Towards a Jitting VM for Prolog Execution

Carl Friedrich Bolz
cfbolz@gmx.de

Michael Leuschel
leuschel@cs.uni-
duesseldorf.de

David Schneider
david.schneider@uni-
duesseldorf.de

Heinrich-Heine-Universitét Disseldorf, STUPS Group, Germany

ABSTRACT

Most Prolog implementations are implemented in low-level
languages such as C and are based on a variation of the
WAM instruction set, which enhances their performance but
makes them hard to write. We present a high-level con-
tinuation-based Prolog interpreter written in RPython, a
restricted subset of Python. This interpreter is annotated
with hints, so that it can be fed through the PyPy tracing
JIT generator, which incorporates partial evaluation tech-
niques. The resulting Prolog implementation is surprisingly
efficient: it clearly outperforms existing implementations of
Prolog in high-level languages such as Java. Moreover, on
some benchmarks, our system outperforms state-of-the-art
WAM-based Prolog implementations. Our paper tries to
show that PyPy can indeed form the basis for implementing
programming languages other than Python. Furthermore,
we believe that our results showcase the great potential of
the tracing JIT approach for declarative programming lan-
guages such as Prolog.!

Categories and Subject Descriptors
D.1.6 [Programming Techniques]: Logic Programming;
D.3.4 [Programming Languages|: Processors—code gen-
eration, interpreters, run-time environments

Keywords

Logic Programming; JIT; Partial Evaluation; Interpreters

1. INTRODUCTION

JITs and in particular tracing JITs have started to be very

successful, often outperforming traditional ahead-of-time com-

pilers. They have been particularly successful for dynamic
languages, such as Python or JavaScript. We try to show
that this approach also holds great promise for a language
like Prolog (which has many dynamic features). We also be-
lieve that techniques such as partial evaluation can naturally

IThis research is partially supported by the BMBF funded
project PyJIT (nr. 01QE0913B; Eureka Eurostars).

be integrated into a JIT, leading to increased applicability
and performance potential [6]. In previous work [5], we have
developed a tracing JIT compiler for RPython which inte-
grates partial evaluation techniques. This JIT is part of the
larger PyPy project [28]. One of the goals of PyPy was to
provide an environment for writing interpreters for dynamic
languages, which get then compiled at runtime using the
PyPy JIT, thus combining flexibility with performance.

This paper sets out to answer the following questions:

e Can the PyPy JIT be applied to interpreters for other
dynamic languages, such as Prolog?

e Can a high-level implementation of Prolog be compet-
itive with a finely-tuned WAM-based implementation?

e Could Prolog implementations benefit from a JIT or
tracing JIT?

The answers to these questions are affirmative. We will
present an interpreter for Prolog written in RPython, which
can be compiled to C and which is specialized at runtime
using the PyPy JIT generator. The performance results are
surprisingly good: we clearly outperform other Prolog im-
plementations written in higher-level languages (e.g. Java).
More importantly, however, we are faster than state-of-the-
art Prolog VMs on specific benchmarks. We believe that this
shows the potential of the JIT approach for Prolog systems,
and that future Prolog implementations should consider in-
tegrating a JIT compiler.

In Section 2 we introduce the PyPy project and its tech-
nologies which we use as the basis of our Prolog implemen-
tation. The details of this implementation, its object model
and continuation-based execution are described in Section 3.
How the JIT generator developed by the PyPy project is
applied to the Prolog interpreter is presented in Section 4,
also we discuss the optimizations performed by the gener-
ated JIT and how they apply to Prolog. In Section 5 we
present and analyze a number of benchmarks measuring
performance and memory consumption and compare it to
a series of other Prolog implementations. Related work is
discussed in Section 6.



2. BACKGROUND

2.1 Prolog Implementations

Most high-performance implementations of the Prolog lan-
guage in common use today are implemented using an exten-
sion of the WAM [30]. The WAM is a great instruction set
that made high-speed Prolog execution possible. However,
it is also a very low-level instruction set that is predom-
inantly useful when implementing in a low-level language
operating close to the machine level. Apart from WAM-
based approaches, there are a number of Prolog implemen-
tations written in object-oriented high-level languages, such
as Java or the NET VM [27, 9]. These often have flexible
and extensible architectures, and integrate well with their
host virtual machine, but are typically orders of magnitude
slower than low-level VMs.

