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1 Introduction

The relative novelty of tabled-based logic programming implementations has given rise to a number
of both theoretical and practical questions related to the study of the characteristics of such pro-
grams and to improving their performance. This work has been motivated by an initial study on
how to adapt advanced program specialisation techniques, originally developed for standard logic
programming, to the context of tabled logic programming. In a companion paper [11], we describe
how left-propagation of bindings in a program executed under SLG-resolution [4] using a fixed left-
to-right selection rule (as SLG is usually implemented in practical systems such as XSB [14]) can
seriously endanger the termination characteristics of that program. A simple example from [11] is
the program

p(X)← p(Y ), Y = f(X)
X = X ←

For the query← p(X), the program finitely fails in SLG since its left-to-right evaluation encounters
(a variant of) an existing call for which no answers can be produced. By performing one unfolding
step with respect to the atom Y = f(X), giving rise to the clause p(X)← p(f(X)), the same query
← p(X) will now result in an infinite computation under SLG.

In [11], preconditions for safe (i.e. termination preserving) program specialisation through un-
folding are proposed. In the present paper we study the termination of tabled programs, executed
under SLG using a fixed left-to-right selection rule, in its own right. We adapt existing results on
acceptability of programs with respect to sets of atoms from [5]. We show how this provides a nat-
ural necessary and sufficient condition for the termination of tabled logic programs. We also briefly
discuss automatic verification of the proposed termination conditions, and present a non-trivial
example (Appendix B).

The rest of the paper is structured as follows. In the next section we introduce some preliminaries
and present a brief formalisation of SLG-resolution restricted to definite programs. In Section 3 we
present the notions of quasi-termination and quasi-acceptability with respect to sets of atoms and
prove that they are equivalent. In Section 4 we discuss the stronger notion of LG-termination and,
again, characterise it in terms of quasi-termination. We end with a discussion.
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2 Preliminaries

Throughout the paper, P will denote a definite tabled logic program. We also assume that in all
programs all predicates are tabled (i.e. executed under SLG-resolution). The extended Herbrand
Universe, UE

P , and the extended Herbrand Base, BE
P , associated with a program P , were introduced

in [6]. They are defined as follows. Let TermP and AtomP denote the sets of respectively all
terms and atoms that can be constructed from the alphabet underlying P . The variant relation,
denoted ≈, defines an equivalence. UE

P and BE
P are respectively the quotient sets TermP /≈ and

AtomP /≈. For any term t (or atom A), we denote its class in UE
P (BE

P ) as t̃ (or Ã). However,
when no confusion is possible, we omit the tildes. Finally, by PredP and FunP we denote the sets
of predicate and function symbols of P , respectively.

In this paper, we consider termination of SLG-resolution (see [4]), using a fixed left-to-right
selection rule, for a given set of atomic (top level) queries with atoms in S ⊆ BE

P . We will abbreviate
SLG-resolution under the left-to-right selection rule by LG-resolution (which for definite programs
is similar to OLDT-resolution [15, 10], modulo the fact that OLDT specifies a more fixed control
strategy and uses subsumption checking and term-depth abstraction instead of variant checking to
determine existence of subgoals and answers in the tables). Below, we formalise these notions.
While doing so, we also introduce some example programs that are used throughout the paper to
illustrate various aspects of termination of tabled logic programs.

2.1 SLG-Resolution for Definite Programs

We present a non-constructive definition of SLG-resolution that is sufficient for our purposes, and
refer the reader to [2, 4, 15, 16] for more constructive formulations of (variants of) tabled resolution.

Definition 2.1 (pseudo SLG-tree, pseudo LG-tree) Let P be a definite program, R be a se-
lection rule, and A an atom. A pseudo SLG-tree for P ∪ {← A} under R is a tree τA such that:

1. the nodes of τA are labeled by goals along with an indication of the selected atom,

2. the arcs are labeled by computed answer substitutions,

3. the root of τA is ← A,

4. the children of the root ← A are obtained by resolution against all matching (program) clauses
in P ,

5. the (possibly infinitely many) children of non-root nodes can only be obtained by resolving the
selected (using R) atom B of the node with clauses of the form Bθ ← (not necessarily in P ).

