LIX: An Effective Self-applicable Partial
Evaluator for Prolog

Stephen-John Craig and Michael Leuschel

Department of Electronics and Computer Science
University of Southampton
Highfield, Southampton, SO17 1BJ, UK

sjc02r,mal@ecs.soton.ac.uk

Abstract. This paper presents a self-applicable partial evaluator for
a considerable subset of full Prolog. The partial evaluator is shown to
achieve non-trivial specialisation and be effectively self-applied. The at-
tempts to self-apply partial evaluators for logic programs have, of yet, not
been all that successful. Compared to earlier attempts, our LIX system
is practically usable in terms of efficiency and can handle natural logic
programming examples with partially static data structures, built-ins,
side-effects, and some higher-order and meta-level features such as call
and findall. The LIX system is derived from the development of the
LOGEN compiler generator system. It achieves a similar kind of efficiency
and specialisation, but can be used for other applications. Notably, we
show first attempts at using the system for deforestation and tupling
in an offline fashion. We will demonstrate that, contrary to earlier be-
liefs, declarativeness and the use of the ground representation is not the
best way to achieve self-applicable partial evaluators. Keywords: Par-
tial Evaluation, Self-application, Logic Programming, Partial Deduction,
Deforestation, Tupling.

1 Introduction and Summary

Partial evaluation has received considerable attention over the past decade both
in functional (e.g. [16]), imperative (e.g. [2]) and logic programming (e.g. [9, 18,
25]). In the context of pure logic programs, partial evaluation is often referred to
as partial deduction, the term partial evaluation being reserved for the treatment
of impure logic programs. We will adhere to this convention in this paper.
Guided by the Futamura projections (see e.g. [16]) a lot of effort, especially in
the functional partial evaluation community, has been put into making systems
self-applicable. A partial evaluation or deduction system is called self-applicable
if it is able to effectively! specialise itself. The practical interests of such a ca-
pability are manifold. The most well-known are related to the second and third
Futamura projections [7]. The first Futamura projection consists of specialising
an interpreter for a particular object program, thereby producing a specialised

! This implies some efficiency considerations, e.g. the system has to terminate within
reasonable time constrains, using an appropriate amount of memory.



version of the interpreter which can be seen as a compiled version of the object
program. If the partial evaluator is self-applicable then one can specialise the
partial evaluator for performing the first Futamura projection, thereby obtain-
ing a compiler for the interpreter under consideration. This process is called
the second Futamura projection. The third Futamura projection now consists
of specialising the partial evaluator to perform the second Futamura projection.
By this process we obtain a compiler generator (cogen for short).

History of self-application for logic programming Not surprisingly, writ-
ing an effectively self-applicable specialiser is a non-trivial task — the more
features one uses in writing the specialiser the more complex the specialisation
process becomes, as the specialiser then has to handle these features as well. For
a long time it was believed that in order to develop a self-applicable specialiser
for logic programs one needed to write a clean, pure and simple specialiser. In
practice, this meant using few (or even no) impure features in the implemen-
tation of the specialiser. For this the ground representation [14] was believed
to be key, in which variables of the source program are represented by ground
constants within the specialiser. Indeed, the ground representation allows one to
freely manipulate the source program to be specialised in a declarative manner.
The non-ground representation, where source-level variables are represented as
variables in the program specialiser, can suffer from semantical problems [23] and
requires some non-declarative features (such as findall/3) in order to perform
the specialisation.

Some early attempts at self-application [6] used the non-ground represen-
tation, but the self-applying led to incorrect results as the specialiser did not
properly handle the non-declarative constructs that were employed in its imple-
mentation?. Other specialisers like MIXTUS [27], PADDY [26] and ECCE [22] use
the non-ground representation, but none of them are able to effectively specialise
themselves.

