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Abstract. Typical modern dynamic languages have a growing number
of implementations. We explore the reasons for this situation, and the
limitations it imposes on open source or academic communities that
lack the resources to fine-tune and maintain them all. It is sometimes
proposed that implementing dynamic languages on top of a standardized
general-purpose object-oriented virtual machine (like Java or .NET)
would help reduce this burden. We propose a complementary alternative
to writing custom virtual machine (VMs) by hand, validated by the
PyPy project: flexibly generating VMs from a high-level “specification”,
inserting features and low-level details automatically – including
good just-in-time compilers tuned to the dynamic language at hand.
We believe this to be ultimately a better investment of efforts than
the development of more and more advanced general-purpose object
oriented VMs. In this paper we compare these two approaches in detail. 1

1 Introduction

Dynamic languages are traditionally implemented by writing a virtual machine
(VM) for them in a low-level language like C or in a language that can relatively
easily be turned into C. The VM implements an object model supporting the high
level dynamic language’s objects. It typically provides features like automatic
garbage collection. Recent languages like Python, Ruby, Perl and JavaScript
have complicated semantics which are most easily mapped to a naive interpreter
operating on syntax trees or bytecode; simpler languages2 like Lisp, Smalltalk
and Self typically have more efficient implementations based on code generation.

The effort required to build a new virtual machine is relatively large. This is
particularly true for languages which are complicated and in constant evolution.

1 This research was partially supported by the EU funded project: IST 004779 PyPy
(PyPy: Implementing Python in Python).

2 In the sense of the primitive semantics. For example, in Python most primitive op-
erations have complicated semantics; by contrast, in Common Lisp complex features
like the reader and printer can in theory be implemented in terms of simpler primi-
tives as library code.
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Language implementation communities from an open-source or academic con-
text have only limited resources. Therefore they cannot afford to have a highly
complex implementation and often choose simpler techniques even if that entails
lower execution speed. Similarly, fragmentation (for example because of other
implementations of the same language) is a problem because it divides available
resources. All these points also apply to the implementation of domain-specific
languages where it is important to keep the implementation effort small.

For these reasons writing a virtual machine in C is problematic because it
forces the language implementer to deal with many low-level details (like garbage
collection and threading issues). If a language becomes popular, limitations of
the C implementation eventually lead to alternative implementations which draw
resources from the reference implementation. An alternative to writing imple-
mentations in C is to build them on top of one of the newer general-purpose
object-oriented virtual machines (“OO VM”) such as the JVM (Java Virtual
Machine) or the CLR (Common Language Runtime of the .NET framework).
This is often wanted by the community anyway, since it leads to the ability to
re-use the libraries of these platforms. However, if a C implementation existed
before the implementation of such a VM is started, this enters into conflict with
the goal of having to maintain essentially a single, simple enough implementa-
tion for a given programming language: as the language becomes popular, there
will be a demand to have it run on various platforms – high-level VMs as well
as C-level environments.

In this paper, we will argue that it is possible to benefit from and integrate
with OO VMs while keeping the dynamic language implemented as a single,
simple source code base. The idea is to write an interpreter for that language
in another sufficiently high-level but less dynamic language. This interpreter
plays the role of a specification for the dynamic language. With a sufficiently
capable translation toolchain we can then generate whole virtual machines from
this specification – either wholly custom VMs for C-level operating systems
or as a layer on top of various OO VMs. In other words, meta-programming
techniques can be used to successfully replace a foreseeable one-OO-VM-fits-all
standardization attempt.

The crux of the argument is that VMs for dynamic languages should not
be written by hand! The PyPy project [2] is the justification, proving that the
approach is feasible in practice. Just as importantly, it also brings new insights
and concrete benefits in term of flexibility and performance that go beyond the
state of the art.

PyPy contains a Python interpreter implemented in Python, from which
Python VMs can be generated. The reader is referred to [18] for a technical
presentation. Let us emphasis that the argument we make in the present paper
is not that VMs for dynamic languages should be written in their own host
language (as many projects like Squeak [11] and others have done) but instead
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that VMs should not be written in the first place – they should be generated
from simple interpreters written in any suitable high-level3 language.

In section 2 we will explore the way VMs are typically implemented in C and
on top of OO VMs and some of the problems of these approaches, using various
Python implementations as the main example. In section 3 we will describe
our proposed meta-programming approach and compare the two solutions. We
summarize our position and conclude in section 4.