2.2 PyPy

The PyPy project [28, 7] is an environment where dynamic
languages can be implemented in a simple and maintainable,
yet efficient, way. Using PyPy, the approach is to write an
interpreter for the to-be-implemented language in RPython,
which is a subset of Python. This interpreter can then be
translated into C. During the translation process, various
aspects of the final VM will be introduced into the C code
automatically, such as an efficient garbage collector, or op-
tionally a just-in-time compiler (see Section 2.5).

Because of these introduced aspects, the interpreter imple-
mentation itself is free from low-level details such as memory
management and can therefore focus purely on the language
semantics and on high-level optimization happening on lan-
guage level.

PyPy was originally started to be only a Python implemen-
tation (hence the name). However, the tools developed in
the process turned out to be generally applicable, so that it
is now used for the implementation of various dynamic lan-
guages, such as Squeak/Smalltalk [7], JavaScript and now
Prolog (however, the Python implementation still remains
the most mature language implementation in the PyPy con-
text).

2.3 RPython

As mentioned before, the language that is used within PyPy
to implement the language interpreters is called RPython,
Restricted Python [1]. It is a subset of the Python language,
chosen in such a way that type inference on RPython pro-
grams is possible. As its main restriction, in RPython it
is not allowed to mix types at the same location in the
RPython — e.g., you cannot have a function that accepts
both integers and strings as its first argument. In addition,
RPython forbids runtime reflection (like changing methods
of classes at runtime). Despite the restrictions, RPython
is still quite an expressive object-oriented high-level lan-
guage, supporting garbage collection, exceptions, single in-
heritance, dynamic dispatch, and good builtin data-struc-
tures.

Since type inference can be performed on RPython pro-
grams, it is possible to translate them into an efficient C pro-
gram. The C program can then be turned into an executable
and be executed. Many aspects of the final executable are

not apparent in the original interpreter. Since RPython has
automatic memory management and C does not, a garbage
collector needs to be inserted during the translation process.

2.4 Garbage Collection

The most effective garbage collector contained in PyPy is
a generational copying collector [22]. Objects are first al-
located in a nursery generation. If they survive a minor
collection, they move into the mature generation, which is
collected only rarely. After they survive several collections
there, they are moved to an old object generation, which is
collected using mark-and-sweep, to not have to copy long-
living objects around all the time. References from older to
younger objects are detected with the help of a write barrier.

Since the collector is using copying, allocation is extremely
fast, essentially just incrementing and comparing a pointer.
The GC is also very efficient at dealing with high allocation
rates, as long as most objects die very quickly. The size of
the nursery is chosen to be half the size of the level 1 cache
of the processor, to improve cache locality.

2.5 JIT Compilers

Another aspect that can be automatically introduced by the
PyPy translation toolchain into the final VM is a Just-in-
Time compiler. The JIT compiler will be generated by ana-
lyzing the RPython interpreter using partial evaluation tech-
niques [5]. This process is mostly automatic but requires a
few hints by the interpreter’s author to guide the process.
Those hints are a few lines of annotations added to the inter-
preter and are mostly needed to identify the main interpreter
loop.

Automatically generating a JIT compiler has many advan-
tages: Writing a JIT compiler by hand is a tedious and
error-prone task, particularly for complex languages. Also,
many dynamic language have similar needs from a JIT com-
piler (e.g., type specialization, unboxing of boxed objects,
dealing with changes to the program at runtime, ...), which
makes it worthwhile to implement a JIT compiler genera-
tor. PyPy’s JIT compiler generator is targeted at impera-
tive object-oriented dynamic languages, and a part of the
question posed by this paper is whether it can be success-
fully applied to a logic programming language at all. The
JIT generator is still experimental and in active develop-
ment, but already stable enough to give useful speedups for
PyPy’s Python interpreter.

The JIT that is generated by the PyPy toolchain is a tracing
JIT. Tracing JITs have recently become a rather successful
approach to writing JIT compilers for dynamic languages,
since they are both easy to implement and can give size-
able performance improvements [17, 8]. As an example, the
JavaScript engine of the Firefox web browser uses a trace-
based JIT compiler since version 3.1% [15]. A tracing JIT
tries to only generate assembler code for the commonly exe-
cuted code paths of a program, as opposed to classical JITs,
which typically operate on a per-method basis [14]. For an
illustration of the various stages that a tracing JIT goes
through see Figure 1.

