
Tools for system validation with B abstract

machines⋆

Michael Butler1 and Michael Leuschel1,2 and Colin Snook1

1 School of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ, UK
{mjb,mal,cfs}@ecs.soton.ac.uk

2 Institut für Informatik, Heinrich-Heine Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf
leuschel@cs.uni-duesseldorf.de

February 2005

Abstract. In this paper we give an overview of some tools that we have
developed to support the application of the B Method. ProB is an an-
imation and model checking tool for the B method. ProB’s animation
facilities allow users to gain confidence in their specifications. ProB con-
tains a temporal and a state-based model checker, both of which can be
used to detect various errors in B specifications. We also overview a re-
cent extension of ProB that supports checking of specifications written
in a combination of CSP and B. Finally we describe the UML-B profile
and associated U2B tool that allows UML and B to be combined and is
intended to make modelling with B more appealing to software engineers.

1 Introduction

The B-method, originally devised by J.-R. Abrial [1], is a theory and method-
ology for formal development of computer systems. It is used by industries in
a range of critical domains, most notably railway control. B is based on the
notion of abstract machine and the notion of refinement. The variables of an
abstract machine are typed using set theoretic constructs such as sets, relations
and functions. Typically these are constructed from basic types such as integers
and given types from the problem domain (e.g., Name, User, Session, etc). The
invariant of a machine is specified using predicate logic. Operations of a machine
are specified as generalised substitutions, which allow deterministic and nonde-
terministic state transitions to be specified. There are two main proof activities

⋆ This research was carried out as part of EU research projects: IST-1999-11435 MA-
TISSE (Methodologies and Technologies for Industrial Strength Systems Engineer-
ing), IST-2000-30103 PUSSEE (Paradigm Unifying System Specification Environ-
ments for proven Electronic design) IST 511599 RODIN (Rigorous Open Develop-
ment Environment for Complex Systems), and the UK EPSRC funded ABCD (Au-
tomated Validation of Business Critical Systems with Component Based Designs).

in B: consistency checking, which is used to show that the operations of a ma-
chine preserve the invariant, and refinement checking, which is used to show that
one machine is a valid refinement of another. These activities are supported by
industrial strength tools, such as Atelier-B [16] and the B-toolkit [3].

In this paper we give an overview of some tools that we have developed to
support the application of the B Method. ProB is an animation and model
checking tool for the B method. ProB’s animation facilities allow users to gain
confidence in their specifications. ProB contains a temporal and a state-based
model checker, both of which can be used to detect various errors in B specifi-
cations. We also overview a recent extension of ProB that supports checking of
specifications written in a combination of CSP and B. CSP is a process algebra
defined by Hoare [7]. CSP provides operators such as sequential composition,
choice and parallel composition of processes, as well as synchronous communi-
cation between parallel processes. Finally we describe the UML-B profile and
associated U2B tool that allows UML and B to be combined and is intended to
make modelling with B more appealing to software engineers.

Section 2 gives an overview of the use of ProB for model checking of B spec-
ifications. Section 3 describes the use of ProB for model checking specifications
written in a combination of CSP and B. Section 4 describes the UML-B profile
and the U2B tool.

2 Overview of ProB

The ProB animator and model checker has been presented in [10]. Based on
Prolog, the ProB tool supports automated consistency checking of B machines
via model checking [5]. For exhaustive model checking, the given sets must be
restricted to small finite sets, and integer variables must be restricted to small
numeric ranges. This allows the checking to traverse all the reachable states of
the machine. ProB can also be used to explore the state space non-exhaustively
and find potential problems. The user can set an upper bound on the number
of states to be traversed or can interrupt the checking at any stage. ProB will
generate and graphically display counter-examples when it discovers a violation
of the invariant. ProB can also be used as an animator of a B specification. So,
the model checking facilities are still useful for infinite state machines, not as a
verification tool, but as a sophisticated debugging and testing tool.

The interactive proof process with Atelier-B or the B-Toolkit can be quite
time consuming. A typical development involves going through several levels of
refinement to code generation before attempting any interactive proof [8]. This
is to avoid the expense of reproving POs as the specification and refinements
change in order to arrive at a satisfactory implementation. We see one of the
main uses of ProB as a complement to interactive proof in that errors that
result in counterexamples should be eliminated before attempting interactive
proof. For finite state B machines it may be possible to use ProB for proving
consistency without user intervention. We also believe that ProB can be very
useful in teaching B, and making it accessible to new users. Finally, even for

2

experienced B users ProB may unveil problems in a specification that are not
easily discovered by existing tools.

