
The Rodin Formal Modelling Tool1
Michael Butler and Stefan Hallerstede

University of Southampton
United Kingdom

{M.J.Butler, sth}@ecs.soton.ac.uk

Abstract

We present a software tool, the Rodin tool, for formal modelling in Event-B. Event-
B is a notation and method developed from the B-Method and is intended to be
used with an incremental style of modelling. The idea of incremental modelling has
been taken from programming: modern programming languages come with integrated
development environments that make it easy to modify and improve programs. The
Rodin tool provides such an environment for Event-B.
The two main characteristics of the Rodin tool are its ease of use and its extensibility.
The tool focuses on modelling. It is easy to modify models and try out variations of a
model. The tool can also be extended easily. This will make it possible to adapt the tool
specific needs. So the tool can be adapted to fit into existing development processes
instead demanding the opposite. We believe that these two characteristics are major
points for industrial uptake.

Keywords: Event-B, formal modelling, modelling tool

1. INTRODUCTION

We consider modelling of software systems and more generally of complex systems to be an
important development phase. We also believe that more complex models can only be written
when the method of stepwise refinement [9] is used. Formal notation is indispensable in such a
modelling activity. It provides the foundation on which building models can be carried out. Simply
writing a formal text is insufficient, though, to achieve a model of high quality. The only serious
way to analyse a model is to reason about it, proving in a mathematically rigorous way that all
required properties are satisfied.

This short paper is organised as follows. In Section 2 we briefly describe Event-B. In Section 3
the Rodin tool for Event-B is presented. It is heavily inspired by modern programming tools. In
Section 4 the need for extensibility and configurability is discussed and some extensions of the
Rodin tool are presented. Section 5 gives an indication of the industrial relevance of Event-B and
the Rodin tool.

2. THE EVENT-B METHOD AND NOTATION

Event-B [7] is a formalism and method for discrete systems modelling. It has been developed from
the B-Method [1] using many ideas of Action Systems [8]. The semantics of an Event-B model
is characterised by proof obligations. In fact, proof obligations have a two-fold purpose. On the
one hand, they show that a model is sound with respect to some behavioural semantics. On the
other hand, they serve to verify properties of the model. This goes so far that we only focus on the
proof obligations and do not present a behavioural semantics at all. This approach permits us to
use the same proof obligations for very different modelling domains, e.g., reactive, distributed and
concurrent systems [6], sequential programs [3], electronic circuits [16], or mixed designs [2], not
being constrained to semantics tailored to a particular domain. Event-B is a calculus for modelling
that is independent of the various models of computation.
1This research was carried out as part of the EU research project IST 511599 RODIN (Rigorous Open Development
Environment for Complex Systems) http://rodin.cs.ncl.ac.uk.

BCS-FACS Christmas 2007 Meeting 1



The Rodin Formal Modelling Tool

3. BORROWING IDEAS FROM PROGRAMMING TOOLS

In order for formal modelling to be used safely and effectively in engineering practice, good tool
support is necessary. Present day integrated development environments used for programming
do carry out many tasks automatically in the background, e.g. Eclipse [13, 15], and provide fast
feedback when changes are made to a program text. In particular, there is no need for the user to
start processes like compilation. A program is written and then run or debugged without compiling
it. In the Rodin project (IST 511599 RODIN) a tool for Event-B [7], called Rodin [4], has been
developed that applies these techniques used in programming to formal modelling. The Rodin
tool is implement on top of the Eclipse platform [13]. Instead of compilation, we are interested
in proof obligation generation and automatically discharging trivial proof obligations. Instead of
running a program we reason about models or analyse them. A dedicated web page

http://www.event-b.org/

provides information on Event-B and the Rodin tool and download instructions for the tool.

Verification by proof is not restricted to modelling. It has a long tradition in programming
methodology, too, e.g. [17]. Software tools that support formal verification methods in
programming have been developed, e.g. [11]. We mention [11], in particular, because the Boogie
architecture presented in that article provides characteristics similar to the Event-B tool. We quote
two points from [11] about Boogie and present our view of them:

(1) “Design-Time Feedback”. The tool is very responsive and provides almost immediate
feedback that easily relates to the program, (resp. model).

(2) “Distinct Proof Obligation Generation and Verification phases”. This allows decoupling the
development of the programming (resp. modelling) method and prover technologies. It also
allows the origin of a proof obligation to be traced easily. This is particularly important when
proofs fail.

