.31
SP - - pred = = det 7 3*oco + 1.99

TABLE 1. Overview: systems and transformation times

are obtained by using the code sizes size; of the original programs as a weight for
computing the average.

The fourth column contains the total speedup for those benchmarks which are
“fully unfoldable” (i.e. those for which normal evaluation terminates) while the
fifth column contains the total speedup for those benchmarks which are not “fully
unfoldable”.

The last column of Table 2, finally, contains the average of the relative code size
specsize;/size;, where specsize; are the code sizes of the specialised programs.

5.4. Discussion of Results

The experiments show that conjunctive partial deduction (using determinate un-
folding and contiguous splitting) pays off compared to standard partial deduction
and existing systems.

On the fully unfoldable benchmarks, standard partial deduction S-hh-t gave a
speedup of 2.57 while conjunctive partial deduction Csc-hh-t achieved a speedup
of 5.90, which shows that conjunctive partial deduction diminishes the need for
aggressive unfolding. Notice that Mixtus and Paddy have very aggressive unfolding
rules and fare well on the fully unfoldable benchmarks. However, on the non-
fully unfoldable ones, even standard partial deduction S-hh-t, based on determinate
unfolding, is already better. The best standard partial deduction method, for both
runtime and (apart from SP) code size, is standard partial deduction SE-hh-x.
Still, compared to any of the standard partial deduction methods, our conjunctive
methods (except for Csm-hh-h and Csc-tn-t, which are not meant to be competitors
anyway) have a significantly better average speedup.

The experiments also show that conjunctive partial deduction can be made effi-
cient, especially if one uses determinate unfolding combined with a termsize measure
on conjunctions (Csc-th-t and Csc-tn-t) in which case the average transformation
time is comparable with that of standard partial deduction. Of course only further
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System Total Weighted Fully Not Fully Average
Speedup Speedup Unfoldable | Unfoldable | Relative Size
Speedup Speedup (orig = 1)
Conjunctive Partial Deduction
Cdc-hh-t 1.93 2.44 5.90 1.66 2.39
Cdc-th-t 1.96 2.49 5.90 1.69 2.27
Csc-hh-t 1.89 2.38 5.90 1.62 2.02
Csc-th-t 1.92 2.44 5.90 1.65 1.68
Csc-hn-t 1.89 2.40 5.90 1.62 1.67
Csc-tn-t 1.76 2.18 4.48 1.54 1.53
Cdm-hh-t 2.00 2.39 5.90 1.72 3.17
Csm-hh-h 0.77 0.52 6.16 0.63 3.91
Standard Partial Deduction
S-hh-t 1.56 1.86 2.57 1.42 1.60
SE-hh-x 1.76 2.24 8.36 1.48 1.46
Existing Systems
MIXTUS 1.65 2.11 8.13 1.38 1.67
PADDY 1.65 2.00 8.12 1.38 2.49
SP 1.34 1.54 2.08 1.23 1.18

TABLE 2. Summary of benchmarks (higher speedup and lower code size is better)

experiments may show how the transformation times grow with the size of pro-
grams. In fact, the system was not written with efficiency as a first concern and
there is a lot of room for improvement on this point.

Static Congunctions. Comparing Csc-hh-t and Cdc-hh-t, one can see that using
static conjunctions pays off in terms of shorter transformation time without much
loss of specialisation. Examining the detailed results for static/dynamic conjunc-
tions [31] shows that the speedup and the transformation times are almost identical
except for a few cases where static conjunctions were needed.

Termsize. The experiments demonstrate that using the termsize measure instead
of homeomorphic embedding on conjunctions clearly improves the average transfor-
mation time without loosing too much specialisation. But they also show that if one
uses the termsize measure then the use of characteristic trees becomes vital (com-
pare Csc-th-t and Csc-tn-t). However, methods with homeomorphic embedding on
conjunctions (e.g. Csc-hn-t), do not seem to benefit from adding homeomorphic
embedding on characteristic trees as well (e.g. Csc-hh-t).

