Self-Tuning Resource Aware Specialisation for Prolog

Stephen-John Craig
University of Southampton, United Kingdom
University of Dusseldorf, Germany

steve.craig@gmail.com

ABSTRACT

The paper develops a self-tuning resource aware partial eval-
uation technique for Prolog programs, which derives its own
control strategies tuned for the underlying computer archi-
tecture and Prolog compiler using a genetic algorithm ap-
proach. The algorithm is based on mutating the annotations
of offline partial evaluation. Using a set of representative
sample queries it decides upon the fitness of annotations,
controlling the trade-off between code explosion, speedup
gained and specialisation time. The user can specify the
importance of each of these factors in determining the qual-
ity of the produced code, tailouring the specialisation to
the particular problem at hand. We present experimental
results for our implemented technique on a series of bench-
marks. The results are compared against the aggressive ter-
mination based binding-time analysis and optimised using
different measures for the quality of code. We also show
that our technique avoids some classical pitfalls of partial
evaluation.

Keywords

Partial Evaluation, Partial Deduction, Binding-Time Ana-
lysis,Logic Programming

1. INTRODUCTION

Despite over 10 years of research on the specialisation of
logic programs, there still exist research challenges related to
improving the actual specialisation capabilities (this is also
true for specialisation of other programming paradigms).
For example, existing specialisers do not use a sufficiently
precise model of the compiler for the target system to guide
their decisions during specialisation. This means that spe-
cialisers can produce specialised code that is actually slower

*The authors have been partially supported by the Infor-
mation Society Technologies programme of the European
Commission, Future and Emerging Technologies under the
IST-2001-38059 ASAP project.

Permission to make digital or hard copies of all or part of tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Michael Leuschel
University of Dusseldorf, Germany

leuschel@cs.uni-duesseldorf.de

than the original. Also, most specialisers focus solely on im-
proving the execution speed, sacrificing other resources such
as code size and memory consumption. This means that the
code size and specialisation effort can be out of proportion
with the actual improvement in speed.

Developing control techniques that are predictable, with
reasonable specialisation complexity and that can provide a
good balance between resources, is a challenging but worth-
while research objective.

In this paper we present a self-tuning system, which de-
rives its own specialisation control using a genetic algorithm
approach.

Fitness scores are derived by actually running the spe-
cialised code and hence the particular Prolog compiler and
architecture are automatically taken into account.

More precisely, we use an offline approach based on the
recent fully automatic binding-time analysis (BTA)[5]. The
insight on which this paper is based, is that the annotations
can form the genes for a genetic algorithm.! Indeed, an-
notations can easily be mutated, or even merged. The key
ingredients of success in our approach are:

e The fully automatic BTA provides a starting point for
the algorithm. The BTA can be used to check the
safety of new annotation configurations. Alternatively,
based on the starting point provided by the BTA, a
time-out value can be computed which can be used to
discard unsuccessful mutations (where specialisation
takes too long or does not terminate).

e Overall termination and convergence is guaranteed as
mutations only “generalise” (unfold into memo, static
into dynamic).

e Through the use of a representative sample of queries,
actual figures for the particular compiler and archi-
tecture are obtained. This allows for resource aware
specialisation.

e The overall tradeoff between execution time, code size
(and other factors such as specialisation time) can be
influenced by tuning the fitness function, used to dis-
card bad mutations.

This paper, shows, empirically and through examples,
how it avoids pitfalls which other specialisers such as ECCE
[16] or MIxXTUS [21] fall into. We also show how we can

Tt is much less obvious to us how one could use a genetic
algorithm to effectively optimize online specialisation.

achieve a good tradeoff between various resource consider-
ations. It is also demonstrated on a series of benchmark
programs the practicality and performance of the approach.

1.1 Other Approaches and Related Work

Such an approach has already proven to be highly suc-
cessful in the context of optimising scientific linear algebra
software [25]. In [25] part of the installation procedure in-
cludes a test and feedback cycle which optimises internal
parameters to give the best performance for the processor
architecture, memory and cache.

A suitable low-level cost model would allow a partial evalu-
ation system to make more informed choices about the local
control (e.g., is this unfolding step going to be detrimen-
tal to performance) and global control (e.g., does this extra
polyvariance really pay off).

There has been some promising initial work on cost mod-
els for logic and functional programs in [1, 2, 24, 4]. How-
ever, such a low-level cost model will depend on both the
particular Prolog compiler and on the target architecture
and it is hence unlikely that one can find an elegant math-
ematical model that is easy to manipulate and precise. It
is also not entirely clear how such a cost model could be
used in practice to guide specialisation. It is possible that
the approach we present in this paper could make use of a
low-level cost model to determine the quality of specialised
code, but a cost model may prove too inaccurate to give
reliable results.

2. CONTROLLINGPARTIAL DEDUCTION

In the remainder of the paper we assume some basic know-
ledge of logic programming [17].

2.1 Basicsof Partial Deduction

Partial deduction [18] is a program specialisation tech-
nique for logic programs: given a logic program P and some
partially instantiated query @, it derives a new program P’,
which is specialised for answering the query @ and all its
possible instantiations. Partial deduction proceeds by de-
riving a set of atoms 4 and by building for each element
of A a possibly incomplete SLDNF-tree using an unfolding
rule. For every element of A, partial deduction produces a
specialised predicate definition by extracting a specialised
clause from every non-failing branch of the tree built for it.

An important issue in partial deduction is the control.
Here we distinguish between [19]

— global control: deciding which atoms to be put into A,
and
— local control: deciding which trees to build for the
elements of A.
The issue of control is important as it affects the correctness
and termination of the specialisation process, as well as the
quality of the specialised program. Considerable effort has
been devoted to this crucial issue (see, e.g., the references
n [14]), and the issue of correctness is well understood and
several powerful techniques (such as homeomorphic embed-
ding) can be used to ensure termination. However, the issue
of the quality of the specialised program is still relatively
open. While it is well understood that unrestricted unfold-
ing can be detrimental to the efficiency of the specialised
program, and that determinate unfolding can be used to
avoid most pitfalls related to this, the overall picture is un-
clear. Indeed, using just determinate unfolding will prevent

substantial efficiency gains in certain cases, and still may
not prevent program slowdowns and code explosion (with a
limited efficiency gain). Below we elaborate on some of the
pitfalls of partial deduction in more detail, showing where
it can go wrong and produce undesirable results.