The ground representation approach towards self-application was pursued in
[3], [19], [24], and [4,12,13] leading to some self-applicable specialisers:

— SAGE [12], a self-applicable partial evaluator for Gédel. While the speedups
obtained by self-application are respectable, the process takes a very long
time (several hours) and the obtained specialised specialisers are still ex-
tremely slow. This is probably due to the explicit unification algorithm re-
quired by the ground representation. To effectively specialise this much more
powerful specialisation techniques would be required to obtain reasonably
efficient specialisers. Similar performance problems were encountered in the
earlier work [3].

— LOGIMIX [16,24], a self-applicable partial evaluator for a subset of Prolog,
including if-then-else, side-effects and some built-in’s. LOGIMIX uses a meta-
interpreter (sometimes called InstanceDemo) for the ground representation
in which the goals are “lifted” to the non-ground representation for resolu-
tion. This avoids the use of an explicit unification algorithm, at the expense

2 A problem mentioned in [3], see also [19, 24].



of some power 3. Unfortunately, LOGIMIX gives only modest speedups (when

compared to results for functional programming languages, see [24]), but

it was probably the first practical self-applicable specialiser for a logic pro-
gramming language.

Given the problem in developing a truly practical self-applicable specialiser
for logic programs, the attention shifted to the cogen approach [15]: instead of
trying to write a partial evaluation system which is neither too inefficient nor too
difficult to self-apply, one simply writes a compiler generator directly. Indeed,
the actual creation of the cogen according to the third Futamura projection is
in general not of much interest to users since the cogen can be generated once
and for all when a specialiser is given. This approach was pursued in [17,21]
leading to the LOGEN system, which can produce specialised specialisers much
more efficiently than any of the self-applicable systems mentioned above. The
resulting specialisers themselves are also much more efficient.

A new attempt at self-application In a sense the cogen approach has closed
the practical debate on self-application for logic programming languages: one
can get most of the benefits of self-application without writing a self-applicable
specialiser. Still, there is the question of academic curiosity: is it really impossible
to derive the cogen written by hand in [17,21] by self-application? Also, having a
self-applicable specialiser is sometimes more flexible as we may generate different
cogen’s for different purposes (such as one with debugging enabled). One may
produce more or less optimised cogen’s by tweaking the specialisation process,
and better control the tradeoff between specialisation time and quality of the
optimised code. Maybe there are other situations where a self-applicable partial
evaluation system is preferrable to a cogen: Gliick’s specialiser projections [10]
and the semantic modifiers of Abramov and Gliick [1] may be such a setting.

This paper aims to answer some of these questions. Indeed, after the de-
velopment of LOGEN we realised that one could translate LOGEN into a classical
partial evaluator without too much difficulty. Furthermore, using new annotation
facilities developed for the second version of LOGEN [21], one can actually make
this partial evaluator (henceforth called LIX) self-applicable. By self-applying
LIX we obtain generating extensions via the second Futamura projection which
are very similar to the ones produced by LOGEN and the cogen obtained via the
third Futamura projection also has lot of similarities to the code of LOGEN. The
performance of this self-applicable partial evaluator is (after self-application) on
par with LOGEN, and is thus much faster than any of the previous self-applicable
logic programming specialisers. In the paper we also show some potential prac-
tical applications of this self-applicable specialiser.

The code of the specialiser itself is also surprisingly simple, but uses a few
non-declarative features and does not use the ground representation. So, contrary
to earlier belief, declarativeness and the ground representation were not the best
way to climb the mountain of self-application. Indeed, the use of the non-ground

3 This idea was first used by Gallagher in [8,9] and then later in [20] to write a
declarative meta-interpreter for integrity checking in databases.



representation makes our partial evaluator much more efficient and avoids all
the complications related to specialising an explicit unification algorithm. The
only drawback is that to safely deal with the non-ground representation, our
partial evaluator needs to use some non-declarative features such as findall,
and hence also has to be able to specialise them. Fortunately, this turned out to
be less of a problem than anticipated.

In summary, Futamura’s insight was that a cogen could be derived by a
self-applicable specialiser. The insight in [15] was that a cogen is just a simple
extension of a binding-time analysis, while our insight is that an effective self-
applicable specialiser can be derived by transforming a cogen.