Zhttps://wiki.mozilla.org/JavaScript : TraceMonkey



I. Interpretation
with Profiling

with exi new hot loop identified
machi v

II. Interpretation
with Tracing

loop finished

\4

Ill. Optimize and
emit machine
code

IV. Execute
machine code

guard failure

Figure 1: The stages of a tracing JIT compiler

A VM with a tracing JIT is typically a mixed-mode execu-
tion environment, containing both an interpreter and a JIT
compiler. In the beginning (phase I in Figure 1), all code is
executed by the interpreter, which also performs some pro-
filing to identify hot loops of the program. If a hot loop
is found, the next time the interpreter executes it, it en-
ters a special tracing mode (phase 1), where all operations
that the interpreter performs are recorded. This history of
recorded operations is called a trace. A trace corresponds to
one possible code path through the hot loop. A trace always
ends with a jump to its beginning, since it corresponds to a
loop. The trace can be used to then generate efficient linear
assembler code for exactly this code path (phase III). The
generated assembler is cached and if the interpreter later
wants to execute the same loop again, it will switch to run-
ning the compiled code instead (phase IV).

Each of these pieces of assembler code is only valid as long as
the subsequent execution stays on the same code path. To
check whether this is the case, guards are inserted into the
assembler which check whether the assumptions made dur-
ing the generation of the trace are still valid. This means
that after creation, every piece of assembler is an infinite
loop that can only be exited via a guard. The loop condi-
tion is represented as one of the guards in the trace. If one
of those guards fails, execution will fall back to interpreta-
tion. If one specific guard fails often enough, another trace
is generated starting from that specific point in the program
and the existing assembler is patched to jump to that new
trace [16].

An important property of the tracing approach is that it au-
tomatically supports function inlining by construction. Dur-
ing tracing, if a function is called during the execution of the
hot loop, the trace will also record the operations that the
called function executes, thus effectively inlining the called
function.

The focus on traces means that a tracing JIT works particu-
larly well for code that has many hot loops that do not have
too many paths through them and that are not too large.
It remains to be seen whether typical Prolog programs have
these characteristics.

3. STRUCTURE OF THE INTERPRETER

The goal in implementing our Prolog interpreter in RPython
was to have a simple, high-level object oriented implementa-
tion of Prolog. The semantics of Prolog should be mirrored
closely by the structure of the interpreter. We wanted to in-
corporate high-level optimizations into the interpreter, but
not be concerned about low-level details, which are left to
the PyPy translation tools to deal with.

The resulting interpreter fulfills many of these goals. It uses
a simple structure copying approach, has a straight-forward
data model (Section 3.1) and uses continuation objects for
the interpretation core (Section 3.2). So far it does not con-
tain many optimizations, e.g., there is no indexing imple-
mented yet. In addition to the interpreter core, we have
implemented a number of builtins (see Section 3.3).

The interpreter is about 5000 lines of RPython code, of
which 1000 lines are implementing builtins and 1700 are



Compound | arguments | functor

L N

Array | length 2 | #1 | #2

VARERN

Var | binding Atom | functor

Atom | functor s

l

d

Figure 2: Representation of Prolog object [X] where
X was bound to a

tests. It can be translated to C using PyPy’s translation
toolchain and a JIT can be automatically generated for it
(see Section 4). When translating to C without a JIT,
the translation toolchain generates about 200’000 lines of C
code, the compiled binary is 700 KB large. When also gen-
erating a JIT, about 600’000 lines of C code are generated
(much of it support code for the generated JIT) resulting in
a binary of 2.0 MB.

3.1 Data Model of the Interpreter

To represent Prolog terms the interpreter uses a straightfor-
ward object-oriented design of the Prolog concepts. It is the
data model that would be expected from an implementation
written in e.g., Java.

Prolog objects are modelled by instances of subclasses of
the PrologObject base class. Simple non-variable terms are
represented by their own class, such as Atom, Number and
Float (which are just boxes around a string, an integer and
a floating point number respectively). Logic variables are
represented by instances of a class Var. This class has a
binding attribute which is initialized to a NULL pointer to
signify that the variable is not bound. If the variable gets
bound, the binding attribute gets set to the bound value.
Compound terms are represented by a class Compound, which
has a string attribute specifying the functor and an array of
more PrologObjects, for the arguments.

Unification is implemented in an object-oriented style: all
PrologObjects have a unify method, which takes a second
object as the argument, as well as a Trail object. The
unify method calls itself recursively on the arguments of
compound terms.

When a variable is bound, it needs to be trailed to be able
to undo the binding should backtracking occur. This is done
with the help of a Trail object. Trail objects are connected
as a linked list, one object per choice point, each trail point-
ing to its next-oldest predecessor. If a variable is bound, it
is stored into an array in the current, newest trail object,
which holds all variables that will need to get their bindings
undone when backtracking occurs.