2.2 Some Pitfallsof Partial Deduction

One pitfall related to the local control (unfolding) is known
as work duplication. The problem is illustrated in the fol-
lowing example.

Let P be the program defined in Listing 1.

member (X, [XIT]).

member (X,[Y|T]) :- member (X,T).

inboth(X,L1,L2) :- member(X,L1),
member (X,L2).

Listing 1: The inboth/3 example

Let A = {inboth(a,L, [X,Y]), member(a,L)}. By per-
forming non-leftmost non-determinate unfolding for the call
inboth(a,L, [X,Y]) in Figure 1 (and doing a single unfold-
ing step for member(a,L)), we obtain the partial deduction
P’ (Listing 2) of P with respect to A.

member (a, [alT]).

member (a, [YIT]) :- member(a,T).

inboth(a,L,[a,Y]) :- member(a,L).

inboth(a,L,[X,al) :- member(a,L).

Listing 2: Specialising Listing 1 for

{inboth(a,L, [X,Y]), member(a,L)}

Let us examine the run-time goal G =« inboth(a, [h,g,f,
e,d,c,b,al, [X,Y]) (which is an instance of an atom in A).
Using the Prolog left-to-right computation rule the expen-
sive sub-goal <— member(a, [h,g,f,e,d,c,b,al) isonly eval-
uated once in the original program P, while it is executed
twice in the specialised program P’.

— inboth(a, L, [X,Y])

« member(a, L), member(a, [X, Y])

{X/;/ \

— member(a, L) — member(a, L), member(a, [Y])

{Y/‘a/

«— member(a, L) + member(a, L), member(a, [])

fail

Figure 1: Non-leftmost non-determinate unfolding
for Listing 2

The classical solution to this problem is to disallow non-
leftmost unfolding unless it is deterministic (sp [7, 8, 9],
ECCE [16]), or allow non-leftmost unfolding but not left-
propagate bindings (PADDY [20], MIXTUS [21]). Some partial
evaluators, for instance, SAGE [11, 10] do not prevent such
work duplication. This can result in huge slowdowns (see,
e.g., [3]).

However, non-leftmost non-determinate unfolding can some-
times have the opposite effect and lead to big speed-ups,
which are thus prevented. Furthermore, even determinate

unfolding can still lead to duplication of work, namely in
unification with multiple heads:

Let us return to the program in Listing 1 with the set A =
{inboth(X, [Y], [V,W])}. The query can be fully unfolded
producing the partial deduction P’ (Listing 3) of P with
respect to A.

inboth (X, [X],[X,W]).
inboth (X, [X1,[V,X]1).

Listing 3: Specialising Listing 1 for
{inboth(X, [Y], [V,W])}

No goal has been duplicated by the leftmost non-determinate
unfolding, but the unification X=Y for « inboth (X, [Y], [V,W])

has been duplicated in the residual code. This unification
can have a substantial cost when the corresponding actual
terms are large.

Another trap of partial deduction is the possible loss of
indexing. Indeed, Prolog systems spend a lot of their time
looking up clauses that match the current goal. When all
calling arguments are free, the system has no choice but to
go through the clauses one by one. However, if some of the
arguments are (at least partially) instantiated then some
clauses that do not match can be skipped. This is achieved
using argument indexing and takes analogy from indexing in
database systems. The standard Prolog indexing techniques
rely on first argument clause indexing; that is they by de-
fault index on the first argument. Indexing can provide an
important performance boost when searching over a large
set of clauses.

Listing 4 is a a simple program with a collection of facts
represented by p/2. By default indexing will be performed
on the first argument of p/2, and as long as the first argu-
ment in the call to p/2 is instantiated we will benefit from
the speedups of indexing.

index_test(£(_),Y,Z)
pla,1).
p(b,2).
p(c,3).
p(d,4).
p(e,5).
p(f,6).
p(g,7).
ph,8).
p(i,9).
p(j,10).

= p(Y,Z).

Listing 4: Example using clause indexing

During specialisation unfolding may change the behaviour
of the clause indexing. Through unfolding, facts may be
subsumed by calling predicates, whose argument orderings
differ. When specialising Listing 4 for index_test(A,B,C) it
is safe to fully unfold the call to p/2, as termination is guar-
anteed and it removes a level of redirection. Unfortunately
in the newly created index_test__0/3 predicate (Listing 5),
the first argument is no longer a useful basis for clause in-
dexing and as a result, the specialised code is substantially
slower than the original program (taking twice as long to
complete the same benchmark).
index_test__0(£(_.),
index_test__0(£(_.),
index_test__0(£(_.), 3).

index_test__0(f(_), 4).

a, 1).
b,
C,
d,

index_test__0(f(_), e, 5).
f,
g
h,

2).

index_test__0(f(_), 6) .
index_test__0(f(_), 7).
index_test__0(f(_), 8).

index_test__0(f(_), i, 9).
index_test__O0(f(_), j, 10).

Listing 5: Specialising Listing 4 for
index_test(A,B,C). The useful clause indexing has
been lost

In Ciao Prolog (and some others), the indexer allows pro-
grammers to select the argument(s) to index on. This would
be an alternative to not unfolding the call, but would still
require that the specialiser changes the indexing informa-
tion. The classical solution is to avoid any reordering of
arguments, but this is not enough to prevent this problem.
Using pure determinate unfolding (no non-determinate un-
folding except at the root of an SLD-tree) together with no
argument reordering avoids most of the problems. However,
most determinate unfolding rules are not pure and allow one
non-determinate step, this is often important for precision
(see benchmarks in [16]).? Another related problem is the
loss of indexing due to argument filtering. For example, take
the following program:

p(f(a,b)).
p(f(b,c)).
p(f(d,e)).
p(f(e,a)).