2 The Partial Evaluator

LOGEN and L1X are both offline partial evaluators. An offline partial evaluator
works on an annotated version of the source program, these annotations are used
to guide the specialisation process. There are two kinds of annotations:
— filter declarations, indicating whether arguments to predicates are static
or dynamic. This influences the global control.
— clause annotations, indicating how every call in the body should be treated
during unfolding. These influence the local control.

2.1 The Basic Annotations

A common annotation format is used for both the LIX and LOGEN systems. Each
call in the program is annotated using logen/2 and arguments are annotated
using filter declarations. The head of a clause is annotated with an identifier.
The format of the annotations is demonstrated in the following append example:

:— filter append(static,dynamic,dynamic).
logen(app, append([],L,L)).
logen(app, append([H|T], L, [HIT1])) :- logen(unfold, append(T,L,T1).

The first argument to append has been marked as static, it will be known
at specialisation time, and the other arguments have been marked dynamic.
The recursive call to append is annotated for unfolding, the first argument is
known thus guaranteeing termination at specialisation time. Some of the basic
annotations are:

— unfold for reducible predicates, they will be unravelled during specialisation.

— memo for non-reducible predicates, they will be added to the memoisation
table and replaced with a generalised residual predicate.

— call fully static call will be made during specialisation.

— rescall the call will be kept and will appear in the final specialised code.



2.2 The Source Code

We now present the main body of the LIX partial evaluator*. An atom A is
specialised by calling 1ix(A,Res). The memo/2 and memo_table/2 predicates
return in their second argument a call to a new specialised predicate where static
arguments have been removed and dynamic ones generalised. Generalisation and
filtering are performed by generalise_and filter/3. It returns in its second
argument the generalised call (to be unfolded) and in its third argument the
call to the specialised predicate. It uses the annotations defined by filter/2
to perform its task. The predicate gensym/2 is used to create unique names
for the specialised predicates. The predicate unfold/2 computes the bodies of
specialised predicates. A call annotated as memo is replaced by a call to the
specialised version. If it does not already exist it is created by memo/2. A call
annotated as unfold is further unfolded; a call annotated as call is completely
evaluated; finally, a call annotated as rescall is added to the residual code
without modification (for built-ins that cannot be evaluated or code that is
defined elsewhere). All clauses defining the new predicate are collected using
findall/3 and pretty printed.

Note the use of the global side effect, assert (memo_table(GCall, RCall)),
to maintain the list of previously specialised calls. The univ operator =. . can be
used either to decompose a term into a list containing its functor and arguments
or else construct a term from such a list. For example the term f(X,Y) can be
deconstructed into [f,X,Y].

To save space the definition of pretty_print_clauses/1 is not given.

:— dynamic memo_table/2,flag/2.
lix(CallToSpecialise, ResidualCall) :-
print(’:- dynamic flag/2, memo_table/2.\n’),
print (’ :- use_module(library(lists)).\n’),
memo (CallToSpecialise, ResidualCall).
memo(Call, Residual) :-
( memo_table(Call, Residual) -> true
; generalise_and_filter(Call, GenCall, ResidualPred),
assert (memo_table(GenCall,ResidualPred)),
findall((ResidualPred:-Body), unfold(GenCall,Body), Clauses),
format (’/*~“k="k*/"n’, [ResidualPred,GenCall]),
pretty_print_clauses(Clauses), memo_table(Call, Residual)
).
unfold(Head, Residual) :- ann_clause(_, Head, Body),pe(Body, Residual).
pe(true, true).
pe((A,B), (ResA,ResB)) :- pe(A, ResA), pe(B, ResB).
pe(logen(call,Call), true) :- call(Call).
pe(logen(rescall,Call), Call).
pe(logen(memo,Call), Residual) :- memo(Call, Residual).
pe(logen(unfold,Call), Residual) :- unfold(Call, Residual).
generalise_and_filter(Call, GenCall, ResidualPred) :-