Cons | argl|arg?2

VAEERN

Var | binding Atom | functor

Atom | functor ik

'

K

Figure 3: Representation using a specialized class
for cons cells

As an optimization we implement variable shunting [20]. If
a variable is created and immediately bound, i.e., without
a choice point being created in the meantime, it does not
need to be trailed. On backtracking the variable will cease
to exist anyway. This is achieved my making the Var objects
point to the trail object in which they were created. If they
are bound while this trail is still being used, the variable can
be replaced by its binding value.

3.1.1 Optimizing Term Classes

Most low-level Prolog engines use a tagged pointer represen-
tation [19] for commonly-used compound terms, typically for
cons cells (terms with functor ./2). The PyPy translation
toolchain does not provide this level of control over low-level
representation of objects. However, we still optimize terms
with common functors, by representing them with their own
class. This means that at least the array and the explicit
reference to the functor can be saved. For an illustration of
the concept, see Figure 2 for a representation of an unopti-
mized compound term and Figure 3 for the same term using
the optimized classes.

In addition, we optimize compound terms with a small num-
ber of arguments (currently up to 10) to also use a special
class to not need the array.

3.2 Continuation-Based Interpretation

The actual interpreter is based on continuations. Several
Prolog systems have been based on continuations already
[29, 26, 25]. The basic approach in our implementation is
that all the state of the interpreter is encapsulated in two
(possibly nested) continuation objects, a success continua-
tion and a failure continuation. All continuations are in-
stances of one of the subclasses of a Continuation class. A
continuation thus contains state as well as behaviour.?

The success continuation contains the still to be executed
“rest of the program”, the failure continuation contains the
code that needs to be executed if backtracking needs to hap-
pen. Calling a continuation typically consumes it, and po-
tentially replaces the current continuations by new ones. In-

3Indeed, on systems that implement Prolog on Scheme or
Lisp [23], a continuation is usually just represented by a clo-
sure. This was not possible for our system, because RPython
supports neither closures nor does it optimize tail calls.



def interpret(sc, fc, trail):
while not sc.is_done():
try:
sc, fc, trail = sc.activate(fc, trail)
except UnificationFailed:
sc, fc, trail = fc.fail(trail)

Figure 4: The Main Interpreter Loop

terpretation proceeds by calling the current success continu-
ation until the computation is finished. If calling a continu-
ation fails, the current failure continuation is called instead.

Whenever a non-deterministic choice is reached, the inter-
preter creates a new trail object. It then builds a failure
continuation that backtracks to the previous state and then
continues with the other option.

The main loop of the interpreter (in slightly simplified form)
can be seen in Figure 4. The loop has three local variables:
sc is the success continuation, fc the failure continuation
and trail the current trail object. As long as there is still
something to do, the activate method of the current con-
tinuation is called, which returns a new set of continuations.
If activating the continuation fails, it will raise an Unifica-
tionFailed exception. If that happens, the failure continu-
ation will get its fail method called.

The types of continuation used by the interpreter are (we
give the continuations here as Prolog terms, in the actual
implementation each sort of continuation is simply a class
with the arguments of the terms as attributes):

e call(Goal, Next) which will call the goal, when acti-
vated

e restore(Trail, Next, FailureContinuation) which
will backtrack the bindings done up to the point spec-
ified by Trail

e apply(Rule, Goal, Next) which applies a specific rule
of a predicate to the goal

e true which signifies that the computation is finished

All continuations have a Next continuation, which will be
called after the current continuation has been executed. In
addition to the continuations listed, there are specific con-
tinuations used for builtins that can have more than one
solution (e.g., arg).

For an example see Figure 5. The figure shows the contin-
uations that are constructed when calling a predicate £ (X)
which has two rules in the database. When applying the
first rule, a new trail is created and the failure continuation
set to a restore, which can potentially undo the changes
done by the first rule and continue with the second rule, if
backtracking occurs later.

The overhead of constantly creating these continuation ob-
jects is kept small by the good GC support that the PyPy

Database:
f(a). £(b).
Continuations:
1| sc call(£f(X), true)
fc true
trail | <trailil>
2 | sc apply (<f rule 1>, £(X), true)
fc restore(
<traill>,
apply (<f rule 2>, £(X), true),
true)
trail | <trail2>
3 | sc true
fc restore(
<traill>,
apply (<f rule 2>, £(X), true),
true)
trail | <trail2: X=a>
Figure 5: Continuations when calling a predicate

f(X) with two rules

toolchain gives us (see Section 2.4). Since most of the con-
tinuations are very short-lived they are collected extremely
efficiently by the generational GC.