Specialising for p(f(X,Y)) produces the following spe-
cialised code:

p--1(a,b).
p__1(b,c).
p--1(d,e).
p--1(e,a).

Filtering has removed the f£/2 structure and replaced it
with two arguments representing the substructure. Now,
potentially the specialised program will run slower for a
runtime query such as p(£(X,a)), provided the underlying
Prolog system provides “deep” indexing (e.g., Ciao Prolog
does allow this with the indexer package). This is because
only the first argument is indexed, and the lookup is on the
second argument in the specialised program. However, most
Prolog systems only index on the top-level functor (e.g., SIC-
Stus) and hence there is actually no slow-down. In fact the
program can run faster as the functor £/2 no longer needs
to be deconstructed.

The behaviour of the indexing in different Prologs is a case
where depending on the Prolog the specialiser could behave
differently to produce better quality code. Prolog systems
also impose a maximum number of arguments. Some Pro-
log systems do not, but after a certain limit (e.g., 32) all
further arguments are simply put into a list. As argument
filtering can increase the number of arguments, this must be
taken into account by the specialiser. Other differences may
exist between Prologs and platforms, for example features
such as tabling may influence the performance of specialised
programs.

In this section we have only scratched the surface of vari-
ous ways in which existing partial deduction techniques can
go wrong (more pitfalls can be found in [23], most of which
are still valid today). Also, even when partial deduction

2This is less of an issue in conjunctive partial deduction, as
variable links between calls are not automatically lost when
one stops unfolding; see [12].

does achieve some speed improvement, this may ensue an
unacceptable explosion in the code size. It is clear that de-
riving a good specialised program is a non-trivial pursuit,
covered with many pitfalls and difficult to put into a simple
mathematical model.

The motivation of this paper is to provide a method for
deriving specialisation control based on the underlying ar-
chitecture guided by trial and error, providing the user with
the ability to balance execution time against code explosion,
or other program properties. The algorithm uses empirical
measurements to tackle issues that could prove difficult to
handle using a purely mathematical model. We concentrate
on offline partial deduction as it provides a clear separation
between specialisation and control.

3. OFFLINE PARTIAL DEDUCTION

The main idea of offline partial deduction is to separate
the specialisation process into two phases:

— First a binding-time analysis (BTA) is performed which,
given a program and an approximation of the input

available for specialisation, approximates all values within

the program and generates an annotated program.
— A (simplified) specialisation phase, which is guided by
the annotations of the BTA.

This approach is illustrated in Figure 2 and is called offline
because most control decisions are taken beforehand.

Annotated
Program

Source
Program

Static

Input
Dynamic /Specialib >

\Program Output

1. Blndlng.Tlme N
Analysis

2. Partial
Evaluator

Figure 2: Offline Partial Evaluation

In the remainder of the paper we will use the LOGEN spe-
cialisation system [15]. In LOGEN every program point in
every clause is annotated with a clause annotation, telling
the specialiser what to do when reaching this program point.
Furthermore, every argument of every predicate is anno-
tated with a binding type, which tells the specialiser to what
extent this argument will be known at specialisation time.

Clause Annotations

Clause annotations indicate how each call in the program
should be treated during specialisation. Essentially, these
annotations determine whether a call in the body of a clause
is performed at specialisation time or at run time. Clause

annotations influence the local control [19]. For the LO-
GEN system [15] the main annotations are as follows:

e unfold: The call is unfolded under the control of the
partial evaluator. The call is replaced with the pred-
icate body, performing all the needed substitutions.
(Note: the predicate body is itself annotated and will
be re-examined by the partial evaluator.)

e memo: The call is not unfolded, but instead the call is
generalised using the filter declaration and specialised
independently.

e call: The call is fully executed without further inter-
vention by the partial evaluator.

e rescall: The call is left unmodified in the residual
code.

Binding Types

Each argument of a predicate in an annotated program is
given a binding type by means of filter declarations. A bind-
ing type indicates something about the structure of an argu-
ment at specialisation time. This information is used when
the predicate is “memoed.” The basic binding types are
usually known as static and dynamic which are defined as
follows:

e static: The argument is definitely known at speciali-
sation time;

e dynamic: The argument is possibly unknown at spe-
cialisation time.

More precise binding types can be defined by means of reg-
ular type declarations, and combined with basic binding
types. For example, one can define types such as list skele-
tons.

The filter declarations influence the global control, since
dynamic parts of arguments are generalised away (that is, re-
placed by fresh variables) and the known, static parts are left
unchanged. They also influence whether arguments are “fil-
tered out” in the specialised program. Indeed, static parts
are already known at specialisation time and hence do not
have to be passed around at runtime.

The paper [5] introduced an automatic binding-time ana-
lysis for LOGEN. The analysis used state-of-the-art termi-
nation analysis techniques, combined with a type-based ab-
stract interpretation for propagating the binding types com-
bined. Safety of built-ins was guaranteed using a database
of allowed calling patterns (with respect to the propagated
binding types). The analysis was designed to be as aggres-
sive as possible and is guided only by termination, it contains
no heuristics for quality of code. The algorithm described
in this paper is designed to complement the binding-time
analysis of [5], providing control over the quality of the pro-
duced specialised programs.

Figure 3 is the match program taken from the DPPD li-
brary of benchmarks [13]. The program is a naive string
matcher; the match/2 succeeds if the given pattern occurs
in the string. The program has been annotated for the LO-
GEN system using the automatic binding-time analysis, the
specialisation query will contain a static pattern but the
string to search will be dynamic. The analysis has con-
cluded that the first and last calls can be safely unfolded,
i.e. they are guaranteed to terminate at specialisation time.