4 The LIX system can be downloaded from:
http://www.ecs.soton.ac.uk/"sjc02r/1lix/lix.html.



filter(Call, Filter), Call=..[Head|Args],
gen_filter(Filter, Args, GenArgs, ResArgs), GenCall=..[Head|GenArgs],
gensym(Head, ResHead), ResidualPred =..[ResHead|ResArgs].
gen_filter([1, [1, [1, [1).
gen_filter([static|A], [BIC], [BID], E) :- gen_filter(A, C, D, E).
gen_filter([dynamic|A], [_IB], [CID], [CIE]) :- gen_filter(A, B, D, E).
/* code for unique symbol generation, using dynamic flag/2 */
oldvalue(Sym, Value) :- flag(gensym(Sym), Value), !.
oldvalue(_, 0).
set_flag(Sym, Value) :-
nonvar (Sym) , retract(flag(Sym,_)), !, asserta(flag(Sym,Value)).
set_flag(Sym, Value) :- nonvar(Sym), asserta(flag(Sym,Value)).
gensym(Head, ResidualHead) :-
var (ResidualHead), atom(Head), oldvalue(Head, 01dVal),
NewVal is 01dVal+l, set_flag(gensym(Head), NewVal),
name (A "__"), string_concat(Head, A__, Head__),
string_concat(Head__, NewVal, ResidualHead).
append([]1, A, A).
append([A|B], C, [AID]) :- append(B, C, D).
string_concat(A, B, C) :- name(A, D), name(B, E),
append(D, E, F), name(C, F).
/* Clause Database: automatically created from annotated file */
ann_clause(l, app([],A,A), true).
ann_clause(2, app([A|B],C,[A|D]), logen(memo,app(B,C,D))).
filter(app(_,_,_), [dynamic,static,dynamic]).

—_

2.3 Deriving LIX from LOGEN

The LIX partial evaluator was created by transforming the LOGEN compiler
generator. The basic insight was that it is possible to create a classical partial
evaluator that when specialised would produce similar generating extensions.
Let us compare a small extract of code from both LOGEN and LIX, dealing with
the call and rescall annotations:

body(logen(call,Call),Call,true). pe(logen(call,Call), true) :- call(Call).
body (logen(rescall,Call) ,true,Call).| pe(logen(rescall,Call), Call) :- true.
LOGEN | Lix

The body predicate is explained in detail in [21]. Basically, the first argument
is an annotated call, the second argument is the code that will appear in the gen-
erating extension and the third argument denotes the specialised code. We can
see that the middle argument from body/3 in LOGEN has been transformed into
a call in the LIX version. This call is annotated as residual for self-application,
and will hence appear in the generating extension produced by self-application.
A more detailed comparison of the generating extensions and the produced cogen
can be found in Section 5.

2.4 Specialised Code

To specialise code we use the 1ix/2 entry point. Calling 1ix (app (4, [b],C) ,Res)
specialises the append predicate to append [b] to the end of a list:



app__1([1, [bl).
app__1([A|B], [AIC]) :- app__1(B, C).

The generation of the above code took 0.318 ms®. This is a very simple example
to demonstrate the partial evaluator. The specialisation of a non-trivial Vanilla
debugging interpreter and other examples can be found on the 1ix homepage®.

3 Towards Self-Application

We have presented the main body of the code for the LIX system. For a partial
evaluator to be self-applicable it must be able to effectively handle all of the
features it uses. The system we have presented so far uses a few non-declarative
features and does not use the ground representation. In this section will shall
introduce the required extension to make LIX self-applicable.

3.1 The nonvar Binding-Type

We now present a new feature derived from LOGEN which is useful when special-
ising interpreters. This annotation will be the key for effective self-application.

In addition to marking arguments to predicates as static or dynamic, it is
also possible to use the binding-type nonvar. This means that this argument is
not a free variable and will have at least a top-level function symbol, but it is not
necessarily ground. For example £ (X), £ (a) and £ are all nonvar but the variable
X is not. During generalisation, the top level function symbol is kept but all its
sub-arguments are replaced by fresh variables. For filtering, every sub-argument
becomes a new argument of the residual predicate.