This, at first sight somewhat surprising phenomenon, can be explained by the
fact that, for the benchmarks at hand, the homeomorphic embedding on conjunc-
tions, in a global tree setting, is already a very generous whistle, and, in the absence
of negation (see the discussions in [50]), a growing of the conjunction will often re-
sult in a growing of the characteristic tree as well.

“MIxTUs ”-like Unfolding. For standard partial deduction “MIxTUs”-like unfolding
leads to definite improvement over determinate unfolding. Note that the “MIXTUS”-
like unfolding used by SE-hh-x does not seem to pay off for conjunctive partial
deduction at all. In a preliminary experiment, the method Csc-th-x only produced
a total speedup of 1.69, i.e. only slightly better than MIXTUS or PADDY and worse
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than SE-hh-x. In future work we will examine how more aggressive unfolding rules
can be more successfully used for conjunctive partial deduction.

Non-Determinate Unfolding. For some benchmarks, the best speedup is obtained
by the non-safe methods Cdm-hh-t or Csm-hh-h based on non-contiguous mcs split-
ting. But in some cases, these methods indeed lead to a considerable slowdown for
reasons explained earlier. This shows that methods based on non-contiguous split-
ting can lead to better specialisation due to tupling and deforestation, but that
we need some method to control the splitting and unfolding to ensure that no
slowdown, or change in termination can occur.

Conclusion

From the results, we can conclude that conjunctive partial deduction indeed pays
off for a wide range of applications, but there are still a number of open problems
that need to be addressed in practice. Indeed, the speedups compared to standard
partial deduction are significant but less dramatic than initially expected. This is
due to the fact that non-contiguous conjunctive partial deduction on the one hand
often leads to substantial slowdowns and is not really practical for most applications,
while contiguous conjunctive partial deduction on the other hand is in general too
weak to deforest or tuple data structures.

Therefore it is vital, if one wants to more heavily exploit the advantages of
conjunctive partial deduction, to add non-contiguous splitting (i.e. reordering) in a
safe way which guarantees no serious slowdown. A first step towards a solution is
presented in [9], but it remains quite restrictive and considers only ground queries.
Another, more pragmatic approach might be based on making use of some mode
system to allow reordering of literals as long as the resulting conjunction remains
well-moded. This would be very similar to the way in which the compiler for
Mercury [71] reorders literals to create different modes for the same predicate. For
the semantics of Mercury any well-moded re-ordering of the literals is allowed.
Although this approach does not ensure the preservation of termination, it is then
simply considered a programming error if one well-moded query terminates while
the other does not.

6. RELATED WORK AND DISCUSSION

Conjunctive partial deduction is strongly related to both its conventional precursor
and unfold/fold. In the previous section, we compared an implementation of our
approach to existing, standard partial deduction systems. We now discuss the
relation with unfold/fold.

First, it should be noted that an experimental comparison, of the type presented
in Section 5, is not possible. To our knowledge, no automatic unfold/fold systems
are available for experimentation.

However, some explicit strategies for unfold/fold transformation have been pro-
posed. Let us consider some of the most well-known of these: loop absorption
and generalisation (LAG) [65] and unfold-definition-fold (UDF) [64] (see also [62]).
We take the liberty of distinguishing between local and global components of the
strategies in both unfold/fold and partial deduction. No such division is explicitly
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present in the former, but as they have become standard in the latter, examining
their counterparts in unfold/fold provides us with a useful angle for comparison.

On the level of local control, both LAG and UDF use a class of computation
rules, called synchronised descent rules. This class formalises a heuristic tuned
towards foldability (and therefore, indirectly, termination) and the generation of
optimal transformed programs. However, no specific instance of this class has been
fixed, so that no specific algorithm can be subjected to experimentation. Also,
synchronised descent rules do not guarantee termination in general. Instead, classes
of programs are identified for which termination is ensured. In the context of partial
deduction, a much broader range of local control techniques has been examined.
Many of these are based on formal mathematical notions, such as well-founded and
well quasi orders and homeomorphic embedding, guaranteeing termination for all
programs. Concrete systems have made explicit choices, thus allowing experimental
comparisons and optimisation.