If R is the leftmost selection rule, τA is called a pseudo LG-tree for P ∪ {← A}.
We say that a pseudo SLG-tree τA for P ∪ {← A} is smaller than another pseudo SLG-tree τ ′A for
P ∪ {← A} iff τ ′A can be obtained from τA by attaching new sub-branches to nodes in τA.
A ( computed) answer clause of a pseudo SLG-tree τA for P ∪{← A} is a clause of the form Aθ ←
where θ is the composition of the answer substitutions found on a branch of τA whose leaf is labeled
by the empty goal.

Intuitively, a pseudo SLG-tree (in an SLG-forest, see Definition 2.2 below) represents the tabled
computation of all answers for a given subgoal labeling the root node of the tree. The trees in the
above definition are called pseudo SLG-trees because there is no condition yet on which clauses
Bθ ← exactly are to be used for resolution in point 5. These clauses represent the answers found
— possibly in another tree of the forest — for the selected atom. This interaction between the
trees of an SLG-forest is captured in the following definition.
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Definition 2.2 (SLG-forest, LG-forest) Let P be a program, R be a selection rule, and S be a
(possibly infinite) set of atoms such that no two different atoms in S are variants of each other. F
is an SLG-forest for P and S under R iff F is a set of minimal pseudo SLG-trees {τA | A ∈ S}
where

1. τA is a pseudo SLG-tree for P ∪ {← A} under R,

2. every selected atom B of each node in some τA ∈ F is a variant of an element B′ of S, such
that every clause resolved with B is a variant of an answer clause of τB′ and vice versa.

Let Q =← A be an atomic query. An SLG-forest for P ∪ {Q} is an SLG-forest for a minimal set
S with A ∈ S. An LG-forest is an SLG-forest containing only pseudo LG-trees.

Point 2 of Definition 2.2, together with the imposed minimality of trees in a forest, now uniquely
determines these trees. So we can drop the designation “pseudo” and refer to (S)LG-trees in an
(S)LG-forest. The notion of an (S)LG-forest introduces explicitly the relation between selected
atoms and their computed answers. Also note that (S)LG-trees always have a finite depth.

Example 2.1 (NAT) Let NAT be the program below:
nat(0)←
nat(s(X))← nat(X)

The (unique) (S)LG-forest for NAT and {nat(X)}, shown in Figure 1, consists of a single (S)LG-
tree. Note that this tree has an infinitely branching node.

Figure 1: SLG-forest for NAT ∪ {← nat(X)}.

Example 2.2 (NATsol) Let NATsol be the following program:
nat(0)←
nat(s(X))← nat(X), sol(nat(X))
natsol(X)← nat(X), sol(nat(X))
sol(X)←

The LG-forest for NATsol ∪{← nat(X)} is infinite; see Figure 2.

Finally, given S ⊆ BE
P , by Call(P, S) we denote the subset of BE

P such that B ∈ Call(P, S)
whenever an element of B̃ is a selected literal in an LD-derivation for some P ∪{← A}, with Ã ∈ S.
We note that we can use the notions of LD-derivation and LD-computation even in the context of
SLG-resolution, as the set of call patterns and the set of computed answer substitutions are not
influenced by tabling; see e.g. Theorem 2.1 in [10].
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Figure 2: The (infinite) LG-forest for Example 2.2.

3 Quasi-termination and quasi-acceptability

As the examples in the previous section show, an LG-forest can be infinite. In particular, when-
ever LD-computation from an initial goal leads to infinitely many different, non-variant calls, the
corresponding LG-forest under tabled execution will be infinite. Obviously, such a phenomenon
is undesirable, and therefore a first basic notion of termination studied in this paper is quasi-
termination (a term borrowed from [8], defining a similar notion in the context of termination of
off-line partial evaluation of functional programs). It is defined as follows.

Definition 3.1 (quasi-termination) Let P be a program and S ⊆ BE
P . P quasi-terminates with

respect to S iff for every A ∈ S, Call(P, {A}) is finite.
Also, P quasi-terminates iff it quasi-terminates wrt BE

P .