2.1 Using ProB

MACHINE phonebook
SETS Name ; Code
VARIABLES db
DEFINITIONS scope_Name == 1..3; scope_Code == 4..6
INVARIANT db : Name +-> Code
INITIALISATION db := {}

OPERATIONS
cc <-- lookup(nn) = PRE nn : Name THEN cc:=db(nn) END;
add(nn,cc) = PRE nn:Name & cc:Code THEN db := db \/ { nn |-> cc} END

END

Fig. 1. Phonebook example in B

Figure 1 presents a simple B specification of a telephone directory mapping
names to phone codes using a partial function db. The name associated with
a code is retrieved using the lookup operation. Here, nn is an input parameter
representing the name being queried and cc is a return value of the operation
representing the code associated with nn. In the add operation, nn and cc are
input parameters and the effect of the operation is to add a mapping from nn

to cc to the directory db using set union.
The definitions in the DEFINITIONS clause of the phone book are used

to limit the size of the given sets Name and Code. Normally B definitions are
used to provide macros that can be included in several places in a machine.
Since the definitions scope Name and scope Code are not used elsewhere in the
machine, they do not affect the meaning of the specification as far as Atelier-B
or the B-Toolkit are concerned. However, they are accessed by the ProB tool,
acting as pragmas. In this case ProB will automatically enumerate the given
set Name with the symbolic values {Name1, Name2, Name3} and Code with
the symbolic values {Code4 ,Code5 ,Code6}. This has the effect of making the
state space finite for the purposes of model checking.

ProB provides two ways of discovering whether a machine violates its in-
variant:

1. it can find a sequence of operations that, starting from a valid initial state
of the machine, navigates the machine into a state in which the invariant
is violated. Trying to find such a sequence of operations is the task of the
ProB temporal model checker.

2. it can find a state of the machine which satisfies the invariant, but from
which we can apply a single operation to reach a state which violates the
invariant. Finding such states is the task of the ProB state-based model

checker.

3

db={}

initialise_machine

db(Name1,Code4)

add(Name1,Code4)

db(Name1,Code5),db(Name1,Code4)

add(Name1,Code5)

(a) Invariant Violation

(db={})

initialise_machine

ABORT

lookup(Name1)

(b) Abort conditon

Fig. 2. Temporal counter examples for the Phonebook Machine

4

Figure 2 presents two counterexamples resulting from performing a temporal
check on the phone book specification using ProB. Figure 2(a) is a counterex-
ample that results in two different mappings from Name1 being present in db.
This violates the invariant which specifies that db is a partial function. In the
diagram, the transitions are operation occurrences, the nodes are states and the
final rectangular state is the state that violates the invariant. This error can be
fixed by strengthening the precondition of the add operation to say nn 6∈ dom(db)
or by using the function over-ride operator instead of set union.

Figure 2(b) is a counterexample which arises from trying to do a lookup when
db is empty. This causes an attempt to evaluate an undefined expression which
leads to a special state called ABORT . This error can be fixed by strengthen-
ing the precondition of the lookup operation to say nn ∈ dom(db). Although
not shown in the diagram, ProB will show which expression evaluation causes
the abort through the interactive interface, i.e., it will show that there was an
attempt to evaluate {}(nn).

3 Combining B and CSP in ProB

In the Event B approach [2], a B machine is viewed as a reactive system that
continually executes enabled operations in an interleaved fashion. This allows
parallel activity to be easily modelled as an interleaving of operation executions.
However, while B machines are good at modelling parallel activity, they can be
less convenient at modelling sequential activity. Typically one has to introduce
an abstract ‘program counter’ to order the execution of actions. This can be
a lot less transparent than the way in which one orders action execution in
process algebras such as CSP [7]. CSP provides operators such as sequential
composition, choice and parallel composition of processes, as well as synchronous
communication between parallel processes.