3.3 Implementing Builtins

In addition to the core Prolog execution model we also im-
plemented a number of builtins. Most builtins are rather
straightforward to implement using the continuation-based
model. Builtins that always have at most one solution are
trivial, builtins that can have many solutions need some
more work, because they typically need a new type of con-
tinuation. There are a number of builtins that need some
care, because they manipulate the current continuations in
more complex ways.

The negation builtin \+ Goal basically performs a call to
Goal but swaps failure and success continuation when exe-
cuting the call*. Indeed, if Goal fails the whole construct
succeeds, and vice versa.

The builtin repeat needs to introduce a special sort of failure
continuation which is not consumed when it is activated,
thus providing an arbitrary amount of solutions.

If-then-else A -> B ; C needs to remove those failure con-
tinuations that were introduced during the execution of A.
Removing a failure continuation also means that the trail
object which corresponds to the removed choice is merged
with its predecessor. Similarly the cut ! needs to remove
all failure continuations that were introduced during the ex-
ecution of the current predicate. It is not trivial to figure
out the extend of the cut, since the continuations are not
marked by which predicate they were created for. Therefore
a special marker continuation is needed if a predicate that
contains a cut is called. In this regard, if-then-else is a much

4Together with some extra code to remove the bindings done
during the execution of the goal.



cleaner concept.

The findall builtin needs a special sort of success continu-
ation which, when activated, collects the found solution and
then forces backtracking.

The exception handling builtins work as follows. A call to
catch will insert a special catching success continuation,
which will not do anything when actually activated. When
throw is called, it will walk the chain of success continu-
ations until it finds a matching catching continuation and
continue by calling the recovery goal of the catch call.

4. AUTOMATIC JIT GENERATION APPLIED

TO PROLOG

In this section we will describe how the JIT generator of
PyPy is applied to the Prolog interpreter. The first task in
doing so is correctly placing hints in the source code of the
interpreter [5]. The most important hints which are needed
for the JIT generator are:

e A hint to indicate the interpreter’s main loop to the
JIT generator. In the Prolog case this is the driver
loop shown in Figure 4.

e A hint to annotate those variables of the interpreter
which represent a position in the program that is cur-
rently being interpreted. In a typical bytecode-based

imperative-language interpreter this is the program counter.

Since our interpreter is not bytecode-based, we chose
to mark the currently executed Prolog rule.

e A hint to indicate the code of the interpreter that is
responsible for closing a loop. Again, in an impera-
tive language this hint is usually placed in the imple-
mentation of the bytecode which performs “backward
jumps”. This one is the hardest in Prolog, since there
is no explicit loop construct, only tail calls. Therefore
we placed the hint in the code that is responsible for
applying one specific rule (see Section 3.2).

e Many classes in the interpreter are marked as immutable.
This means that instances of these classes will not be
changed after they have been initialized. Examples
for such classes are all the classes implementing Pro-
log terms, except Var; the class that represents Prolog
rules (but not predicates, because assert and retract
can change predicate objects).

4.1 Loops in Prolog Code

Since the generated JIT is a tracing one that focuses on
producing good code for loops, it is important to discuss
when a loop actually occurs in Prolog. Despite Prolog not
having an explicit loop construct, there are still a number of
cases in which the generated JIT will detect a loop. A loop
for the JIT is simply a situation where the same rule of a
predicate will be applied repeatedly (potentially with other
rule applications in between).

The most straightforward sort of loop is a loop with tail calls,
like a list-append where the first argument is instantiated,
or an arithmetic loop. However, it is not really necessary for
the call in the loop to be in a tail position. If one takes the

nrev([], [1).

nrev([X|Y], Z) :- nrev(Y, Z1), append(Z1, [X], Z).

Figure 6: Code of naive reverse

implementation of naive reverse in Figure 6, the second rule
of nrev will repeatedly call itself (constructing a continua-
tion that calls append at every iteration). Thus the JIT will
also detect it as a loop. After the base case is reached, those
continuations will be activated one after another, which is
yet another loop (which is distinct from the loop of append
itself).

4.2 Optimizations by the JIT

After the generated tracing JIT identified and traced a loop
in the executed Prolog code, it performs a number of opti-
mizations on the traces before they are turned into assembler
code. We will describe those optimizations in this section.
These optimizations are part of the JIT infrastructure of the
PyPy project [5] and did not have to be written for Prolog
specifically (indeed, we did not have to change any PyPy
code at all).

The two most important optimizations that the JIT per-
forms on the recorded traces are:

e Constant-folding reads out of immutable and known
objects.

e Completely removing object allocations that have a
limited life-time (escape analysis [18]).