The third point in the list describing Boogie in [11] is “Abstract Interpretation and Verification
Condition Generation”. The corresponding problem does not exist in the Event-B notation because
it has been designed to be very close to the proof obligations by means of which we reason about
Event-B. Technical difficulties encountered in Event-B stem more from the support of refinement
and from the requirement that proof obligations appear transparent to the user. By transparency
we mean that the user should look at the proof obligation as being part of the model. When a
proof obligation cannot be proved, it should be almost obvious what needs to be changed in the
model. When modelling, we usually do not simply represent some system in a formal notation
but we learn about the system. This means we need support for the incremental approach taken
to programming; the tool must be responsive to changes made to models. In programming this
is essential during debugging and unit testing. When modelling we use formal proof instead of
debugging and testing but need the same fast feedback. Figure 1 shows two default perspectives

Project

Explorer

Editor

Problem

View

Outline

(a) Modelling Perspective

Proof Goal

Proof Control

Selected

Hypotheses

Proof

Obligations

Tree

Proof

(b) Proving Perspective

FIGURE 1: Default Perspectives of Rodin

of the Rodin tool: 1a the default modelling perspective, 1b the proving perspective. Perspectives

BCS-FACS Christmas 2007 Meeting 2



The Rodin Formal Modelling Tool

are an Eclipse technique to create and store configurations of the user interface. The user can
create own configurations that may better serve his needs.

4. EXTENSIBILITY AND CONFIGURABILITY OF RODIN

We take the view that no one tool can solve all development needs and that it is important to apply
a range of tools in a complementary way in rigorous development. For example, it makes sense
to apply model checking as a pre-filter, before applying a theorem prover to a proof obligation.
Similarly the use of diagrammatic views (e.g., UML) of a formal model can aid with construction
and validation. Many analysis tools, such as model checkers, theorem provers, translation tools
(e.g., UML to B and code generators), have been developed, some of which are commercial
products and some research tools. However a major drawback of these tools is that they tend to
be closed and difficult to use together in an integrated way. They also tend to be difficult to extend
for other interested parties and hinder collaboration. The Rodin tool greatly extends the state of the
art in formal methods tools, allowing multiple parties to integrate their tools as plug-ins to support
rigorous development methods. This is likely to have a significant impact on future research in
formal methods tools and will encourage greater industrial uptake of these tools. Table 1 shows
some plug-ins for the Rodin tool that are presently available.

Name Description
B4free provers Provider: ClearSy

Function: Theorem provers
Web: http://www.b4free.com/index.html

Brama Provider: ClearSy
Function: Animation of B models. The purpose is twofold:

(1) experimentation with a model to observe states and transitions
(2) Flash animation of Event-B models

Web: http://www.brama.fr/index en.html
UML-B Provider: University of Southampton

Function: UML-like graphical front-end for Event-B supporting class
diagrams and state charts
Web: http://users.ecs.soton.ac.uk/cfs/umlb.html

ProB Provider: University of Düsseldorf
Function: Animation and Model-checking of Event-B models; Counter-
examples for false proof goals, in particular, proof obligations
Web: http://www.stups.uni-duesseldorf.de/ProB/overview.php

TABLE 1: Some Available Plug-ins for Rodin

As well as supporting the combination of different complementary tools, openness and
customisability is very important in that it will allow users to customise and adapt the basic tools to
their particular needs. For example, a car manufacturer using Event-B to study the overall design
of a car information system might be willing to plug some special tools able to help defining the
corresponding documentation and maintenance package. Likewise, a rocket manufacturer using
Event-B might be willing to plug a special tool for analysing and developing the failure detection
part of its design.

5. INDUSTRIAL APPLICATIONS AND CASE STUDIES

The B-Method has a long history of successful industrial applications [10, 14]. Tools, such as,
Atelier B [12], Click’n’Prove [5], and the B-Toolkit [18] are available and in use. The Rodin tool
is still at an early stage but we have some experience with its use from case studies carried out
in the Rodin project and porting models produced with previous tools (mostly Click’n’Prove) to
Rodin.

BCS-FACS Christmas 2007 Meeting 3



The Rodin Formal Modelling Tool

The Rodin project included five industrial case studies that served to validate the tool set and
helped with the elaboration of an appropriate methodology for using the tools. The case studies
were lead by industrial partners of the Rodin project supported by the other partners. The case
studies were as follows:

• a failure management system for an engine controller

• part of a platform for mobile Internet technology

• engineering of communications protocols

• an air-traffic display system

• an ambient campus application

Further details can be found in [20]. The air-traffic display system case study is also described in
[19].

Some previous developments, e.g., [10] require special support for software development: means
to express software modules and tools to refine certain modules automatically. Corresponding
plug-ins have not yet been developed. There is no theoretical or practical reason why this could
not be done. However, it will still require some time until a good set of stable plug-ins is available
for this purpose. The core of the Rodin tool has intentionally not been geared towards a particular
application in order to make very different uses possible, not just software development.