Our motivation is to use CSP and B together in a complementary way. B can
be used to specify abstract state and can be used to specify operations of a system
in terms of their enabling conditions and effect on the abstract state. CSP can
be used to give an overall specification of the coordination of operations. To
marry the two approaches, we take the view that the execution of an operation
in a B machine corresponds to an event in CSP terms. Semantically we view
a B machine as a process that can engage in events in the same way that a
CSP process can. The meaning of a combined CSP and B specification is the
parallel composition of both specifications. The B machine and the CSP process
must synchronise on common events, that is, an operation can only happen in
the combined system when it is allowed both by the B and the CSP. There is
much existing work on combining state based approaches such as B with process
algebras such as CSP and we review some of that in a later section.

In [9] we presented the CIA (CSP Interpreter and Animator) tool, a Prolog
implementation of CSP. As both ProB and CIA are implemented in Prolog,
we were provided with a unique opportunity to combine these two to form a
tool that supports animation and model checking of specifications written in a

5

combination of CSP and B. We envisage two main uses of the combined tool.
Firstly it can be used to animate and model check specifications which are a
combination of B and CSP. We illustrate this below. The second use of the
tool is to analyse trace properties of a B machine. In this case the behaviour
is fully specified in B, but we use CSP to specify some desirable or undesirable
behaviours and use ProB to find traces of the B machine that exhibit those
behaviours. More details may be found in [4].

3.1 Specifying using B and CSP

In this section we illustrate the use of a combination of B and CSP to specify a
system. The example we use to illustrate this concerns a service for distributing
tokens to customers via offices and is based on [6]. The B part of our specification
models a database mapping customers to the number of available tokens (Fig-
ure 3). It provides operations for creating and deleting customers which add or
remove mappings for a customer to or from the database. There are operations
for allocating a token to a customer as well as operations for requesting tokens
and collecting tokens. Requesting tokens has no effect on the database. If there
is more than one token available for a customer, the number of tokens returned
is nondeterministically chosen to be less than or equal to the number of tokens
available for that customer.

MACHINE Tokens

SETS
OFFICE = {o1, o2};
CUST = {c1, c2, c3}

CONSTANTS mx

PROPERTIES mx ∈ N ∧ mx = 3
VARIABLES tokens

INVARIANT tokens ∈ CUST 7→ (0..mx)

INITIALISATION tokens := {}

OPERATIONS

AddCust(cc)=̂
PRE cc ∈ CUST ∧ cc 6∈ dom(tokens)
THEN tokens := tokens ∪ {cc 7→ 0}
END;

RemCust(cc) =
PRE cc ∈ CUST

THEN tokens := {cc} ¢− tokens

END;

AllocToken(cc) =
PRE cc ∈ CUST ∧ cc ∈ dom(tokens)
SELECT tokens(cc) < mx THEN

tokens(cc) := tokens(cc) + 1 END
END;

ReqToken(cc, pp) =
PRE cc ∈ CUST ∧ pp ∈ OFFICE

THEN skip

END;

toks ←− CollectToken(cc, pp) =
PRE cc ∈ CUST ∧ pp ∈ OFFICE ∧

cc ∈ dom(tokens)
THEN

IF tokens(cc) = 0
THEN toks := 0
ELSE

ANY nn WHERE nn : N∧
1 ≤ nn ∧ nn ≤ tokens(cc)

THEN toks := nn ||
tokens(cc) := tokens(cc) − nn

END END END

Fig. 3. Tokens B machine

6

The finiteness of the sets OFFICE and CUST in Figure 3 is required for
exhaustive model checking. Finiteness is also impose by restricting the maxi-
mum number of tokens allocated to a customer using the constant mx. The
AllocToken operation is guarded to ensure that this allocation is never exceeded.

We wish to impose a certain coordination protocol on the operations of the
system in Figure 3. Operations such as CollectToken and AllocToken should
only be available after a customer has been added to the system. Furthermore,
before a customer can collect tokens, they must first request those tokens at an of-
fice. This coordination is described by the CSP process MAIN of Figure 3. This
process consists of three parallel instances of the Cust process, one for each cus-
tomer. In a Cust process, AddCust is the only operation available initially. Once
AddCust has been performed, allocation and collection of tokens can proceed
in parallel, modelled by the process (Collection(C)[|RemCust|]Allocation(C)).
Collection and allocation synchronise on the RemCust event because both are
terminated by this event. Collection of tokens by a customer is intended to take
place at offices to which customers have access. Before customers can collect to-
kens from an office, they must first request tokens at that office via a ReqToken

operation. Only then can they collect some (or all) of the tokens available for
them. The definition of Collection also ensures that a customer cannot be re-
moved in between requesting some tokens and collecting those tokens.