In the following we will describe what effects these optimiza-
tions have when applied to the RPython Prolog interpreter.

The first optimization applies mostly to rule objects. Since
a rule is immutable (even in the presence of assert and re-
tract), all the reads out of it are constant-folded away. This
applies in particular to reading the head and body of the
rule. The head and body of the rule are themselves im-
mutable terms (since they are usually not variables), thus
the JIT will recursively optimize away most of those reads.
This means that for the unification of a rule head with a
calling term, all of the operations acting on the rule head
are constant-folded away.

The second optimization will remove object allocations from
the trace if the allocated object is only used locally in the
trace and does not escape anywhere else, which would hap-
pen if the object is stored into another, global, object. To
do this optimization, the JIT looks at an object allocation
in the trace and tracks where the allocated object is used.
If it is not stored anywhere outside of the trace, the object
will die after its last use, thus the allocation can be removed
and the object is replaced by its fields.

This process can often remove all overhead of using continu-
ations in the interpreter. If a continuation object is created,
it will often just be activated quickly afterwards and then
not be used anymore. In this case the continuation object



will be fully removed by the optimizer. Only in the case
when a choice point is created or the continuation actually
grows, can the allocation not be removed (e.g., this is the
case for naive reverse in Figure 6).

In addition to the removal of continuations, allocations of
Prolog objects can be avoided by this optimization. When
standardizing apart before the application of a rule a copy of
the rule body is created. Some parts of the copied body will
be immediately deconstructed again, thus they don’t need
to be allocated at all.

As an example of what the optimizations can achieve, let’s
look at what happens when the Prolog interpreter executes
a simple arithmetic iteration (see Figure 12 for the code).
At first, the interpreter will normally run the iterate loop,
keeping count of which predicates are executed often. After
a few iterations, it will identify the iterate predicate as a
likely candidate, so it enters tracing mode, keeping a trace
of all the execution steps that the interpreter performs. The
generated trace (which is quite detailed and thus rather long,
about 200 operations) will then be optimized as described
above.

Most of the operations in the trace are removed by the op-
timization step. The resulting trace can be seen in Fig-
ure 7. This trace will then be turned into machine code by
an architecture-specific assembler backend and can then be
executed.

In this simple example the optimizer of the JIT was able to
remove all the allocations in the trace, since the continua-
tions that are created are immediately activated and do not
escape anywhere. The same is true for the copied body of
the iterate predicate. In addition, even the Number object
that is used to box the integer value of the loop variable is
removed, since each of these objects survives for one itera-
tion of the loop only. Thus the generated assembler code
can keep the loop index in a machine integer, which can just
be kept in a CPU register. All the int_* operations are just
simple machine instructions.

The jump instruction at the end of the trace jumps to the
beginning again. Thus the trace by itself is an infinite loop.
It can only be left via one of the guard instructions. Those
guards check that the assumptions of the trace are not vi-
olated. If the machine code is executed and the iteration
count reaches zero, the first guard will fail and execution
will fall back to using the interpreter again.

5. EVALUATION

In this section we want to evaluate the performance and
memory behaviour of our Prolog system when translated to
C and then compiled to an executable, with and without
generating a JIT compiler.

Unless otherwise stated, we were running the benchmarks
twice in the same process, performing the time measurement
during the second run. This should give the JIT a time to
warm up and produce machine code without affecting the
measurements. We are also looking at compilation times in
Section 5.2.

Loop: [scont, il, fcont, traill

# Check whether the base case applies(X)
i2 = int_eq(il, 0)
guard_false(i2)

#X>0
i3 = int_gt (i1, 0)
guard_true(i3)

# X0 is X - 1
i4 = int_sub(il, 1)

# recursive call to iterate(Y)

# Check whether assert or retract was

# used on the loop/1 function:

p2 = read_field(<address loop/1>, ’first_rule’)
guard_value(p2, <address 1st rule of loop/1>)

jump(scont, i4, fcont, trail)

Figure 7: The intermediate code for the generated
assembler code of the loop/1 function

All benchmarks were performed on an otherwise idle Intel
Core2 Duo P8400 processor with 2.26 GHz and 3072 KB of
cache on a machine with 3GB RAM running Linux 2.6.31.
We compare the performance of our Prolog system against
that of Sicstus Prolog 4.1.1, Ciao Prolog 1.13.0-11568, SWI-
Prolog 5.8.3 and tuProlog 3.0-alpha. We were running Sic-
stus in both its interpreter mode and its compiled mode,
using load_files/2 with the compilation_mode (consult)
and compilation_mode(compile) flags respectively.