Lemma 3.1 Let P be a program and let F be the LG-forest for P ∪ {← A}. Then P quasi-
terminates wrt {A} iff F consists of a finite number of LG-trees.

This is the termination notion that also forms the heart of the study in [11].

Example 3.1 Consider the programs NAT and NATsol of Examples 2.1 and 2.2 respectively.
With respect to {nat(X)}, NAT quasi-terminates, but NATsol does not.

In order to characterise the notion of quasi-termination, we adopt the following concept from [5].

Definition 3.2 (level mapping) A level mapping for a program P is a function l : BE
P → IN .

Definition 3.3 (finitely partitioning) A level mapping l is finitely partitioning iff for all n ∈
IN : #l−1(n) <∞.

In other words, only finitely many atoms are mapped to any n ∈ IN .
We now introduce the notion of quasi-acceptability. It is adapted from the acceptability notion

defined in [5] and not from the more “standard” definition of acceptability by Apt in Predeschi
in [1]. The reason for this choice is that the quasi-termination property of a tabled program and
(set of) goal(s) is not invariant under substitution. Consider the following example from [11]:

Example 3.2 Let p/2 be a tabled predicate defined by the following clause.
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p(f(X), Y )← p(X, Y )
Then, the query ← p(X, Y ) terminates while ← p(X, X) does not!

The acceptability notion in [1] is expressed in terms of ground instances of clauses and its
associated notion of left-termination is expressed in terms of the set of all goals that are bounded
under the given level mapping. Such sets are closed under substitution. Because quasi-termination
lacks invariance under substitution, we need a stronger notion of acceptability, capable of treating
any set of interest S.

Definition 3.4 (quasi-acceptability) Let l be a finitely partitioning level mapping on BE
P . We

say that P is quasi-acceptable with respect to l and S iff
• for every atom A such that Ã ∈ Call(P, S),
• for every clause H ← B1, . . . , Bn in P , such that mgu(A,H) = θ exists,
• for every initial subsequence B1, . . . , Bi−1 of B1, . . . , Bn and every LD-computed answer
substitution θi−1 for ← (B1, . . . , Bi−1)θ:

l(A) ≥ l(Biθθi−1)

In brief, the main differences with the acceptability notion of [5] are that:

1. level mappings are assumed to be finitely partitioning the extended Herband Base, and

2. decreases of the level mapping are not assumed to be strict.

Intuitively, the reasons for these differences can be understood as follows. Contrary to SLD, com-
putations in which a call has a variant of itself as its (immediate) recursive descendant do not lead
to non-termination under tabled evaluation. As we want to allow such computations, requiring a
strict decrease of the level mapping is too strong. On the other hand, we do not want to allow
that infinitely many different calls within a same level occur (due to the non-strict decrease). To
exclude this, we impose the finite partitioning requirement.

More directly, it should be intuitively clear that the combination of the non-strict decrease with
finitely partitioning level mappings implies that only a finite number of different calls are allowed
to descend from a given call. This corresponds to quasi-termination.

Given these definitions, we can now prove one of the main results of this paper.

Theorem 3.1 (termination condition) Let P be a program and S ⊆ BE
P . P is quasi-acceptable

wrt some finitely partitioning level mapping l and S iff P is quasi-terminating with respect to S.

For a proof, we refer to Appendix A.
Quasi-termination captures the property that, under LD-computation, a given atomic goal leads

to only finitely many different calls. It is exactly in such cases that tabling aims at achieving actual
termination of top-down logic program execution. Hence the importance of quasi-termination as a
key property for tabled programs.

Also, in a broader context, techniques for proving quasi-termination can be of great value to
ensure termination of off-line specialisation of logic programs (whether tabled or not). Currently, in
all off-line partial evaluation methods for logic programs (e.g. [12, 9]) termination has to be ensured
manually. In the context of off-line partial evaluation, quasi-termination is actually identical to
termination of the partial evaluator. Thus, given a technique to establish quasi-termination, one
can also establish whether a given binding time annotation will ensure termination or whether
further abstraction is called for. This idea has already been successfully applied in the context of
functional programming (cf. [7]), using the termination criterion of [8].
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4 LG-termination

Even when tabling, quasi-termination as in Definition 3.1 and Lemma 3.1 only partially corresponds
to our intuitive notion of a ‘terminating computation’.