A small example will help to illustrate this annotation:

;- filter p(nonvar).
p( (X)) :- p(gla)). p(g(X)) :- ph(X)).
ph(a)). ph(X)) :- p(£(X)).

If we mark no calls as unfoldable, we get the following specialised program
for the call p(£(2)):

%kt entry point: p(£(Z)) :- p__0(2)
p-_0(B) :- p__1(a). p__1(B) :- p__2(B).
p__2(a). p__2(B) :- p__0(B).

If we mark everything except the last call as unfoldable we obtain:

p-_0(B).
p-_0(B) :- p__0(a).

® Benchmarks performed using SICStus Prolog 3.10.1 for Linux on a Pentium 2.4GHz
with 512MB RAM.
5 http://www.ecs.soton.ac.uk/~sjc02r/lix/1lix.html



The gen_filter/2 predicate in the LIX source code is extended to handle
the nonvar annotation:

gen_filter([nonvar|Al, [BIC], [DIE], F) :-
B=..[GIH], length(H, I), length(J, I),
D=..[G|J], gen_filter(A, C, E, K), append(J, K, F).

3.2 Treatment of findall

In LIX findall is used to collect the clauses when unfolding a call; hence we
have to be able to treat this feature during specialisation.

Handling findall is actually not much different from handling negation in
[21]. There is a static version (findall), in which the call is executed at special-
isation time, and a dynamic version (resfindall), where it is executed at run-
time. In both cases, the second argument must be annotated. For resfindall,
much like resnot in [21], the annotated argument should be deterministic and
should not fail (which can be ensured by wrapping the argument into a hide nf
annotation, see [21]). Also, if a findall is marked as static then the call should
be sufficiently instantiated to fully determine the list of solutions. The following
code is used in the subsequent examples:

:— filter all_p(static,dynamic).
all_p(X,Y) :- findall(X,p(X),Y).
:— filter p(static).

pa). p(b).

If the findall is marked as residual and we memo p(X) inside it then the
specialised program for all p(a,Y) is:

all_p__0(A) :- findall(a,p__1,A).
p__1.

If we mark p(X) as unfold we get:
all_p__0(A) :- findall(a,true,A).

For self-application, only resfindall is actually required. The pe/2 predi-
cate is extended as follows:

pe(resfindall(Vars,G2,S0ls), findall(Vars,VS2,Sols)) :-
pe(G2,VS2) .

3.3 Treatment of if

In the LIX code an if-then-else is used in memo/2. In this case the if is
dynamic, the body of the conditional will be computed, along with those of the
branches and an if statement will be constructed in the residual code. LiX is
also extended to handle a static if which is performed at specialisation time.

pe(resif (A,B,C), (D->E;F)) :- pe(A, D), pe(B, E), pe(C, F).
pe(if(A,B,C), D) :- (pe(A, _) -> pe(B, D) ; pe(C, D)).



3.4 Handling the cut

This is actually very easy to do, as with careful annotation the cut can be
treated as a normal built-in call. The cut must be annotated using call, where
it is performed at specialisation time, or rescall, where it is included in the
residual code. It is up to the annotator to ensure that this is sound, i.e. LIX
assumes that:
— if a cut marked call is reached during specialisation then the calls to the left
of the cut will never fail at runtime.
— if a cut is marked as rescall within a predicate p, then no calls to p are
unfolded.
These conditions are sufficient to handle the cut in a sound, but still useful
manner.

4 Self-Application

Using the features introduced in Section 3 and the basic annotations from Sec-
tion 2.1, LIX can be successfully annotated for self-application. Self-application
allows us to achieve the Futamura projections mentioned in the introduction.

4.1 Generating Extensions

In Section 2.4 we specialised app/3 for the call app(4, [b],C). If a partial evalu-
ator is fully self-applicable then it can specialise itself for performing a particular
specialisation, producing a generating extension. This process is the second Fu-
tamura projection. When specialising an interpreter the generating extension is
a compiler.