2 Approaches to Dynamic Language Implementation

Limitations of a C-based implementation of a dynamic language lead to the
emergence of additional implementations – this observation is clear in the case
of Python. The reference implementation, CPython [21], is a simple recursive
interpreter. Stackless Python [20] is a fork that adds micro-threading capabilities
to CPython. One of the reasons for not incorporating it back into CPython was
that it was felt that this would make the implementation too complex. Another
implementation of the Python language is Psyco [16], an extension of CPython
which adds a JIT-compiler. Finally, Jython is a re-implementation for the Java
VM and IronPython a re-implementation for the CLR. All of these ultimately
need to be kept synchronized with the relatively fast evolution of the language.

With the emergence of the CLR and the JVM as interesting language im-
plementation platforms, it is sometimes argued that communities should only
develop an implementation of their language for one of these platforms (prefer-
ably the argument author’s favourite one).

2.1 Assessing the Advantages of Implementing a Language on Top
of OO VMs

Implementing a language on top of an existing OO VM is in many ways easier
than implementing it in C. Let’s take a look at the advantages that are usually
cited for basing a language implementation of a dynamic language on a standard
object oriented virtual machine.

– Better interoperability than the C level: Since the VM offers a standard object
model and all the languages implemented on top of it are using it, it is easier
to integrate the languages that are running on top of the VM. This allows
reuse of libraries between all the implemented languages. This is typically
the most important reason to want an implementation on the VM in the
first place.

– Cross-platform portability: Only the underlying VM has to be ported to
various hardware architectures and operating systems. The languages imple-
mented on top of it can then be run without change in various environments.

3 “High-level” is taken by opposition to languages like Scheme48’s PreScheme [12]
or Squeak’s [11] SLang, which use the syntax and meta-programming facilities of
a high-level language but encode low-level details like object layout and memory
management.



4

– Better tools: Better and cross-language IDEs, debuggers and profilers.
– Better implementation of low-level issues like garbage collection, threading:

Since an OO VM is expected to be widely used and usually backed by a
company, it becomes worthwhile and possible to spend a lot of effort tuning
its garbage collector, threading model, exception support and other low-level
implementation details.

– Better performance: Similarly, object-oriented VMs usually come with a
highly tuned just-in-time compiler to make them perform well without re-
quiring ahead-of-time compilation to machine language. This, in addition
to the previous point, leads to much better performance of the languages
running on top of the VM.

– Ease of implementation: The implementation of a language on top of an OO
VM is easier because it starts at a higher level than C. Usually a high-level
language like Java or C# is used for the language implementation, both of
which offer the language implementer a much higher level of abstraction than
when implementing in C.

– A single unified implementation base: The CLR and JVM are trying to po-
sition themselves as all-encompassing platforms; if one succeeds, implemen-
tations of the dynamic language for other platforms might no longer be
required.

The central theme of the benefits of OO VMs is the ability to implement certain
hard things only once and share the benefits between all language implementa-
tions on top of the OO VM. At a closer look, some of these advantages are not
quite true in practice:

– Better performance: So far it seems that performance of highly dynamic lan-
guages is not actually significantly improved on OO VMs. Jython is around
5 times slower than CPython; for IronPython (which gives up on at least one
feature – frame objects – to improve performance) the figures vary but it is
mostly within the same order of magnitude as CPython. The most impor-
tant reason for this is that the VM’s JIT compilers are optimized for specific
usage patterns that are common in the primary language of the OO VM.
To achieve good speeds, the language implementers would have to carefully
produce code that matches these usage patterns, which is not a simple task.

– Better GCs: While this is obvious in theory, OO VMs tend to have a higher
memory overhead to start with. For example, an instance of Sun’s JVM
which just loaded Jython consumes between 34 and 42 MB of memory
(Linux/IA32), while on the same machine a CPython process fits into 3
to 4 MB.