6. CONCLUSION

We believe that modelling will remain difficult. This does not mean, however, that it is impossible
to develop a productive modelling tool. Programming is difficult, too. Still we have very efficient
programming tools. But we also have many people who simply got used to the difficulties of
programming. Hopefully, they will also get used to the difficulties of modelling when appropriate
tools are available.

The Rodin tool provides a seamless integration between modelling and proving. This is important
for the user to focus on the modelling task and not on switching between different tools. The
purpose of modelling is not just to write a specification. It also serves to improve our understanding
of the system being modelled. The Event-B tool tries to reflect this view by providing a lot of help
for exploring a model and reasoning about it.

The tool is extensible and configurable because we cannot predict future uses of Event-B. The
architecture has been designed to make this as easy as possible to invite anyone who needs a
(formal) modelling tool to tailor it to his needs. We hope this will make it possible to employ the
tool in very different development processes.

ACKNOWLEDGEMENTS

We would like to thank all members of the Rodin project who have contributed to the Rodin
tool, especially, Jean-Raymond Abrial, Thai Son Hoang, Cliff Jones, Thierry Lecomte, Michael
Leuschel, Farhad Mehta, Christophe Métayer, Colin Snook, François Terrier, and Laurent Voisin.

REFERENCES

[1] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[2] Jean-Raymond Abrial. Event driven system construction, 1999.
[3] Jean-Raymond Abrial. Event based sequential program development: Application to

constructing a pointer program. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors,
FME 2003: Formal Methods, volume 2805 of LNCS, pages 51–74. Springer, 2003.

BCS-FACS Christmas 2007 Meeting 4



The Rodin Formal Modelling Tool

[4] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An open
extensible tool environment for Event-B. In Z. Liu and J. He, editors, ICFEM 2006, volume
4260, pages 588–605. Springer, 2006.

[5] Jean-Raymond Abrial and Dominique Cansell. Click’n’Prove: Interactive Proofs within Set
Theory. In Theorem Proving in Higher Order Logics, volume 2758 of LNCS, pages 1–24,
2003.

[6] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically proved and
incremental development of IEEE 1394 tree identify protocol. Formal Aspects of Computing,
14(3):215–227, 2003.

[7] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition and Instantiation
of Discrete Models: Application to Event-B. Fundamentae Informatica, 77(1-2), 2007.

[8] Ralph-Johan Back. Refinement Calculus II: Parallel and Reactive Programs. In J. W.
deBakker, W. P. deRoever, and G. Rozenberg, editors, Stepwise Refinement of Distributed
Systems, volume 430 of Lecture Notes in Computer Science, pages 67–93, Mook, The
Netherlands, May 1989. Springer-Verlag.

[9] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer-Verlag, 1998.

[10] Frédéric Badeau and Arnaud Amelot. Using B as a high level programming language in an
industrial project: Roissy VAL. In Helen Treharne, Steve King, Martin Henson, and Steve
Schneider, editors, ZB 2005, volume 3455 of LNCS, pages 334–354, 2005.

[11] Mike Barnett, Bor-Yuh Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. Boogie:
A Modular Reusable Verifier for Object-Oriented Programs. In FMCO 2005, volume LNCS.
Springer-Verlag, 2005. to appear.

[12] Clearsy. Atelier B tool homepage. http://www.atelierb.societe.com/.
[13] Eclipse. Eclipse platform homepage. http://www.eclipse.org/.
[14] Didier Essamé and Daniel Dollé. B in large-scale projects: The canarsie line CBTC

experience. In Jacques Julliand and Olga Kouchnarenko, editors, B, volume 4355 of Lecture
Notes in Computer Science, pages 252–254. Springer, 2007.

[15] Erich Gamma and Kent Beck. Contributing to Eclipse. Addison Wesley, 2003.
[16] Stefan Hallerstede. Parallel hardware design in B. In Didier Bert, Jonathan P. Bowen, Steve

King, and Marina A. Waldén, editors, ZB, volume 2651 of LNCS, pages 101–102. Springer,
2003.

[17] James C. King. A new approach to program testing. In Proceedings of the international
conference on Reliable software, pages 228–233, New York, NY, USA, 1975. ACM Press.

[18] B-Core(UK) Ltd. B-Toolkit homepage. http://www.b-core.com/btoolkit.html.
[19] Abdolbaghi Rezazadeh, Neil Evans, and Michael Butler. Redevelopment of an Industrial

Case Study Using Event-B and Rodin. In BCS-FACS Christmas 2007 Meeting, 2007.
[20] RODIN. Deliverable D18: Intermediate report on case study developments.

http://rodin.cs.ncl.ac.uk/D18.pdf.

BCS-FACS Christmas 2007 Meeting 5