The recursive call in the second match1/4 clause has been
marked memo and cannot be safely unfolded.

match(Pat,T) : —
matchl(Pat, T,Pat,T).

unfold

matchi([], -Ts, P, _T).
match1([A|-Ps], [B|-Ts],P, [X|T]) : —

A\ == B, match1(P,T,P,T).

—_— —

rescall memo

match1([A|Ps], [A|Ts],P,T) : —

matchl(Ps, Ts,P, T).

unfold

: —filter match(static, dynamic).
: —filter matchi(static, dynamic, static, dynamic).

Figure 3: Annotated match program
Using the above annotation and the specialisation query

match([a,c], A), LOGEN will produce the following spe-
cialised program:

match([a,c], A) :-
match__O ([AIB]) :-

match__0 (A).

a\==A, matchi__1(B, B).
match__0([a,A|B]) :-
c\==A, matchil__1([AIB], [AIBI).

match__0 ([a,cl_1).
matchi__1([AI_1, [_IB]) :-

a\==A, matchi__1(B, B).
matchi__1([a,Al_1, [_IBl) :-
c\==A, matchi__1(B, B).

matchi__1([a,cl_1, _)

Listing 6: Specialising match/2 using the annota-
tions in Figure 3

4. MUTATIONS

Offline specialisation takes an annotated program as in-
put. In this section we examine how annotations can be mu-
tated and thus form the basis of a genetic algorithm aimed
at improving annotations.

A single set of annotations for a program is represented
by an annotation configuration (Definition 1).

DEFINITION 1~ (ANNOTATION CONFIGURATION). (a,f3) is
an annotation configuration for some program P where o €
5, % = {u,m,c,r}, B € X}, 55 = {s,d}

The length of o is the number of body literals in P and
the length of B is the sum of the arity of the predicates in
P. A configuration represents a set of annotations for the
program P. With u, m, ¢, v, s, and d representing unfold,
memo, call, rescall, static and dynamic respectively.

For example, the annotations from the match program
(Figure 3) are represented by the annotation configuration
((u7 r? m7 u7)7 (87 d7 87 d7 37 d))'

The binding-time analysis concentrates on termination
and provides a set of aggressive annotations, doing as much
work as possible at specialisation time. However, this does
not always produce the best specialised programs. As al-
ready discussed, there are some circumstances where it is

better not to perform an operation at specialisation time or
to discard some static information.

The algorithm presented searches for “better” annotation
configurations which, while less aggressive than the configu-
ration provided by the binding-time analysis, may produce
better specialised code. The algorithm explores the possible
mutations (Definition 2) of the current annotation configu-
ration. A mutation of a configuration is defined as a new
annotation configuration but with one of the annotations
modified. The mutations produce new, less aggressive anno-
tations. For example, a call marked as unfold can be turned
into memo, or an argument that was previously static is
treated as dynamic. This changes the behaviour of the spe-
cialiser.

DEFINITION 2 (MUTATION). Let C be a annotation con-
figuration for P, f. and fy are mapping functions defined as
fe=Aur— m,c— r}, fr = {s — d}. If C is of the form
(aXda',B) and X € dom(f.) then the annotation configura-
tion (af.(X)d/,8) is a mutation of C. If C is of the form
(o, BXB') and X € dom(fs) then the annotation configura-
tion (o, Bf(X)B') is a mutation of C.

DEFINITION 3
fined as the set of all possible mutations of C.

Table 1 shows the initial set of mutations for the match
program in Figure 3. The initial configuration of match
has five possible mutations, the mutated element has been
underlined in each mutation.

Original | ((u,r,m,u),(s,d,s,d,s,d))
1 ((m,r,m,u), (s,d,s,d,s,d))
2 ((w,ry,m,m), (s,d, s,d, s,d))
3 ((wyrym,u), (d,d, s,d, s,d))
4 ((u,m,m,u), (s,d,d, d,s,d))
5 ((wyrym,u), (s,d, s,d,d,d))

Table 1: Initial set of mutations for match

It is possible that a mutated annotation configuration
may be unsafe. Generalising more arguments, or memoising
rather than unfolding calls, may have repercussions through-
out the rest of the program. The annotation configuration
may be unsafe for a number of reasons:

- The filter information may be incorrect. Marking an
argument as dynamic or memoing a call rather than
unfolding may change the propagation of static data
throughout the program.

- A built-in that was previously safe to call, may now
not be sufficiently instantiated at specialisation time.

- The specialisation process may fail to terminate. In-
formation that previously guaranteed termination may
have been generalised away.

Unsafe annotations will not produce valid specialised pro-
grams and are therefore of little use. Given an unsafe an-
notation configuration the automatic binding-time analysis
algorithm can be used to find the next safe configuration.
This may require that further calls are marked as memo or
that the filter information is propagated correctly.

(SET OF MUTATIONS). mutations(C) is de-

The entire binding-time analysis algorithm is complex;
however, it is sufficient to run only the filter propagation
and built-in safety checking. Non-termination of the spe-
cialisation process can then be monitored using timeouts.
A sensible value for the timeout can be estimated using the
specialisation and runtime of the original annotated program
as a base.

Using the filter propagation and built-in checking on the
annotations in Table 1 produces the new safe annotations
in Table 2.

Original | ((u,r,m,u), (s,d,s,d, s, d))
1 ((m,r,m,u), (s,d,s,d,s,d))
2 ((w, rym,m), (s,d,s,d,s,d))
3’ ((u,r,m,u),(d, d,d,d, d,d))
4 ((wyrym,u), (s,d,d,d, s,d))
5 ((w,ry,m,u), (s,d,d,d,d,d))

Table 2: Mutation after filter propagation

Two of the mutations have been detected as unsafe and
have been modified accordingly. Figure 4 shows the tree of
these mutations. Running the filter propagation has fur-
ther mutated the annotation configuration producing new
configurations with multiple mutated elements.

It is also possible to run the full binding-time analysis
algorithm to find the safe set of mutations (Table 3). The
termination analysis has detected that, in additional to the
filters, one of the annotations must be changed from unfold
to memo.