Example 4.1 Consider the program NAT of Example 2.1. Given the set S = {nat(X)}, NAT
quasi-terminates with respect to S. This is obvious since Call(NAT, S) = {nat(X)}, which is
finite. The program is also quasi-acceptable with respect to S and any finitely partitioning level
mapping BE

NAT → IN .

Nevertheless, this example does not correspond to our intuitive notion of a terminating program.
Although the LG-forest is finite, its unique LG-tree is infinitely branching (see Figure 1) and
the computation does not terminate. Notice however that the computed answers do not lead to
new calls. Therefore, quasi-termination does hold. Also note that the same program is not LD-
terminating either: there exists an infinite LD-derivation. To capture this, we define the following
stronger termination notion.

Definition 4.1 (LG-termination) Let P be a program and S ⊆ BE
P . P is LG-terminating with

respect to S iff for every A ∈ S, the LG-forest for P ∪ {← A} is a finite set of finite LG-trees.
Also, P is LG-terminating iff it is LG-terminating wrt BE

P .

Let us now study how quasi-termination and LG-termination relate to each other. According
to Lemma 3.1, quasi-termination only corresponds to part of the LG-termination notion; it does
not capture infinitely branching LG-trees. But a simple program transformation can remedy this.

Definition 4.2 (sol(ution) transformation) The sol transformation is defined as follows:
• For a clause C = H ← B1, . . . , Bn we define

Csol = H ← B1, sol(B1), . . . , Bn, sol(Bn)

Here, sol(Bi) is the syntactic application of the predicate sol/1 on Bi.
• For a program P , we define:

Psol = {Csol | C ∈ P} ∪
{psol(X1, · · · , Xn)← p(X1, . . . , Xn), sol(p(X1, . . . , Xn)) | p/n ∈ PredP } ∪
{sol(X)←}

where each psol/n is a new predicate symbol.
• For a set of atoms S ⊆ BE

P , we define

Ssol = {p̃sol(t1, . . . , tn) | p̃(t1, . . . , tn) ∈ S}

The goal of the construction is that P LG-terminates wrt S iff Psol quasi-terminates wrt Ssol. Note
that Psol is finite provided that P is also finite.

Example 4.2 The programs NAT of Example 2.1, and NATsol of Example 2.2 are related through
the sol transformation.

Example 4.3 Let P be the following extension of the NAT program.
t(X)← nat(X), fail
nat(0)←
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nat(s(X))← nat(X)
Then Call(P, {t(X)}) = {t(X), nat(X), fail} and P quasi-terminates wrt {t(X)}. However, note
that the query ← t(X) does not terminate but fails infinitely in tabled evaluation under a left-to-
right selection rule. Using the sol transformation, we have that {t(X)}sol = {tsol(X)}, and Psol is
the following program:

t(X)← nat(X), sol(nat(X)), fail, sol(fail)
nat(0)←
nat(s(X))← nat(X), sol(nat(X))
tsol(X)← t(X), sol(t(X))
natsol(X)← nat(X), sol(nat(X))
sol(X)←

Now, we have that

Call(Psol, {tsol(X)}) = {tsol(X), t(X), nat(X), fail, sol(nat(0)), sol(nat(s(0))), . . .}

and as expected Psol does not quasi-terminate wrt {t(X)}sol.

?

?

?

?
? ?

?

?

← sol(Bθ)

2
← B, Q

← Qθ

← B, sol(B), Q′

← sol(Bθ), Q′θ

← Q′θ

θ θ

ε

ε

Psol

P

Figure 3: Relating answer clause resolution in P and Psol.

Theorem 4.1 Let P be a program and S ⊆ BE
P . Then P LG-terminates wrt S iff Psol quasi-

terminates wrt Ssol.