On the level of global control, one finds to some extent a similar situation. In
[65], a class of different generalisation heuristics is presented. The global control
component in UDF is not easily isolated, but the overall picture corresponds to the
one for LAG. None of them guarantees termination in general, but again classes
of programs are identified for which they do. In partial deduction, generalisation
methods — based on well-founded orders and homeomorphic embeddings — have
been proved to secure termination for all programs. Moreover, notions capturing
the specialisation behaviour, such as characteristic trees, have been shown instru-
mental in providing maximally precise generalisation. This level of technical detail
has allowed implementation, experimental evaluation and further improvements.

Concluding, we can discern a clear methodological distinction between work in
unfold/fold and (conjunctive) partial deduction.

Let us now turn to the issue of transformational power, concentrating on com-
paring unfold/fold with conjunctive partial deduction (enhanced with RAF post-
processing). First, observe that our approach does not include goal replacement.
So, in general one cannot expect that it can handle transformations requiring goal
replacement. The non-linear optimisation of the Fibonacci program through fac-
toring on functional predicates in [64] provides such an example.” Automation of
goal replacement, however, is notoriously difficult (correctness of goal replacement
is undecidable in general).

We conjecture that conjunctive partial deduction with polyvariant RAF is com-
parable in power to unfold/fold without goal replacement. In fact, for all practical
examples examined so far, the possibility to unfold or fold wrt any prior program
in a transformation sequence does not seem to add any power over the more re-
stricted approach employed by conjunctive partial deduction. But, obviously, as
our conjunctive partial deduction algorithms terminate for any program they will
sometimes produce sub-optimal results. A task for future work will be to iden-
tify, as in unfold/fold, specific classes of programs for which our correctness and
termination conditions can be relaxed and optimal results guaranteed.

7 Although the ECCE system can achieve this optimisation automatically, when it is given mode
and determinism declarations. Also see [47, 42], which combines conjunctive partial deduction
with abstract interpretation, resulting in a method which is then able to infer (and exploit)
functionality.
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7. CONCLUSION

We perceive standard partial deduction as a stream of work within the overall
unfold/fold area. It has restricted its attention to a much less powerful, but more
easily manageable subset of transformations and, as a result, has produced fully
automatic, practical, terminating unfold/fold based systems. No systems for full
unfold/fold were obtained featuring a comparable level of automation.

The main contribution of this paper therefore lies in showing how fairly small en-
hancements to standard partial deduction technology substantially boost its trans-
formational power so as to cover a much larger class of unfold/fold transformations.
These extensions are: transforming conjunctions instead of atoms and supporting
more general renaming schemes. In doing so, we have been able to rely on the ex-
tensive work in automatic control of standard partial deduction. This constitutes
our main success: We have shown how existing techniques can be made much more
powerful, with fairly little effort.

Of course, we could have presented our approach in an unfold/fold style rather
than a partial deduction one. To some extent, the choice is just a matter of indi-
vidual taste and preference. However, since we aimed for fully automatic control
guaranteeing termination on all programs, the partial deduction setting, with its
traditional focus on these issues, offers considerable advantages.

Let us finally summarise the main achievements of the article. Conjunctive par-
tial deduction was designed with the aim of overcoming some limitations inherent
in conventional partial deduction. The main contribution of our work therefore lies
in showing how minimal enhancements to standard partial deduction technology
substantially boost its transformational power so as to cover a much larger class of
unfold/fold transformations. We presented powerful extensions, showed that they
can perform tupling and deforestation, and proved a correctness result similar to
the one of standard partial deduction. We provided a basis for the design of con-
crete algorithms within this extended framework by introducing a basic algorithm
for conjunctive partial deduction and refining this algorithm into a fully automatic
one. Conjunctive partial deduction was put on trial, and extensive experiments
conducted with a prototype confirmed that many techniques developed for stan-
dard partial deduction carry over and that the additional power actually pays off in
practice. They give a good impression of specialisation and transformation obtained
by various methods on a declarative subset of Prolog.
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