Original | ((u,r,m,u), (s,d,s,d,s,d))
1 ((m,r,m,u), (s,d,s,d,s,d))
2 ((w, rym,m), (s,d,s,d,s,d))
3 ((w,r,m,m), (d,d,d,d,d,d))
4 ((U7T7m7m)7(87d7 d, d757d))
5 ((wyrym,m), (s,d,d,d,d,d))

Table 3: Mutation after full automatic binding-time
analysis

5. DECIDING FITNESS

To explore the search space effectively, it is essential to be
able to assess the quality of a particular annotation configu-
ration. Empirical testing is used to determine the quality of
the specialised code. However, each annotation configura-
tion can be used to specialise the same program for different
sets of static data. It is impractical to test for all possible
sets of of static data, so instead a representative set of sam-
ple queries is used. These queries are provided by the user.
It is important that the sample queries accurately reflect the
type of queries of interest as the program will be optimised
with these queries in mind.

The quality of the annotation configuration is calculated
using characteristics from the specialisation process:

execution time — The actual execution time of the sample
queries. The sample queries are benchmarked over a
number of executions to obtain a final execution time.

This allows the algorithm to optimise for the fastest
program.

compiled code size — The size of the produced specialised
code. The size is taken after compilation into byte
code. Specialisation can result in large code explosion,
sometimes for a very small gain.

specialisation time — The time taken to specialise the pro-
gram for the sample queries. In situations where the
program is to be re-specialised frequently it may be
desirable to take into account the actual specialisation
time during optimisation.

It would be possible to measure additional characteris-
tics that may be of interest to the user. For example, the
memory usage during execution.

The different characteristics contain different units and
cannot easily be combined. To allow comparison between
the different characteristics, they are first normalised. Nor-
malising the values against a common base case produces a
new value, where 1.0 signifies it is the same as the base case,
a value of 2.0 indicates it is twice as good as the base case
and a value of 0.5 indicates it is twice as bad as the base
case.

A fully dynamic annotation configuration (Definition 4)
with all calls marked as rescall or memo is used as a base
case. The fully dynamic annotation configuration produces
specialised code which has the same behaviour as the orig-
inal program, as all static data is discarded during special-
isation and no calls are made at specialisation time. Each
characteristic is normalised by dividing the value with the
same characteristic from the dynamic annotation configura-
tion.

DEFINITION 4 (DYNAMIC ANNOTATION CONFIGURATION).
The annotation configuration (o, 3) is fully dynamic if o €
EZ,ECI = {m77“}7ﬂ € chu Ef/ = {d}

Where the length of o is the number of body literals in P
and the length of B is the sum of the arity of the predicates
in P.

While it would be possible to optimise the program for
a single characteristic, much more interesting optimisations
can be made by combining the different characteristics into
a single score.®> A fitness function (Definition 5) is used to
determine the score given the characteristics.

DEFINITION 5 (FITNESS FUNCTION). The fitness func-
tion is used to determine the quality of an annotation con-
figuration based on its measured characteristics. The func-
tion takes as input the normalised values for specialisation
time (spectime), execution (speedup) and code size reduc-
tion (reduction).

The choice of fitness function is important in determin-
ing the quality of code for the particular requirements. The
fitness function is used to balance the tradeoff between the
different characteristics. A simple scoring function to find
fastest specialised program would only take into account the
execution time. However, sometimes the most aggressive an-
notations can cause dramatic code explosion with little ac-
tual gain in execution time. Using a scoring function based

3It may also be possible to use a multi-objective genetic
algorithm with multiple fitness functions. Further research
is needed to investigate this possibility.

((u,r,m,u,),(s,d,s,d,s,d))

mutate

mutate
((m,r,m,u,),(s,d,s,d,s,d))
mutate

((u,r,m,m,),(s,d,s,d,s,d))

((u,r,m,u,),d,d,s,d,s,d))

filter-prop

mutate

mutate ((u,r,m,u,),(s,d,s,d,d,d))

((ur,m,u,),(s,d,d,d,s,d))
filter-prop

\%
((u,r,m,u,),(s,d,d,d,d,d))

((u,r,m,u,),(d,d,d,d,d,d))

Figure 4: Safe annotation configurations after filter propagation

on both the execution time and compiled code size ensures
a balance is maintained between the two characteristics.

For example, say the original program executes in 200ms
and is 4,000 bytes. Annotation configuration A executes in
100ms and is 30,000 bytes while annotation configuration
B executes in 120ms but is only 5,000 bytes. It may be
desirable to choose B, which while slightly slower is much
smaller than A.

Currently the default fitness function is defined as score
= speedup® x reduction® x spectime” where the «, 8 and ~
values reflect the importance of the characteristics.

6. ALGORITHM

Using the concepts defined in the previous sections the
complete algorithm is now presented. The algorithm is given
an initial starting annotation configuration and returns the
best annotation configurations found according to the set
fitness function.

To explore the search space the algorithm uses a beam
search. The beam search explores the neighbours at each
node (in this case the single mutations), and only descends
into the W best nodes for each level, where W is described
as the width of the beam. The search terminates when the
W best nodes remain unchanged through an iteration.

Figure 5 demonstrates the beam search for W = 2. The
values in the nodes represent the scores, a higher score repre-
senting a better selection. At each level the search proceeds
by selecting the best two solutions.

Figure 6 outlines the algorithm. Starting with an initial
annotated program, the algorithm proceeds to find muta-
tions of the initial configuration. Each mutation is checked
for safety by running the filter propagation and then the
safe configurations are benchmarked. At each iteration the
best annotations are chosen and the algorithm continues.
When no further improvements are found, the algorithm
terminates. The depth of the search tree is bounded by the
number of annotations, as at each generation at least one
annotation must be made less aggressive. The filter propa-

Figure 5: Beam search for W =2

gation allows multiple annotations to be modified in a single
step, effectively skipping levels in the search tree.

Algorithm 1 describes the self-tuning algorithm in psuedo
code. It uses Definition 6 to measure the characteristics of
an annotation configuration.