Proof. (Sketch) As can be seen in Figure 3 every answer clause resolution for a selected atom B
in P (with the answer clause Bθ) translates into two answer clause resolutions (for B and sol(Bθ))
and one new LG-tree (for sol(Bθ)) in Psol. Let A ∈ S.
(⇒) If← A LG-terminates in P , then we can build a finite set of finite LG-trees. Thus in Psol only
finitely many answer clause resolutions and finitely many LG-trees are added and, by Lemma 3.1,
Psol quasi-terminates wrt {A}sol.
(⇐) If ← A does not LG-terminate in P , then we either have an infinite set of LG-trees, and
thus also an infinite set of LG-trees for Psol. Or we have an infinite branching in some tree, which
translates into an infinite set of LG-trees for Psol. So, by Lemma 3.1, in both cases Psol does not
quasi-terminate wrt {A}sol.

A fully worked out example of a termination proof using the level mappings of Section 3 can
be found in Appendix B.
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5 Discussion

Tabled logic programming is receiving increasing attention in our community. It avoids many of
the shortcomings of SLD(NF) execution and provides a very flexible and often extremely efficient
execution mechanism for logic programs. Nevertheless, termination can still not be guaranteed.
Our motivation for the reported work is that we want to port program specialisation techniques
for “standard” logic programs to tabled ones. In this attempt, we noticed that simple transforma-
tions, which are termination-preserving in the standard logic programming setting, can distort the
termination behaviour in the setting of tabled logic programs. This motivated us to start a deeper
study of termination of tabled logic programs, in the hope of using the results as tools in the further
development and study of optimisation of tabled logic programs through transformations.

There are only relatively few works (in disguise) studying termination under tabled execution.
[13], within the context of well-moded programs, gives a sufficient (but not necessary) condition
for the bounded term-size property, which implies LG-termination. [8] provides another sufficient
(but not necessary) condition for quasi-termination in the context of functional programming.

A specific concern that one might raise with respect to the termination conditions we propose
is to what extent existing (automated) termination analyses can be adapted to verify the quasi-
acceptability condition. The most important issue in this context is to what extent the focus on
finitely partitioning level mappings becomes a bottleneck in providing level mappings in practice.
Or, more specifically, which of the level mappings used in practice in (automated) termination
analysis are finitely partitioning?

In most automatic approaches to termination analysis, level mappings are defined in terms of
positive linear combinations of norms. A norm is a function n : UE

P → IN . Given such a norm n, a
level mapping is induced by selecting a number of argument positions, Ip, for each predicate symbol
p/k, and by defining: l(p(t1, . . . , tk)) =

∑
i∈Ip

pin(ti), where all pi are natural numbers.

Note that if the selected norm n is ‘finitely partitioning’, meaning that for every m ∈ IN :
#n−1(m) <∞, and Ip = [1, k] as well as pi > 0 then l is finitely partitioning as well (assuming that
the language underlying P only contains a finite number of predicate symbols). So, the question
is: which norms are finitely partitioning ?

Let us first assume that the language underlying P contains only a finite number of constants
and functions symbols. In that case, consider any semi-linear norm [3], which are norms that can
be defined as:

n(f(t1, . . . , tk)) = cf +
∑
i∈If

n(ti)

where cf ∈ IN and depends on f/k only.
Given the restriction on the language underlying P , any semi-linear norm which has cf > 0

and If = [1, k], for all f/k in FunP , (in other words no part of the term can be ignored) is
finitely partitioning. In particular, the well-known termsize norm is finitely partitioning (but e.g.
the list-length norm is not).

If the underlying language contains an infinite number of constants (e.g. the natural numbers),
we can still design very natural finitely partitioning norms by exploiting any existing well-founded
ordering on the infinite data set and incorporating that in the norm.

As such, automated termination analysis can be quite easily adapted to the case of quasi-
termination and in fact requires nothing more than moving from a strict inequality check to verifying
the weaker inequality expressed in quasi-acceptability.