MAIN = Cust(c1) ||| Cust(c2) ||| Cust(c3)

Cust(C) = AddCust.C → (Collection(C)[|RemCust|]Allocation(C)) ; Cust(C)

Collection(C) = (ReqToken.C?O → CollectToken.C.O → Collection(C)

2 RemCust.C → SKIP)

Allocation(C) = (AllocToken.C → Allocation(C)

2 RemCust.C → SKIP)

Fig. 4. Tokens CSP equations

The overall behaviour of the service is determined by the parallel composi-
tion of the B and CSP parts. In this case, the CSP specification ensures that
the AddCust operation must be invoked before any of the other operations are
allowed, and that tokens must be requested before they can be collected. The
ProB tool allows the combined specification to be animated so that the overall
behaviour can be explored interactively.

Now consider the preconditions of the operations of Figure 3. The AddCust

operation has cc 6∈ dom(tokens) as a precondition, while the AllocToken and

7

CollectToken operations have cc ∈ dom(tokens) as a precondition. The precon-
ditions represent assumptions about the conditions under which these operations
will be invoked but are not enforced by the B machine on its own. Normally,
when checking the consistency of a B machine using ProB, operation precon-
ditions are used to restrict the reachable states by treating them in exactly the
same way as operation guards. This form of checking detects no errors in the
machine of Figure 3. An alternative form of checking can be applied in ProB

which treats a violation of a precondition as an error. That is, an error is raised
if a machine can reach a state which violates an operation precondition. With
this second form of model checking, when the machine of Figure 3 is checked, an
error is detected straightaway because the initial state violates the preconditions
of AllocToken and CollectToken. However, when this form of checking is ap-
plied to the combined B and CSP specification, no violation of preconditions is
detected by ProB. This is because the CSP enforces an order on the invocation
of the operations which guarantees that the preconditions are always satisfied.

4 Combining B and UML

The UML-B [14] is a profile of UML that defines a formal modelling notation. It
has a mapping to, and is therefore suitable for translation into, the B language.
UML-B consists of class diagrams with attached statecharts, and an integrated
constraint and action language, called µB, based on the B AMN notation. UML-
B provides a diagrammatic, formal modelling notation based on UML. The pop-
ularity of the UML enables UML-B to overcome some of the barriers to the
acceptance of formal methods in industry. Its familiar diagrammatic notations
make specifications accessible to domain experts who may not be familiar with
formal notations. UML-B consists of:

– A subset of the UML - including packages, class diagrams and state charts
– Specialisations of these features via stereotypes and tagged values,
– Structuring mechanisms (systems, components and modules) based on spe-

cialisations of UML packages
– UML-B clauses - a set of textual tagged values to define extra modelling

features for UML entities,
– µB - an integrated action and constraint language based on B,
– Well-formedness rules

The UML-B profile uses stereotypes to specialise the meaning of UML enti-
ties, thus enriching the standard UML notation and increasing its correspondence
with B concepts. The UML-B profile defines tagged values (UML-B clauses) that
may be used to attach details, such as invariants and guards, that are not part
of the standard UML. Many of these clauses correspond directly with those of
B providing a ’fallback’ mechanism for modelling directly in B when UML enti-
ties are not suitable. Other clauses, having no direct B equivalent, are provided
for adding specific UML-B details to the modelling entities. UML-B provides a
combined diagrammatic and textual, formal modelling notation. It has a well

8

defined, formal semantics as a direct result of its mapping to B. UML-B hides
B’s infrastructure and packages mathematical constraints and action specifica-
tions into small sections each being presented in the context of its owning UML
entity.