– Cross-platform portability: While this is true to some extent, the situation
with regard to portability is not significantly improved compared to e.g.
C/POSIX, which is relatively portable as well. Also, portability sometimes
comes at the price of performance, because even if the OO VM is running
on a particular hardware architecture it is not clear that the JIT is tuned for
this architecture (or working at all), leading to significantly reduced speed.
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– Ease of implementation: This point is disputable. On the one hand, OO VMs
typically allow the language implementer to start at a higher level. On the
other hand, they also enforce a specific object and execution model. This
means that the concepts of the implemented language need to be mapped
to the execution model of the underlying VM, which may or may not be
easy, depending very much on the language in question. In many cases, the
mismatch between the abstractions provided by the underlying VM and the
semantics of the dynamic language is too deep to allow a natural and/or
efficient implementation.
An example where this mapping does not work very well is Prolog. While
there exist several implementations of Prolog on top of the JVM [3] [7] and
one on .NET [8], they are not particularly efficient, especially when com-
pared to good Prolog VMs written in C. This is mostly because the Prolog
execution model, which involves backtracking and deep recursion, does not
fit the JVM and .NET very well. Therefore the Prolog implementations on
top of OO VMs resort to models that are quite unnatural both for the OO
VM and for Prolog.
Another important point that makes implementation of languages on top of
OO VMs harder is that typically general-purpose OO VMs don’t support
meta-programming very well, or do so only at the bytecode level.

Nevertheless, some of the benefits are real and very useful, the most promi-
nent of which being easy interaction with the rest of the VM. Furthermore, there
is better tool support and better GCs. Also, for languages where the execution
model fits the OO VM well, many of the disadvantages disappear.

2.2 The Cost of Implementation-Proliferation

The described proliferation of language implementations is a large problem for
language communities. Although most individual implementations exist for good
reasons, the sum of all of them and the need to keep them synchronized with
the reference implementation leads to a significant amount of duplicated work
and division of effort; this is especially true for open source languages, which
tend to evolve quickly. At any one point in time some of the implementations
will lag behind; for developers, this makes writing code which can work on all of
the implementations harder.

Implementing a language on top of a OO VM has many advantages, so some
people propose the solution of standardizing on one particular OO VM in order
to not have to maintain implementations for several of them. While this would
in theory alleviate the problem it is unlikely to happen. On the one hand, many
political issues are involved in such a decision. On the other hand, deciding on
a single object and execution model would not be an equally good fit for all
languages.

In the next section, we explore a different approach for implementing dynamic
languages that we believe is able to solve many of the problems that implementers
face, including the issue of the explosion of the number of implementations.
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3 Meta-Programming Is Good

The present paper proposes to approach the implementation of dynamic lan-
guages from a meta-level: virtual machines for such languages should not be
written by hand, but generated automatically “around” an interpreter4 playing
the role of a high-level description of the language. We argue that this approach
gives many of the benefits usually expected by an implementer when he decides
to target an existing object-oriented virtual machine. It also gives other ben-
efits that we will describe – mostly in term of flexibility. Most importantly, it
lets a community write a single source implementation of the language, avoiding
the time-consuming task of keeping several of them synchronized. The single
source can be used to generate either custom VMs for C-like environments or
interpreters running on top of OO VMs. This makes it practical to experiment
with large changes to the language and with entirely new languages, such as
domain-specific languages, while at any time being able to run the implemented
language in a variety of environments, from C/POSIX to the JVM to .NET.

3.1 PyPy’s architecture

We implemented this idea in the PyPy project [2]. The dynamic language for
which we wrote an interpreter is Python. It is a language which, because of
its size and rather intricate semantics, is a good target for our approach in the
following sense: its previous re-implementations (Jython for the JVM and Iron-
Python for .NET) have each proved to be very time-consuming to maintain. Our
implementation is, by construction, easier to maintain and extremely portable
(including to C/POSIX, to the JVM and to .NET).

In the terminology of meta-programming, the PyPy architecture is as follows:

– We use a very expressive object language (RPython – an analyzable subset of
Python) as the language in which the complete Python interpreter is written,
together with the implementation of its built-in types. The language is still
close to Python, e.g. it is object-oriented, provides rich built-in types and
has automatic memory management. In other words, the source code of our
complete Python interpreter is mostly free of low-level details – no explicit
memory management, no pieces of C or C-level code. Any RPython code
is also valid Python code, so for testing and bootstrapping it can be run
directly on top of another Python implementation like CPython.

– We use a very expressive metalanguage (namely regular Python) to perform
the analysis of RPython code (control flow and data flow construction, type
inference, etc.) and its successive transformations.

4 We do not explore the possibility of starting from even higher-level descriptions like
declarative semantics; while interesting in theory, there are many open issues that
make it impractical so far, from the question of whether it is feasible at all for large
dynamic languages to the issue of how to compile such a description to efficient code.