However, the requirement that cf > 0 can in some cases complicate the task of finding appro-
priate norms and level mappings, as the following example illustrates.
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Example 5.1 Let P just consist of the following clause C:
p([H1,H2|T ])← p([[H1,H1,H2]|T ])

Let us restrict our attention to calls p(t) where t is a ground list. Then P quasi-terminates (failing
finitely) and it even terminates under ordinary, un-tabled evaluation. For the un-tabled case we
can simply use the level mapping l(p(t)) = list length(t) and we have that the level mapping of
the head of a ground instance of C is strictly larger than the level mapping of the corresponding
body atom. However, the list length norm is not finitely partitioning (as there are infinitely many
different terms up to variable renaming with the same list length) and we have to search for another
candidate. Unfortunately, we cannot simply use the term-size norm because it will lead to the heads
of ground instances of C being strictly smaller than the corresponding body atoms. Thus, using the
term-size norm we are not able to prove quasi-termination and one has to resort to more powerful
level mappings. The following, slightly involved, level mapping, where we denote the termsize by
‖.‖, will fortunately be sufficient:

l(p([t1, . . . , tn])) = 2n(n +
∑

i∈[1,n] ‖ti‖)
Now let p([t1, t2|t])← p([[t1, t1, t2]|t]) be any ground instance of C, where list length([t1, t2|t]) = n,
t = [s1, . . . , sn−2] and s =

∑
i∈[1,n−2] ‖si‖. We have that l(p([t1, t2|t])) = 2n(n + ‖t1‖ + ‖t2‖ + s)

which is (strictly) larger than l(p([[t1, t1, t2]|t])) = 2n−1(n− 1 + 1 + 2‖t1‖+ ‖t2‖+ s).
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A Termination condition

The following concept will be useful for proving our termination condition. To any fixed P and S,
we can associate a call graph as follows.

Definition A.1 (call graph associated to S) Let P be a program and S ⊆ BE
P . The call graph

Call-Gr(P, S) associated to P and S is a graph such that:
• its set of nodes is Call(P, S),
• there exists a directed arc from Ã to B̃ iff
• there exists a clause H ← B1, · · · , Bn in P , such that mgu(A,H) = θ exists,1 and
• there exists i ∈ [1, n], such that there is an LD-refutation for ← (B1, · · · , Bi−1)θ, with

computed answer substitution θi−1, and B ≈ Biθθi−1.

The notion of a call graph has a particularly interesting property, which will be useful in the
study of termination.

1Throughout the paper we assume that representatives of equivalence classes are systematically provided with
fresh variables, to avoid the necessity of renaming apart.
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Proposition A.1 (paths and selected atoms) Let P be a program, S ⊆ BE
P , Call(P, S) and

Call-Gr(P, S) be defined as above. Let p be any directed path in Call-Gr(P, S). Then there exists
an LG-derivation for some element of Call(P, S), such that all the nodes in p occur as selected
atoms in the derivation.

Proof. By definition of Call-Gr(P, S), for every arc from Ã to B̃ in Call-Gr(P, S), there exists
a sequence of consecutive LG-derivation steps, starting from ← A and having a variant of B as
its selected atom at the end. Because (a variant of) B is selected at the end-point, any two such
derivation-step sequences, corresponding to consecutive arcs in Call-Gr(P, S), can be composed to
form a new sequence of LG-derivation steps. In this sequence, all 3 nodes of the consecutive arcs
remain selected atoms in the new sequence of derivation steps. Transitively exploiting the above
argument yields the result.

Note that by definition of Call-Gr(P, S) and Call(P, S), this also implies that there is a sequence
of derivation steps starting from P ∪ {← A}, with Ã ∈ S, such that all nodes in the given path p
are selected atoms in the derivation sequence.
Theorem 3.1 (termination condition) Let P be a program and S ⊆ BE

P . P is quasi-acceptable
with respect to some finitely partitioning level mapping l and S iff P is quasi-terminating with
respect to S.

Proof. The “only-if” part of the proof is fairly straightforward. We have that P is quasi-acceptable
with respect to l and S. Take any atom A with Ã ∈ S. Due to the acceptability condition, any
call in Call(P, S) directly descending from A, say B, is such that l(A) ≥ l(B). The same holds
recursively for the atoms descending from B. Thus, the level mapping of any call, recursively
descending from A, is smaller than or equal to l(A) ∈ IN . Since l is finitely partitioning, we have
that: ∪n≤l(A)l

−1(n)) < ∞. Hence, #Call(P, {Ã}) < ∞ and the program is quasi-terminating for
← A.