A generating extension for the append predicate can be created by calling
lix(lix(app(A,B,C),R) ,R1), creating a specialised specialiser for append.

/*Generated by Lixx/

:- dynamic flag/2, memo_table/2.

/* oldvalue__1(_5557,_5586) = oldvalue(_5557,_5586) */
oldvalue__1(A, B) :- flag(gensym(A), B), !.
oldvalue__1(_, 0).

/* set_flag__1(_7128,_7153) = set_flag(gensym(_7128),_7153) */

set_flag__1(A, B) :- retract(flag(gensym(A),_)), !,
asserta(flag(gensym(A),B)).

set_flag__1(A, B) :- asserta(flag(gensym(A),B)).

/* gensym__1(_4392) = gensym(app,_4392) */
gensym__1(A) :- var(A), oldvalue__1(app, B),

C is B+1,set_flag__1(app, C),

name(C, D), name(A, [97,112,112,95,95|D]).
/* Printing and Flatten Clauses removed to save space */



/* unfold__1(_6925,_6927,_6929,_6956) = unfold(app(_6925,_6927,_6929),_6956) */
unfold__1([], A, A, true).
unfold__1([A|B], C, [AID], E) :- memo__1(B, C, D, E).

/* memo__1(_2453,_2455,_2457,_2484) = memo (app(_2453,_2455,_2457),_2484) */
memo__1(A, B, C, D) :-
(  memo_table(app(A,B,C), D) -> true
;  gensym__1(E), F=..[E,G,H],
assert (memo_table(app(G,B,H) ,F)),
findall((F:-I), unfold__1(G,B,H,I), J),
format (’/*“k="k*/"n’, [F,app(G,B,H)]),
pretty_print_clauses__1(J),
memo_table(app(A,B,C), D)
).
/* lix__1(_1288,_1290,_1292,_1319) = lix(app(_1288,_1290,_1292),_1319) */
1lix__1(A, B, C, D) :- memo__1(A, B, C, D).

This is almost entirely equivalent to the proposed specialised unfolders in
[17,21]. Tt is actually slightly better as it will do flow analysis and only generate
unfolders for those predicates that are reachable from the query to be specialised.
Note the gensym/2 predicate is specialised to produce only symbols of the form
app--N. Generation of the above took 3.3 ms.

The generating extension for append can be used to specialise the append
predicate for different sets of static data. Calling the generating extension with
lix__1(A, [b],C,R) creates the same specialised version of the append predicate
as in seciton 2.4:

app__1([1, [bl).
app__1([AIB], [AIC]) :- app__1(B, C).

However using the generating extension is faster, for this small example 0.212
ms instead of 0.318 ms. Using a larger benchmark, unfolding (as opposed to
memoising) the append predicate for a 10,000 item list produces more dramatic
results. To generate the same code the generating extension takes 40 ms com-
pared to 990 ms for LIX. The overhead of creating the generating extension for
the larger benchmark is only 10 ms. Generating extensions can be very efficient
when a program is to be specialised multiple times with different static data.

4.2 Lix Compiler Generator

The third Futamura projection is realised by specialising the partial evalua-
tor to perform the second Futamura projection. By this process we obtain a
compiler generator (cogen for short), a program that transforms interpreters
into compilers. By specialising LIX to create generating extensions we create
LIX-COGEN, a self-applied compiler generator. This can be achieved with the
query 1ix(1lix(1ix(Call,R),R1),R2). An extract from the produced code is
now given:



/*unfold__13(Annotation, Generated Code, Specialisation Time) */
unfold__13(true, true, true).
unfold__13((A,B), (C,D), (E,F)) :-

unfold__13(4, C, E),

unfold__13(B, D, F).
unfold__13(logen(call,A), true, call(A)).
unfold__13(logen(rescall,A), A, true).

This has basically re-generated the 3-level cogen described in [17,21]. In the
rescall annotation for example, the call (A) will become part of the residual
program, and nothing (true) is performed at specialisation time.