5.1 Iteration benchmarks

The first set of benchmarks we tried uses various methods to
implement iteration in Prolog (see Figure 12 for the code).
This is completely untypical Prolog code. We still wanted
to have these benchmarks, as they are the sort of code that
the tracing JIT is best at, to gauge the maximum speedup
that the technology can give us.

The results of running these iteration benchmarks each with
10 million iterations can be seen in Figure 8. For two of
the benchmarks, SWI-Prolog did not finish the run, as it
was running out of memory. Our interpreter without a JIT
seems to have about twice the speed of Sicstus in interpreted
mode and is quite a bit slower than the other implementa-
tions. With the JIT we seem to be faster than all other
implementations, sometimes significantly, apart from when
the cut is involved (even then we are faster with the JIT
than without). So far we have not been able to figure out
why the generated JIT is not able to do something sensible
with the cut.

In the cases of iterate_assert and iterate_call the JIT is
able to show its full strength. Given the dynamic setting, the
JIT can treat the asserted predicate like a static predicate
and will compile new code once new clauses are added. Thus
the asserted code has the same speed as the normal code
here (indeed our interpreter just assumes all predicates to be



dynamic, since it would have been more work to implement
otherwise). A similar thing happens in the case of call: The
JIT can optimize the call builtin by optimistically assuming
that the target predicate will stay the same and producing
new code if this assumption proofs to be wrong later.

The iterate_exception benchmark is admittedly rather
silly (we hope nobody actually writes code like this). How-
ever, it showcases that the JIT optimizes all features that the
interpreter implements, without having to do extra work.

5.2 Classical Prolog Benchmarks

In addition to the unrealistic micro-benchmarks from the
last section we also measured the various Prologs against
a number of slightly larger programs, most of them well-
known benchmarks. Many of these benchmarks execute so
quickly that we had to run them many times to get sensible
measurements. The following benchmarks were each run 500
times: chat_parser, crypt, deriv gsort sorting a list of 50
elements, reducer, zebra.

In addition we were using the following benchmarks: boyer,
tak, nrev which uses naive reverse to reverse a list of 1700
elements, queens solving the queens puzzle with 11 queens,
primes searching for all primes up to 10’000. arithmetic is
a declarative arbitrary-precision arithmetic implementation
using lists of bits to represents the numbers. The benchmark
computes 14! and is derived from code from [13].

To also find out how much overhead the JIT compiler itself
adds, for these benchmarks we were measuring two num-
bers for the JIT version. One by measuring the time of the
benchmark after startup of the interpreter, which will in-
clude compile time. Then we ran the benchmark a second
time in same process and measured that time to find out
how fast the (now fully generated) machine code is.

The results of these benchmarks can be seen in Figure 9, a
diagram showing the results in Figure 10. Our Prolog inter-
preter without the JIT is significantly slower for these more
realistic Prolog programs. It is between 5 times slower and a
bit faster than Sicstus in interpreted mode, and significantly
slower than the other Prolog implementations.

If the JIT is also generated, the execution times always im-
prove, apart from the boyer benchmark which actually be-
comes significantly slower with the JIT. We think that this
is due to overspecialization by the JIT and are working on
solving the problem. Apart from that benchmark, the JIT
gives a speedup of up to 10 times, which makes it com-
petitive with Sicstus in compiled mode for the benchmarks
queens and arithmetic.

In most cases, even factoring in compilation time gives a
speedup over interpretation, except in the cases of boyer and
chat_parser, where the non-warmed up version is slower
than the interpreted version. The compilation time seems
to be a bit high, given the small size of the benchmarks
(and given that none of the benchmarks are really useful
long-running programs). We will have to improve on that
in the future.

5.3 Comparison Against tuProlog

To get a impression of how other high-level Prolog imple-
mentations perform, we also tried to benchmark tuProlog
[12]. The results can be seen in the last column in Figure 9.
However, most benchmarks were not actually completing,
either because of missing builtins or because of an out-of-
memory error. For the benchmarks that actually worked,
the performance is up to several orders of magnitude slower
than the low-level implementations. tuProlog’s performance
seems to be characteristic for Java Prologs though [27]. Of
course it was not the goal of tuProlog to reach good perfor-
mance anyway.

5.4 Memory Footprint

To measure the overhead of having an object-oriented object
model and of representing the interpreter state in continua-
tion objects, we also measured the memory footprint of each
Prolog interpreter, by running each benchmark and continu-
ously sampling the physical memory the process used. The
numbers are reported in Figure 11 and are the maximum
amount of memory each benchmark used during the run.