The “if”-part of the proof is slightly more complicated. Given is that P quasi-terminates for
all atomic queries ← A, with Ã ∈ S. We need to design a finitely partitioning level mapping, l,
such that the quasi-acceptability condition with respect to l and s holds.

First of all, we will only define l on the elements of Call(P, S). On elements of the complement
of Call(P, S) in BE

P , l can be assigned any value (as long as we don’t group infinitely many in one
layer), as these elements do not turn up in the inequality condition of quasi-acceptability. In order
to define l on Call(P, S), consider the Call-Gr(P, S)-graph.

A first crucial point in this part of the proof is that the strongly connected components of Call-
Gr(P,S) are necessarily all finite. To see this, assume that Call-Gr(P,S) contains an infinite strongly
connected component. Then, there exists an infinitely long path p, starting from an element in S,
through elements of this infinite strongly connected component. By Proposition A.1, this means
that there exists a derivation for that element in S, such that an infinite number of different atoms
from Call(P, S) are selected within this derivation. Obviously, this contradicts quasi-termination.

So, all strongly connected components of Call-Gr(P, S) are finite. Define Call-Gr(P, S)/reduced
as the graph obtained from Call-Gr(P, S) by replacing any strongly connected component by a
single contracting node and replacing any arc from Call-Gr(P, S) pointing to (resp. from) any
node in that strongly connected component by an arc to (resp. from) the contracting node.

Call-Gr(P, S)/reduced does not have any (non-trivial) strongly connected components. More-
over, any strongly connected component from Call-Gr(P, S) that was collapsed into a contracting
node of Call-Gr(P, S)/reduced necessarily consists of only a finite number of nodes.
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We now define l as follows. Let layer-0 be the set of leaves in Call-Gr(P, S)/reduced. We will
order these nodes and assign to them an odd number within IN . For every atom in a strongly
connected component represented by one of the nodes in layer-0, we will assign the level mapping
of that atom to be equal to the assigned value of the corresponding contracting node.

Then, we move up to the next layer in Call-Gr(P, S)/reduced. This layer, layer-1, consists of
all nodes Node, such that:

max({length(p) | p is a path starting from Node in Call-Gr(P, S)/reduced}) = 1

To any element of layer-1, we assign a natural number n, such that n is larger than all the natural
numbers assigned to descendants of this node in layer-0 (note that the graph is finitely branching),
but such that there is at least 1 natural number larger than the ones assigned to its descendants
which remains unassigned.

We continue this process layer by layer. In each step we make sure that an infinite number of
natural numbers remain “unassigned” to nodes, but also that numbers assigned to nodes in higher
levels of Call-Gr(P, S) are strictly larger than the numbers assigned to their descendants. The value
of the level mapping on elements of Call(P, S) is as defined for layer-0 above: all calls in a same
strongly connected component of Call(P, S) receive the number assigned to their representative in
Call-Gr(P, S)/reduced.

Due to this construction, l is finitely partitioning on Call(P, S). Also, by construction again,
the quasi-acceptability condition of P with respect to l and S holds.

B An extended Termination Proof

In this appendix, the approach is illustrated on a non-trivial example. Systems like the one in [5],
after the slight adaptations discussed in Section 5, are able to automatically derive this proof.
Consider the following context-free grammar, defining well-founded numerical expressions, built up
from integers and the operators + and ∗.

Expr ⇒ Term | Expr + Term
Term⇒ Primary | Term * Primary
Primary ⇒ integer | ( Expr )

If we encode expressions as ground lists of tokens, we can use the following program Parse to
parse such expressions in all possible ways.

expr(A,B)← term(A,B)
expr(A,B)← expr(A,C), C = [+|D], term(D,B)
term(A,B)← primary(A,B)
term(A,B)← term(A,C), C = [∗|D], primary(D,B)
primary(A,B)← A = [C|B], integer(C)
primary(A,B)← A = [′(′|C], expr(C,D), D = [′)′|B]

It is not difficult to see that the program is not LD-terminating wrt the following set of atoms:

S = {expr(l,X) | l is a list of atoms and X is a free variable}

For example, the query ← expr([1], B) generates the answer B = [ ] and then gets stuck in an
infinite loop.