This code extract demonstrates the importance of the nonvar annotation.
The annoated version of the original unfold/2 is now shown.

:— filter unfold(nonvar,dynamic) :unfold.

logen(unfold, unfold(X,Code)) :-
logen(unfold, ann_clause(_,X,B)),
logen(unfold, pe(B,Code)).

Without the nonvar annotation the first argument would be annotated dy-
namic as the arguments to the call being unfold may not be known at special-
isation time. This would produce a single generic unfolder predicate much like
the original 1ix. The nonvar annotation is needed to generate the specialised
unfolders.

The generated LIX-COGEN will transform an annotated program directly into
a generating extension, like the one found in section 4.1. However LIX-COGEN is
faster: to create the same generating extension from an input program of 1,000
predicates LIX-COGEN takes only 3.9 s compared to 100.9 s for LIX.

5 Comparison

Logen The LOGEN system is an offline partial evaluation system using the
cogen approach. Instead of using self-application to achieve the third Futamura
projection, the LOGEN compiler generator is hand written. LiX was derived from
LOGEN by rewriting it into a classical partial evaluation system. Using the second
Futamura projection and self-applying LIX produces almost identical generating
extensions to those produced by LOGEN (and both systems can in principle treat
full Prolog). Apart from the predicate names the specialised unfolders generated
by the two systems are the same:

app__u([],A,A,true). unfold__1([], A, A, true).
app__u([AIB],C,[AID],E) :- | unfold__1([A|B], C, [AID], E) :-
app__m(B,C,D,E) . memo__1(B, C, D, E).

LOGEN Generating Extension\LIX—COGEN Generating Extension

While LOGEN is a hand written compiler generator, LIX must be self-applied
to produce the same result as in Section 4.2. If we compare the LOGEN source
code to the output in Section 4.2 we find very similar clauses in the form of
body/3 (note however, that the order of the last two arguments is reversed).



body(true,true,true). unfold__13(true, true, true).

body ((G,GS), (G1,GS1), (V,VS)) :- unfold__13((A,B), (C,D), (E,F)) :-

body (G,G1,V), unfold__13(A, C, E),

body (GS,GS1,VS) . unfold__13(B, D, F).
body(logen(call,Call),Call,true). unfold__13(logen(call,A), true, call(A)).
body (logen(rescall,Call),true,Call).| unfold__13(logen(rescall,A), A, true).
LOGEN | LIX-COGEN

Unlike LIX, LOGEN does not perform flow analysis. It produces unfolders for all
predicates in the program, regardless of whether or not they are reachable.

Logimix and Sage Comparisons of the initial cogen with other systems such
as LOGIMIX, PADDY, and sP can be found in [17]. In essence, LOGEN was was 50
times faster than LOGMIX at producing the generating extensions (0.02 s instead
of 1.10 s or 0.02 s instead of 0.98 s) and the specialisation times were about
2 times faster. It is likely that a similar relationship holds between LIX and
LOGIMIX given that LIX and LOGEN have similar performance. Unfortunately
LOGIMIX no longer runs on current versions of SICStus Prolog and we were thus
unable to compare LIX and LOGIMIX directly. Similarly, Godel no longer runs
on current versions of SICStus Prolog, and hence we could not produce any
timings for SAGE. However, timings from [12] indicate that the use of the ground
representation means that SAGE is far too slow to be practical. Indeed, generating
the compiler generator took about 100 hours and creating a generating extension
for the examples in [12] took at least 7.9 hours. The speedups from using the
generating extension instead of the partial evaluator range from 2.7 to 3.6 but
the execution times for the generating extensions still ranged from 113 s to 447 s.

Multi-level Languages Our annotation scheme (for both LIX and LOGEN) can
be viewed as a two-level language. Contrary to MetaML [28] our annotations
are not part of the programming language itself (as we treat classical Prolog). It
would be interesting to investigate to what extent one could extend our scheme
for multiple levels of specialisation [11].