DEFINITION 6 (TEST_CONF). Given a program P, an an-
notation configuration C, a specialisation goal Gsp and a
runtime query Gre, test_conf (P, C,Gsp, Grt) returns the tu-
ple (ST, RT,SS). Where ST is the time taken to specialise
P for the goal Gsp, producing the specialised program P’.
RT is the execution time of P’ for the goal Gri and SS is
the compiled code size of P’

For example, running the algorithm on the index_test/3
example (Listing 4) produces the annotations in Figure 7.
The annotations have be tuned for time and speed. The
algorithm has discovered that the call should not be unfolded
(as it is detrimental to performace) and has marked it as
memo. The tuned annotations produced specialised code
that is twice as fast as the aggressive annotations.

Figure 8 is the self-tuned output for the match/2 program
(Figure 3), optimised for both size and time. The algorithm

Initial

Aggressively
BTA Annotated 4
Program
'
Mutate
Annotation
Less
Aggressively
Annotated e
Program H
. :
. '
. '
. v
Filter
Propagation
Correctly
Annotated .
Program

Mutations: unfold -> memo, call -> rescall
static -> nonvar -> dynamic

Less
Aggressively
Annotated
Program

Optionally rerun BTA to ensure termination

Correctly Possibly less
Annotated agressive
Program annotations

Representative
Specialisation +
Runtime Queries

Run Logen and Run
Specialised Program

Measure:

Pick
Annotation(s)

specialised code size,
specialisation time,
runtime of specialised code

with best
tradeoff

Repeat if improvement(s) found

Figure 6: Self-tuning overview

index_test(f(.),Y,Z) : — p(Y, Z).
——

memo

Figure 7: Final annotations for index_test/3, opti-
mised for time and size

has decided that while the first call can be safely unfolded,
better code can be produced by memoing the call instead.
The produced code is nearly two times smaller than the
aggressive annotations and runs faster (full details can be
found in Table 4).

7. EXPERIMENTS

Table 4 presents the results of running® the self-tuning
algorithm on a series of benchmarks taken from the DPPD
library [13]:

advisor — A simple expert system.

inboth — The inboth example form Section 2.2.

4Benchmarks were performed on a 2.5Ghz Pentium with
512MB running SICStus Prolog 3.11.1

match(Pat,T) : —
matchl(Pat, T,Pat, T).

memo

matchi([], -Ts, -P, _T).
matchi([A|_Ps], [B|-Ts], P, [X|T]) : —
A\ == B, match1(P,T,P,T).
rescall
match1([A|Ps], [A|Ts],P,T) : —
matchl(Ps, Ts,P, T).

memo

unfold

: —filter match(static, dynamic).
: —filter matchl(static, dynamic, static, dynamic).

Figure 8: Final annotations for match/2, optimised
for time and size

index_test — The indexing example from Section 2.2.
match — A simple naive pattern matcher.

missionatres — A program for the missionaries and canni-
bals problem.

Algorithm 1 Self-tuning algorithm

Input:Program P

Input:Initial annotation configuration Clpt
Input:Specialisation goal Gs)p
Input:Runtime goal G,

Input:Beam width W

1: Cayn = fully dynamic annotation configuration for P
2: (STayn, RTayn, SSayn) = TestConf(P,Cayn,Gsp,Grt)
3: Cache = {Cayn — fitness_func(1,1,1)}

4: CS = {Cinit}

5: repeat

6: CSsape =CS

7. for all C € CS do

8: Mqfe = safe set of mutations(C)

9: OSsafe = Cssafe U Msafe

10: end for

11: for all C' € CS;q5e do

12: if C ¢ dom(Cache) then

13: (ST, RT,SS) = TestConf(P,C,Gsp,Grt)

14: ST = ST/STuyn

15: RT' = RT/RTayn

16: SS" = 585/SSayn

17: Score = fitness_func(ST', RT', SS")

18: Cache = Cache U {C — Score}

19: end if
20: end for

21: Previous = CS

22: (S = Choose best W configurations based on scores
from Cache

23: until CS = Previous

regexp — A program testing whether a string matches a
regular expression (using difference lists).

relative — A simple expert system.

vanilla_bd — A vanilla meta-interpreter, with a “contrived”
object program invented by Bart Demoen.

Each test program has five enteries in the table: the orig-
inal program, the program after specialising it using the an-
notations derived by the BTA of [5], and the results from the
self-tuning algorithm with three different fitness functions:

time — The normalised time to execute the specialised pro-
gram. score = speedup.

size — The normalised size of the byte compiled specialised
program. score = reduction.

time & size — An equally weighting of the normalised ex-
ecution time and program size. score = speedup X
reduction.

The execution time, compiled code size and specialisation
time are the non-normalised characteristics from Section 5.
The optimisation time is the total time taken to find the
annotation configuration, the starting configurations were
provided by the BTA. The number of attempted configu-
rations is the actual number of different annotations that
were tested during the search. Note, the three enteries for
the different fitness functions were timed independently of
each other, in practice the cache could be reused for the
different searches.

The results show that the highly aggressive configurations
provided by the termination driven binding-time analysis
do not neccessarily produce the best code, either in terms of
code size or execution time. In both the missionaries and ad-
visor examples the BTA configuration suffers from a code ex-
plosion for no actual gain. The missionaries example suffers
an eight-fold increase in size, while the advisor example is
three times larger; with neither program running any faster.
The aggressive unfolding in the index_test example also suf-
fers a performance penalty, the loss of the clause indexing
causes the BTA configuration to run two times slower than
the original. Another interesting example is vanilla_demoen.
The purpose of the example was to show that under some
circumstances meta-interpretation has the advantage of cre-
ating terms late and that removing the meta-interpretation
can actually slow down the program. Our algorithm here
has avoided the pitfall and has actually found a speciali-
sation that improves upon the original but does not suffer
from the problem of creating terms too early.