The program is however LG-terminating. To see this, consider Parsesol which corresponds to
the following program.
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expr(A,B)← term(A,B), sol(term(A,B))
expr(A,B)← expr(A,C), sol(expr(A,C)), C = [+|D], sol(C = [+|D]),

term(D,B), sol(term(D,B))
term(A,B)← primary(A,B), sol(primary(A,B))
term(A,B)← term(A,C), sol(term(A,C)), C = [∗|D], sol(C = [∗|D]),

primary(D,B), sol(primary(D,B))
primary(A,B)← A = [C|B], sol(A = [C|B]), integer(C), sol(integer(C))
primary(A,B)← A = [′(′|C], sol(A = [′(′|C]), expr(C,D),

sol(expr(C,D)), D = [′)′|B], sol(D = [′)′|B])
exprsol(A,B)← expr(A,B), sol(expr(A,B))
termsol(A,B)← term(A,B), sol(term(A,B))
primarysol(A,B)← primary(A,B), sol(primary(A,B))
sol(X)←

The following level mapping can then be used to prove quasi-acceptability of Parsesol wrt Ssol,
which according to Theorem 4.1 establishes LG-termination of Parse with respect to S.

‖term(t1, t2)‖ = termsize(t1)
‖expr(t1, t2)‖ = termsize(t1)
‖primary(t1, t2)‖ = termsize(t1)
‖t1 = t2‖ = termsize(t1)
‖integer(n)‖ = abs(n), if n is an integer
‖integer(t)‖ = termsize(t), if t is not an integer
‖sol(t)‖ = ‖t‖
‖psol(t̄)‖ = ‖p(t̄)‖,∀p/n ∈ PredP

Because the level mapping is defined in terms of termsize and FunParsesol
is a finite set, we have

that the level mapping is finitely partitioning on BE
Parsesol

. We can then prove quasi-acceptability
of Parsesol wrt Ssol. The following set is a superset of Call(Parsesol, Ssol):

{expr(l, t), term(l, t), primary(l, t), sol(t), integer(g),
exprsol(l, t), termsol(l, t), primarysol(l, t) | l is a ground list of atoms,

t is any term and g is a ground term}

Consider the first clause defining expr/2 and take any atom expr(l, t) ∈ Call(Parsesol, Ssol) such
that mgu(expr(l, t), expr(A,B)) = θ exists. Obviously, ‖expr(l, t)‖ ≥ ‖expr(A,B)θ‖ as expr(l, t) =
expr(A,B)θ. Because l is ground, lθ = Aθ and tθ = Bθ ∀θ′‖expr(l, t)‖ ≥ ‖sol(expr(A,B))θθ′‖.

Consider now the second clause of expr/2. Again, take any atom expr(l, t) ∈ Call(Parsesol, Ssol)
such that mgu(expr(l, t), expr(A,B)) = θ exists. We can apply the same arguments as above to
infer that ‖expr(l, t)‖ ≥ ‖expr(A,C)θ‖ and that ‖expr(l, t)‖ ≥ ‖sol(expr(A,C))θ‖. To prove that
‖expr(l, t)‖ ≥ ‖C = [+|D]θθ2‖ for any θ2 such that θ2 is a computed answer substitution for
← (expr(A,C), sol(expr(A,C)))θ, we need the following observation. Let T = TermParsesol

. The
set:

{expr(t1, t2), term(t1, t2), primary(t1, t2) | t1, t2 ∈ T ∧ termsize(t1) ≥ termsize(t2)}
∪ {exprsol(t1, t2), termsol(t1, t2), primarysol(t1, t2) | t1, t2 ∈ T ∧ termsize(t1) ≥ termsize(t2)}
∪ {t1 = t2 | t1, t2 ∈ T ∧ termsize(t1) = termsize(t2)} ∪ {integer(n) | n is an integer}

is a model of Parsesol. Consequently, for expr(A,C)θθ2, termsize(Aθθ2) ≥ termsize(Cθθ2).
Therefore and because A is ground, we have that:

‖expr(l, t)‖ = termsize(Aθθ2) ≥ termsize(Cθθ2) = ‖C = [+|D]θθ2‖
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We can use similar arguments on all remaining atoms and clauses.
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