The U2B [13] translator converts UML-B models into B components (ab-
stract machines and their refinements). Translation from UML-B into B enables
the existing B tools to be utilised. In many respects B components resemble an
encapsulation and modularisation mechanism suitable for representing classes.
A component encapsulates variables that may only be modified by the opera-
tions of the component. However, to ensure compositionality of proof, B imposes
restrictions on the way variables can be modified by other components (even via
local operations). Translating classes into B components imposes correspond-
ing restrictions on the relationships between classes. Therefore we translate a
complete UML package (i.e. many classes and their relationships) into a single
B machine or refinement. This option allows unconstrained (non-hierarchical)
class relationship structures to be modelled. Since the B language is not object-
oriented, class instances must be modelled explicitly. Attributes and associations
are translated into variables whose type is a function from the class instances to
the attribute type or associated class. For example a class A with attribute x of
type X would generate the following B:

SETS A

VARIABLES x

INVARIANT x ∈ A → P(X)

Any reference to x in a µB constraint or action will usually refer to the at-
tribute of some implicit instance. In the translation to B, the implicit instance
is made explicit (thisA) and a reference to x is replaced by function application
x(thisA). The full function representing an attribute or association x may be
accessed directly by referring to $x. In the above case, the class A is assumed to
have a fixed number of instances (multiplicity n in UML terms). If a class can
have a varying number of instances (multiplicity 0..n in UML terms), then the
translation would be:

SETS A SET

VARIABLES A, x

INVARIANT A ⊆ A SET ∧ x ∈ A → P(X)

Here the varying set of instances is modelled by the variable A which is a subset
of the larger type A SET .

Operation behaviour may be represented textually in µB, as a state chart
attached to the class, or as a simultaneous combination of both. Further details
of UML-B are given in [13]. Examples of previous case studies using UML-B and
U2B are given in [11–13, 15].

To give a flavour of UML-B, consider the specification of a telephone book
in Figure 5. The classes, NAME and NUMB represent people and telephone
numbers respectively. The association role, pbook, represents the link from each

9

name to its corresponding telephone number. Multiplicities on this association
ensure that each name has exactly one number and each number is associated
with, at most, one name (i.e., the relationship is injective). The figure also shows
µB conditions and actions for the operations. The add operation of class NAME

has the stereotype create which means that it adds a new name to the class. It
takes a parameter numb, which must be an instance of the class, NUMB, but
not already used in a link of the association pbook (see µB operation guard), and
uses this as the pbook link for the new instance (see µB operation action). The
figure also shows the multiplicities of the NAME and NUMB classes. The set
of instances of NUMB is assumed to be fixed (multiplicity n) while the set of
instances of NAME is variable (multiplicity 0..n). The resulting B generated by
U2B is shown in Figure 6. This generated B specification is suitable for animation
and model checking by the ProB tool.

NUMB

NAME

<<create>> add(numb : NUMB)
<<destroy>> remove()
lookup() : numb

10..1

+pbook

10..1

operation guard action

add numb 6∈ ran($pbook) pbook := numb

remove - -
lookup - numb := pbook

class multiplicity

NAME 0..n
NUMB n

Fig. 5. UML-B model of a telephone book

5 Concluding

We have presented the ProB animation and model checking tool for the B
method. Our view is that ProB is a valuable complement to the usual theorem
prover based development in B. Wherever possible there is value in applying
model checking to a size-restricted version of a B model before attempting semi-
automatic deductive proof. While it still remains to be seen how ProB will scale
for very large B machines, we have demonstrated its usefulness on medium sized
specifications. We also believe that ProB could be a valuable tool to teach be-
ginners the B method, allowing them to play and debug their first specifications.
ProB’s animation facilities have allowed our users to gain confidence in their
specifications, and has allowed them to uncover errors that were not easily dis-
covered by Atelier-B. ProB’s model checking capabilities have been even more

10

MACHINE Phone

SETS NAME_SET; NUMB

DEFINITIONS

invariant == (NAME:POW(NAME_SET) &

pbook : NAME >-> NUMB)

VARIABLES NAME, pbook

INVARIANT invariant

INITIALISATION

NAME, pbook :(invariant &

NAME={} & pbook = {})

OPERATIONS

Return <-- add (numb) =

PRE numb:NUMB THEN

ANY thisNAME WHERE

thisNAME : NAME_SET & thisNAME/:NAME & numb:NUMB & numb/:ran(pbook)

THEN

NAME := NAME\/{thisNAME} ||

Return := thisNAME ||

pbook(thisNAME):=numb

END

END ;

remove (thisNAME) =

PRE thisNAME:NAME

THEN

NAME := NAME-{thisNAME} ||

pbook := {thisNAME} <<| pbook

END;

numb <-- lookup (thisNAME) =

PRE thisNAME:NAME

THEN numb:=pbook(thisNAME)

END

END

Fig. 6. B generated from UML-B model by U2B

11

useful, finding non-trivial counter examples and allowing one to quickly converge
on a consistent specification.