Solely using execution time as a measure for the qual-
ity of code is not always ideal either. The advisor, inboth,
missionaries and relative examples all suffer from an explo-
sion in code size when optimised only for execution time.
Balancing execution time against code size produces some
interesting results. For example, the missionaries program’s
fastest solution is 35% faster than the original with an 75%
increase in code size; balancing code size with execution
time finds a solution which is 23% faster than the original
and is also actually 7% smaller. In the three other examples,
the comprimise solution finds configurations which perform
marginally slower than the fastest, but without the code
explosion.

8. SUMMARY AND FUTURE WORK

This paper has presented a self-tuning, resource-aware of-
fline specialisation technique. The main insight was that
the annotations of offline partial evaluation can be used as
the basis of a genetic algorithm. Indeed, the fitness of an-
notations can be evaluated by trial and error using a set of
representative sample queries on some target Prolog system
and hardware, taking properties such as execution time and
code size into account. This makes our approach both re-
source aware and able to fine-tune itself to new hardware or
Prolog systems. Furthermore, annotations can be mutated
by toggling individual clause or predicate annotations. To
reduce the search space we make use of a recent fully au-
tomatic binding-time analysis [5] in order to adapt unsafe
mutations (of which there are many) into safe ones. The
binding-time analysis also provides a valid starting point
for our algorithm.

The empirical evaluation or our technique has been very
encouraging. We have shown that our self-tuning algorithms
avoids pitfalls of ordinary partial evaluation, while being
able to find better specialised code in terms of speedup,
code size or both. For example, the results show that the
binding-time analysis of [5] can lead to large code explosion
for little gain in efficiency, while our algorithm finds a much
better tradeoff.

In future it would be useful to examine whether one can
use a cost model in place of the representative sample queries
to evaluate the runtime of the specialised programs. An-
other important area of future research is the efficiency of
the genetic algorithm. While searching for the final con-

Benchmark Fitness Execution | Compiled Code | Specialisation | Optimisation Attempted
Program Function Time Size (bytes) Time Time Configurations
advisor original 700ms 4098 - - -
advisor BTA 700ms 13929 20ms - -
advisor time 430ms 9256 20ms 21s 14
advisor size 700ms 4098 20ms 10s 16
advisor time & size 440ms 4784 20ms 23s 16
inboth original 850ms 1453 - - -
inboth BTA 450ms 4717 20ms - -
inboth time 370ms 3942 20ms 21s 20
inboth size 820ms 1289 20ms 17s 26
inboth time & size 470ms 1673 20ms 24s 23
index_test original 2570ms 1753 - - -
index_test BTA 5270ms 1675 20ms - -
index_test time 2570ms 1753 20ms 21s 4
index_test size 5270ms 1675 20ms 3s 4
index_test time & size 2570ms 1753 20ms 21s 4
match original 800ms 1037 - - -
match BTA 510ms 2204 20ms - -
match time 440ms 1487 20ms Ts 7
match size 800ms 1037 20ms 5s 8
match time & size 440ms 1487 20ms 10s 8
missionaries original 4710ms 6701 - - -
missionaries BTA 4710ms 55956 80ms - -
missionaries time 3490ms 11802 60ms 2332s 505
missionaries size 3880ms 6259 80ms 413s 688
missionaries | time & size 3830ms 6263 60ms 3386s 715
regexp original 3540ms 1620 - - -
regexp BTA 810ms 1417 20ms - -
regexp time 810ms 1417 20ms 44s 19
regexp size 810ms 1417 20ms 16s 24
regexp time & size 810ms 1417 20ms 558 24
relative original 1400ms 2544 - - -
relative BTA 320ms 2356 20ms - -
relative time 270ms 5411 20ms 47s 33
relative size 280ms 2364 20ms 37s 40
relative time & size 280ms 2364 20ms 28s 22
vanilla_bd original 430ms 9891 - - -
vanilla_bd BTA 760ms 8369 20ms - -
vanilla_bd time 260ms 9092 20ms 142s 21
vanilla_bd size 760ms 8369 20ms 87s 14
vanilla_bd time & size 260ms 8938 20ms 142s 21

Table 4: Experimental results for the self-tuning algorithm

figuration, the algorithm may try many different configura-
tions. This is costly as each configuration must be tested for
safety, specialised and then benchmarked. To optimise the
algorithm we must either speed up the total time taken per
configuration, or reduce the number of configurations that
are tested.

The benchmarking itself must produce timings with enough
granuality to distinguish between the best cases, meaning
that the time taken to benchmark each configuration can-
not easily be reduced. In the case where a benchmark is run
multiple times to produce reliable results, it may be possible
to change the measurement taken, instead using the number
of iterations possible in a given time period.

At each iteration in the beam search, single stage muta-
tions are added to the set of configurations. There is cur-

rently no attempt at genetic crossover,> combining configu-

rations with good performance in the hope of finding a bet-
ter one. Of course, naively breeding configurations may not
produce better answers, but there are situations where com-
bining two independent mutations will allow the algorithm
to converge on the final solution faster. Further work is
needed to determine when configurations can be combined
and an initial starting point could be mutations affecting
different predicates, or by using some form of dependency
analysis. It may also be possible to divide large programs
into smaller sections for optimisation. While this can re-
move possible optimisations, it increases the scalability of
the algorithm. Another possible way to improve the scal-

®Strictly speaking our current algorithm is actually closer to
an evolutionary algorithm rather than a genetic algorithm

[6].

ability is to introduce randomness into our algorithm (i.e.,
not compute and evaluate all possible mutations but only
some random subset).

The binding-time analysis [5] is an iterative algorithm.
During the algorithm described in this paper, the BTA is
run on many different configurations to ensure that they are
safe. Most of the configurations differ only slightly from
ones previously analysed. The BTA algorithm, along with
the specialisation process itself, could be modified to reuse
previous intermediate results. If a subset of a program has
been seen before (with the same annotations) then it is pos-
sible some of the analysis can be reused. This should provide
good opportunities to speed up the safety analysis for each
configuration.