7

– This meta-programming component of PyPy is called the translation frame-
work, as it translates RPython source code (i.e. the full Python interpreter)
into lower-level code. Its purpose is to add aspects to and specialize the in-
terpreter to fit a selectable virtual or hardware runtime environment. This
either turns the interpreter into a standalone virtual machine or integrates
it into an existing OO VM. The necessary support code – e.g. the garbage
collector when targeting C – is itself written in RPython in much the same
spirit that the Jikes RVM’s GCs are written in Java [4]; this support code is
translated together with the interpreter to form the final custom VM.

A detailed description of this translation process is beyond the scope of the
present paper; it can be found in [18]. The actual Python interpreter of PyPy
and the results we achieved by translating it to C, LLVM [13] and .NET are
described in [14] [15]. These results show that the approach is practical and
gives results whose performance is within the same order of magnitude (within
a factor of 2 and improving) of the hand-written, well-tuned CPython, the C
reference implementation. These figures do not include the spectacular speed-
ups that PyPy obtains in some cases using the JIT compiler generator described
in section 3.6.

In the sequel, we will focus on the relative advantages and inconveniences
of the PyPy approach compared to hand-writing a language implementation on
top of an OO VM.

3.2 A single source

Our approach – a single “meta-written” implementation – naturally leads to
language implementations that have various advantages over the “hand-written”
implementations. Firstly, it is a single-source approach – we explicitly seek to
solve the problem of proliferation of implementations. In the sequel, we will show
that this goal can be achieved without giving up the advantages of hand-written
implementations for OO VMs. Moreover, there are additional advantages which,
in our opinion, are significant enough to hint that meta-programming, though not
widely used in general-purpose programming, is an essential tool in a language
implementer’s toolbox.

3.3 Writing the interpreter is easier

A first point is that it makes interpreters easy to write, update and generally
experiment with. More expressiveness helps at all levels: our Python interpreter
is written in RPython as a relatively simple interpreter and is, in some respects,
easier to understand than CPython. We are using its high level and flexibility
to quickly experiment with features or implementation techniques in ways that
would, in a traditional approach, require pervasive changes to the source code.
For example, PyPy’s Python interpreter can optionally provide lazily computed
objects – a 150-lines extension in PyPy that would require global changes in
CPython. Further examples can be found in our technical reports; we should
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notably mention an extension adding a state-of-the-art security model for Python
based on data flow tacking [9], and general performance improvements found by
extensive experimentation [10], some of which were back-ported to CPython.

3.4 Separation of concerns

At the level of the translation framework, the ability to change or insert new
whole-program transformations makes some aspects of the interpreter easier to
deal with. By “aspect” we mean, in the original AOP sense, a feature that is
added to an object program by a meta-program. The most obvious example
in our context is the insertion of a garbage collector (chosen among several
available ones) for the target environments that lack it. Another example is the
translation of the interpreter into a form of continuation-passing style (CPS),
which allows the translated interpreter to provide coroutines even though its
source is written in a simple highly recursive style. For more details and other
examples of translation-level transformations, see [6].

3.5 The effort of writing a translation toolchain

What are the efforts required to develop a translation toolchain capable of an-
alyzing and transforming the high-level source code and generating lower-level
output in various languages?

Although it is able to generate, among other things, a complete, custom VM
for C-like environments, we found that the required effort that must be put into
the translation toolchain was still much lower than that of writing a good-quality
OO VM. A reason is that a translation toolchain operates in a more static way,
which allows it to leverage good C compilers. It is self-supporting: pieces of the
implementation can be written in RPython as well and translated along with
the rest of the RPython source, and they can all be compiled and optimized by
the C compiler. In order to write an OO VM in this style you need to start by
assuming an efficient dynamic compiler.

Of course, the translation toolchain, once written, can also be reused to im-
plement other languages, and tailored on a case-by-case basis to fit the specific
needs of a language. The process is incremental: we can add more features as
needed instead of starting from a maximal up-front design, and gradually im-
prove the quality of the tools, the garbage collectors, the various optimizations,
etc.

Writing a good garbage collector remains hard, though. At least, it is easy
to experiment with various kind of GCs, so we started by just using the con-
servative Boehm [5] collector for C and moved up to a range of simple cus-
tom collectors – reference counting, mark-and-sweep, etc. Ultimately, though,
more advanced GCs will be needed to get the best performance. It seems that
RPython, enhanced with support for direct address manipulations, is a good
language for writing GCs, so it would be possible for a GC expert to write one
for our translation framework. However, this is not the only way to obtain good
GCs: existing GCs could also be reused. Good candidates are the GCs written in
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the Jikes RVM [4]. As they are written in Java, it should be relatively straight-
forward to design a translation step that turns them into RPython (or directly
into our RPython-level intermediate representation). Our translation toolchain
could then integrate any one of these GCs into the VMs it generates.