The combined model checker for CSP and B as an enhancement of the exist-
ing ProB checker allowing for automated consistency checking of specifications
written in a combination of CSP and B. We have shown how ProB can now be
used to automatically check consistency between B and CSP specifications (i.e.,
checking that no B preconditions are ever violated). Though not described in this
paper, ProB also supports refinement checking between B models and between
combinations of CSP and B. Further work is required to enhance the scalability
of the model checking approach, especially for refinement checking (although
some quite large, realistic specifications have already been successfully verified).

Regarding UML-B and U2B, the emergence of the UML as a de-facto stan-
dard for object-oriented modelling has been mirrored by the success of the B
method as a practically useful formal modelling technique. The two notations
have much to offer each other. The UML provides an accessible visualisation of
models facilitating communication of ideas but lacks formal precise semantics.
B, on the other hand, has the precision to support animation and rigorous verifi-
cation but many software engineers find the notation difficult to learn, visualise
and communicate. Our experience has been that there is an encouraging level
of interest in UML-B from industry. The interest is mainly from companies that
are investigating formal methods but not using them. Their reaction is that they
would probably not use B in its current (textual) form but they may consider
using UML-B as it becomes more mature and usable. They view the UML ba-
sis of UML-B as providing a more understandable and visible route into using
formal specifications. Several of our industrial contacts are keenly participat-
ing in ongoing research into the development of UML-B and U2B. Furthermore
the combination of ProB and U2B provides a route to animation and model
checking of UML-B models, further enhancing the attraction of UML-B.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

2. J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In D. Bert,
editor, Second International B Conference, April 1998.

3. B-Core (UK) Limited. B-toolkit manuals. Oxon, UK, www.b-core.com, 1999.

4. M. Butler and M. Leuschel. Combining CSP and B for Specification and Prop-
erty Verification. Technical report, School of Electronics and Computer Science,
University of Southampton, 2005. eprints.ecs.soton.ac.uk/10388/.

5. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

6. P. Hartel, M. Butler, A. Currie, P. Henderson, M. Leuschel, A. Martin, A. Smith,
U. Ultes-Nitsche, and B. Walters. Questions and answers about ten formal meth-
ods. In Proc. 4th Int. Workshop on Formal Methods for Industrial Critical Systems,
Trento, Italy, Jul 1999. http://www.dsse.ecs.soton.ac.uk/techreports/99-1.html.

7. C.A.R. Hoare. Communicating Sequential Processes. Prentice–Hall, 1985.

8. J-L Lanet. The use of B for Smart Card. In Forum on Design Languages (FDL02),
September 2002.

12

9. M. Leuschel. Design and implementation of the high-level specification language
CSP(LP) in Prolog. In I. V. Ramakrishnan, editor, Proceedings of PADL’01, LNCS
1990, pages 14–28. Springer-Verlag, March 2001.

10. M. Leuschel and M. Butler. ProB: A Model Checker for B. In Keijiro Araki,
Stefania Gnesi, and Dino Mandrioli, editors, Proceedings FME 2003, Pisa, Italy,
LNCS 2805, pages 855–874. Springer, 2003.

11. C. Snook and M. Butler. Verifying Dynamic Properties of UML Models by Trans-
lation to the B Language and Toolkit. In Proceedings of UML 2000 Workshop,
Dynamic Behaviour in UML Models: Semantic Questions, 2000.

12. C. Snook and M. Butler. Using a graphical design tool for formal specification.
In Proceedings of the 13th Annual Workshop of the Psychology of Programming
Interest Group (PPIG), 2001.

13. C. Snook and M. Butler. U2B - A tool for translating UML-B models into B.
In J. Mermet, editor, UML-B Specification for Proven Embedded Systems Design.
Springer, 2004.

14. C. Snook and M. Butler. UML-B: Formal modelling and design aided by UML.
Technical report, School of Electronics and Computer Science, University of
Southampton, 2004. eprints.ecs.soton.ac.uk/10169/.

15. C. Snook and K. Sandstrom. Using UML-B and U2B for formal refinement of
digital components. In Proceedings of Forum on specification and design languages
(FDL03), 2003.

16. Steria. Atelier B, User and Reference Manuals. Aix-en-Provence, France,
http://www.atelierb.societe.com/index uk.html, 1996.

13