The system lends itself well to parallelisation. The dif-
ferent configurations can be tested on different machines.
Care must be taken in the interpretation of the results,
since the algorithm tunes towards the performance of the
installed Prolog system and underlying architecture. While
the results can be normalised between machines of differ-
ing speeds providing a fair indication of speed, it will not
take into account any differences in the actual architecture,
which may affect performance. Initial results of parallelisa-
tion look promising; running the missionaries example on
two computers (with similar specifications) produces a 96%
improvement in execution time compared with the execution
time on a single machine. Further investigation is needed to
fully explore this avenue. In previous work [22] the special-
isation process itself was parallelised, distributing the work
over a network of work stations.

Acknowledgements

We would like to thank Michael Roskopf, Bart Demoen,
John Gallagher, and all the other partners of the ASAP
project for their help and input.

9. REFERENCES

[1] E. Albert, S. Antoy, and G. Vidal. Measuring the
Effectiveness of Partial Evaluation in Functional Logic
Languages. In Proc. of 10th Int’l Workshop on
Logic-based Program Synthesis and Transformation
(LOPSTR’2000), pages 103-124. Springer LNCS 2042,
2001.

[2] E. Albert and G. Vidal. Symbolic profiling for
multi-paradigm declarative languages. In Logic-Based
Program Synthesis and Transformation (Proc. of
LOPSTR’01), pages 148-167. Springer LNCS 2372,
2002.

[3] A. F. Bowers and C. A. Gurr. Towards fast and
declarative meta-programming. In K. R. Apt and
F. Turini, editors, Meta-logics and Logic
Programming, pages 137-166. MIT Press, 1995.

[4] B. Brassel, M. Hanus, F. Huch, J. Silva, and G. Vidal.
Runtime Profiling of Functional Logic Programs. In
Proc. of the 14th Int’l Symp. on Logic-based Program
Synthesis and Transformation (LOPSTR’04), pages
178-189, 2004.

[5] S.-J. Craig, M. Leuschel, J. Gallagher, and
K. Henriksen. Fully automatic Binding Time Analysis
for Prolog. In S. Etalle, editor, Logic Based Program
Synthesis and Transformation, 14th International
Workshop, pages 61-70, 2004.

[6] A. Eiben and J. Smith. Introduction to Evolutionary
Computing. Springer-Verlag, 2003.

[7] J. Gallagher. A system for specialising logic programs.
Technical Report TR-91-32, University of Bristol,
November 1991.

[8] J. Gallagher and M. Bruynooghe. The derivation of an
algorithm for program specialisation. New Generation
Computing, 9(3 & 4):305-333, 1991.

[9] J. P. Gallagher. Tutorial on specialisation of logic
programs. In Proceedings of the 1998 ACM SIGPLAN
symposium on Partial evaluation and semantics-based
program manipulation, pages 88—-98. ACM Press, 1993.

[10] C. A. Gurr. A Self-Applicable Partial Evaluator for
the Logic Programming Language Godel. PhD thesis,
Department of Computer Science, University of
Bristol, January 1994.

[11] C. A. Gurr. Specialising the ground representation in
the logic programming language Gdédel. In Y. Deville,
editor, Logic Program Synthesis and Transformation.
Proceedings of LOPSTR’93, Workshops in Computing,
pages 124-140, Louvain-La-Neuve, Belgium, 1994.
Springer-Verlag.

[12] J. Jorgensen, M. Leuschel, and B. Martens.
Conjunctive partial deduction in practice. In
J. Gallagher, editor, Logic Program Synthesis and
Transformation. Proceedings of LOPSTR’96, LNCS
1207, pages 59-82, Stockholm, Sweden, August 1996.
Springer-Verlag.

[13] M. Leuschel. The ECCE partial deduction system and
the DPPD library of benchmarks. Obtainable via
http://www.ecs.soton.ac.uk/"mal, 1996-2004.

[14] M. Leuschel and M. Bruynooghe. Logic program
specialisation through partial deduction: Control
issues. Theory and Practice of Logic Programming, 2(4
& 5):461-515, July & September 2002.

[15] M. Leuschel, J. Jgrgensen, W. Vanhoof, and
M. Bruynooghe. Offline specialisation in Prolog using
a hand-written compiler generator. Theory and
Practice of Logic Programming, 4(1):139-191, 2004.

[16] M. Leuschel, B. Martens, and D. De Schreye.
Controlling generalisation and polyvariance in partial
deduction of normal logic programs. ACM
Transactions on Programming Languages and
Systems, 20(1):208-258, January 1998.

[17] J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 1987.

[18] J. W. Lloyd and J. C. Shepherdson. Partial evaluation
in logic programming. The Journal of Logic
Programming, 11(3& 4):217-242, 1991.

[19] B. Martens and J. Gallagher. Ensuring global
termination of partial deduction while allowing flexible
polyvariance. In L. Sterling, editor, Proceedings
ICLP’95, pages 597-613. MIT Press, June 1995.

[20] S. Prestwich. The PADDY partial deduction system.
Technical Report ECRC-92-6, ECRC, Munich,
Germany, 1992.

[21] D. Sahlin. Mixtus: An automatic partial evaluator for
full Prolog. New Generation Computing, 12(1):7-51,
1993.

[22] M. Sperber, P. Thiemann, and H. Klaeren.
Distributed partial evaluation. In Proceedings of the

24]

25]

second international symposium on Parallel symbolic
computation, pages 80-87. ACM Press, 1997.

R. Venken and B. Demoen. A partial evaluation
system for Prolog: Theoretical and practical
considerations. New Generation Computing, 6(2 &
3):279-290, 1988.

G. Vidal. Cost-Augmented Partial Evaluation of
Functional Logic Programs. Higher-Order and
Symbolic Computation, 17(1-2):7-46, 2004.

R. Whaley, A. Petitet, and J. Dongarra. Automated
empirical optimizations of software and the atlas
project. Parallel Computing, 27(1-2):3-35, 2001.