In summary, developing a meta-programming translation toolchain requires
work, but it can be done incrementally, it can reuse existing code, and it results
in a toolchain that is itself highly reusable and flexible in nature.

3.6 Dynamic compilers

As mentioned above, the performance of the VMs generated by our translation
framework is quite acceptable – e.g. the Python VM generated via C code is much
faster than Jython running on the best JVMs. Moreover, the JIT compilers in
these JVMs are essential to achieve even this performance, which further proves
the point that writing good general-purpose OO VMs – especially ones meant
to support dynamic languages – is a lot of work.

The deeper problem with the otherwise highly-tuned JIT compilers of the
OO VMs is that they are not a very good match for running arbitrary dynamic
languages. It might be possible to tune a general-purpose JIT compiler enough
and write the dynamic language implementation accordingly so that most of the
bookkeeping work involved in running the dynamic language can be removed –
dispatching, boxing, unboxing... However this has not been demonstrated yet.5

By far the fastest Python implementation, Psyco [16] contains a hand-written
language-specific dynamic compiler. It works by specializing (parts of) Python
functions based on runtime information fed back into the compiler (typically,
but not exclusively, object types). The reader is referred to [17] for more details.

PyPy abstracts on this approach: its translation tool-chain is able to ex-
tend the generated VMs with an automatically generated dynamic compiler that
uses techniques similar to those of Psyco, derived from the interpreter. This is
achieved by a pragmatic application of partial evaluation techniques guided by
a few hints added to the source of the interpreter. In other words, it is possi-
ble to produce a reasonably good language-specific JIT compiler and insert it
into a VM, along with the necessary support code and the rest of the regular
interpreter.

This result was one of the major goals and motivations for the whole ap-
proach. By construction, the JIT stays synchronized with its VM and with the
language when it evolves. Also by construction, the JIT immediately supports
(and is correct for) arbitrary input code. Some very simple Python examples run
more than 100 times faster. At the time of this writing this is still rather exper-
imental, and the techniques involved are well beyond the scope of the present
paper. The reader is referred to [19] for more information.

5 Still in the draft stage, a proposed extension to the Java bytecode [1] might help
achieve better integration between the Java JITs and some class of dynamic lan-
guages running on top of JVMs.
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4 Conclusion

Here are the two central points that we have asserted in the present paper:

– High-level languages are suitable to implement dynamic languages. They al-
low an interpreter to be written more abstractly, which has many advan-
tages. Among these, it avoids the proliferation of diverging implementations,
and gives implementers better ways to combine flexibility with efficiency.
Moreover, this is not incompatible with targeting and benefiting from exist-
ing high-quality object-oriented virtual machines like those of the Java and
.NET.

– Do not write VMs “by hand”. In other words, write an interpreter but not
a virtual machine for the language. Writing language-specific virtual ma-
chines is a time-consuming task for medium to large languages. Unless large
amounts of resources can be invested, the resulting VMs are bound to have
limitations which lead to the emergence of many implementations, a fact
that is taxing precisely for a community with limited resources. This is of
course even more true for VMs that are meant to be general-purpose.

As a better alternative, we advocate a more general usage of meta-programming:

– Let’s write more meta-programming translation toolchains. Aside from the
advantages described in section 3, a translation toolchain need not be stan-
dardized for inter-operability but can be tailored to the needs of each project.

– Diversity is good. Meta-programming translation toolchains offset the need
for standardization of general-purpose OO VMs.

The approach we outlined is actually just one in a very large, mostly unex-
plored design space; it is likely that some of the choices made in PyPy will turn
out to be suboptimal. We are hoping that other toolchains will emerge over time,
exploring other aspects and proposing other solutions. By their “meta” nature,
these multiple approaches should be easier to bridge together than, say, multiple
OO VMs with different object and runtime models. We believe that further re-
search in this area might open the door to better solutions for interoperability in
general – e.g. high-level bridges instead of (virtual-)machine-level ones, enabled
by cross-translation.

We believe this to be ultimately a better investment of efforts than the de-
velopment of more advanced general-purpose OO VMs.
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