6 New Applications

Apart from the academic satisfaction of building a self-applicable specialiser, we
think that there will be practical applications as well. We elaborate on a few in
this section.

Several Versions of the Cogen In the development of new annotation and
specialisation techniques it is often useful to have a debugging specialisation
environment without incurring any additonal overhead when it is not required.
Using LIX we can produce a debugging or non-debugging specialiser from the
same base code, the overhead of debugging being specialised away when it is not
required. By augmenting LIX with extra options we can produce several versions
of the cogen depending on the requirements:



— a debugging cogen, useful if the specialisation does not work as expected

— a profiling cogen

— a simple cogen, whose generating extensions produce no code but which can
be fed into termination analysers or abstract interpreters to obtain informa-
tion to check the annotations.

We could also play with the annotations of LIX to produce more or less
aggressive specialisers, depending on the desired tradeoff between specialisation
time, size of the specialised code and the generating extensions, and quality of the
specialised code. This would be more flexible and maintainable than re-writing
LOGEN to accomodate various tradeoffs.

Extensions for Deforestation/Tupling LiX is more flexible than LOGEN:
we do not have to know beforehand which predicates are susceptible to being
unfolded or memoised. Hence, LIX can handle a potentially unbounded number
of predicates. Using this allows LIX to perform a simple form of conjunctive
partial deduction [5].

For example, the following is the well known double append example where
conjunctive partial deduction can remove the unnecessary intermediate datas-
tructure XY (this is deforestation):

doubleapp(X,Y,Z,XYZ) :- append(X,Y,XY), append(XY,Z,XYZ).
append([],L,L).
append ([H|X],Y,[H|Z]) :- append(X,Y,Z).

When annotating this example for LIX we can now simply annotate a con-
junction as memo (which is not allowed in LOGEN):

ann_clause(1,doubleapp(A,B,C,D), (memo((append(A,B,E),append(E,C,D))))).

Running LIX on this will produce a result where the intermediate datastruc-
ture has been removed (after post-processing, as in [5]):

doubleapp(4,B,C,D) :- doubleapp__0(A,B,C,D).
append__2([],B,B).

append__2([CID],E, [C|F]) :- append__2(D,E,F).
conj__1([1,[],B,B).

conj__1([1,[CID],E, [CIF]) :- append__2(D,E,F).
conj__1([G|H],I,J,[GIK]) :- conj__1(H,I,J,K).
doubleapp__0(B,C,D,E) :- conj__1(B,C,D,E).

For this example to work in LOGEN we would need to declare every possible
conjunction skeleton beforehand, as a specialised unfolder predicate has to be
generated for every such conjunction. LIX is more flexible in that respect, as it
can unfold a conjunction even if it has not been declared before.

We have also managed to deal with the rotate-prune example from [5], but
more research will be needed into the extent that the extra flexibility of LIX
can be used to do deforestation or tupling in practice. It should be possible, for
example, to find out whether there is a bounded number of conjunction skeletons
simply by self-application.



7 Conclusions and Future Work

We have presented an implemented, effective and surprisingly simple, self-applicable
partial evaluation system for Prolog and have demonstrated that the ground rep-
resentation is not required for a partial evaluation system to be self-applicable.
The LIX system can be used for the specialisation of non-trivial interpreters, and
we hope to extend the system to use more sophisticated binding types developed
for LOGEN.

While LIX and LOGEN essentially perform the same task, there are some
situations where a self-applicable partial evaluation system is preferrable. Lix
can potentially produce better generating extensions, using specialised versions
of gensym and performing some of the generalisation and filtering beforehand.
We have shown the potential for the use of LIX in deforestation, and in producing
multiple cogens from the same code. Tweaking the annotation of LiX allows the
cogen generation to be controlled. The overhead of a debugging cogen can be
removed or a more aggressive specialiser can be generated.

At present the annotations for L1X and LOGEN are placed by hand. We are still
working on a fully automatic binding time analysis (bta). The automatic bta will
be used with a graphical interface allowing the user to tweak the annotations.
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