For most benchmarks the memory footprint of our inter-
preter is about 2-5 times larger than that of the other in-
terpreters. Exceptions are nrev, which takes 20 times more
memory and reducer, which even uses 200 times more. The
size difference that the nrev benchmarks exhibits shows that
continuations have a large memory overhead, because nrev
builds a chain of continuations as large as the reversed list
has elements.

6. RELATED WORK

It has been the dream of partial evaluation [21] to compile
programs by specialising interpreters. Unfortunately, up to
now “widely used partial evaluators are nowhere to be seen”
[3], even though there have been some successful applica-
tions, such as for example [2, 24, 4]. To our knowledge,
these applications have in common, that they are applied
to very domain-specific languages. In our work, we apply
our technique on an interpreter for a general-purpose pro-
gramming language, and we try and compete with industrial
compilers. Furthermore, the source and object language are
very different (RPython vs Prolog).

Continuations have been used in various cases as the ba-
sis for implementing Prolog system. BinProlog [29] uses a
transformation to continuation-passing-style for all Prolog
clauses and then uses a simplified WAM to execute those.
However, it uses only a success continuation and thus doesn’t
make the choice points explicit. There was some more work
to use this single success-continuation passing style for op-
timizations [11, 26].

Lindgren [25] proposes to use a continuation-passing style
as an intermediate language before code generation. Con-
trarily to the approaches mentioned so far, he uses both
a success and a failure continuation, thus moving all con-
trol decisions to the source level. In our implementation we
don’t generate continuation-passing style as a preprocessing
step, but rather use continuations at runtime to represent
the interpreter style.

There have been a number of attempts at writing high-level



Benchmark SICStus-interp | SICStus SWI Ciao | own-interp | own-JIT warm
iterate 14930 ms 350 ms 630 ms 400 ms 4790 ms 60 ms
iterate_assert 15000 ms | 15730 ms | 1780 ms 7460 ms 4910 ms 60 ms
iterate_call 23400 ms 2920 ms — | 306430 ms 12950 ms 150 ms
iterate_cut 18200 ms 520 ms 850 ms 510 ms 9380 ms 4450 ms
iterate_exception 37800 ms | 14370 ms — | 58710 ms 14170 ms 850 ms
iterate_failure 31210 ms 1010 ms | 5380 ms 1140 ms 13510 ms 690 ms
iterate_findall 39230 ms 9780 ms | 7930 ms 3470 ms 15130 ms 1190 ms
iterate_if 22770 ms 860 ms | 1500 ms 1120 ms 12920 ms 150 ms
Figure 8: Benchmark times for iteration benchmarks
Benchmark || SICStus-interp | SICStus SWI Ciao || own-interp | own-JIT | own-JIT warm || tuprolog
arithmetic 3630 ms 490 ms | 1080 ms 600 ms 3180 ms 570 ms 310 ms 80.1s
boyer 490 ms 40 ms 100 ms 40 ms 1130 ms | 25080 ms 20000 ms -
chat_parser 20930 ms | 5050 ms | 9030 ms | 5880 ms 35460 ms | 44880 ms 17910 ms -
crypt 1810 ms 70 ms 470 ms 100 ms 780 ms 710 ms 110 ms 149 s
deriv 1200 ms 190 ms 420 ms 240 ms 2770 ms 2400 ms 1040 ms -
nrev 820 ms 60 ms 180 ms 70 ms 1220 ms 950 ms 640 ms 83.3s
primes 2230 ms 190 ms | 380 ms | 140 ms 1680 ms | 1110 ms 910 ms -
gsort 1320 ms 160 ms 440 ms 160 ms 2080 ms 870 ms 430 ms -
queens 8930 ms | 460 ms | 1880 ms 560 ms 4410 ms 600 ms 390 ms 274.3 s
reducer 6610 ms 930 ms | 2710 ms | 1430 ms 29650 ms | 26350 ms 23840 ms -
tak 720 ms 20 ms 80 ms 20 ms 570 ms 290 ms 270 ms 8.7s
zebra 2480 ms | 1050 ms | 2400 ms | 1510 ms 5990 ms 5040 ms 3410 ms -

Figure 9: Benchmark times for classical Prolog benchmarks

object oriented Prolog interpreters. tuProlog is a Prolog
running on top of a Java virtual machine which was written
with good object-oriented design in mind [12]. It uses a state
machine to execute Prolog programs [27], whose states can
be related to the kinds of continuations of our interpreter.

Costa et al [10] have modified YAP to perform demand-
driven indexing. Their technique analyses and modifies the
WAM bytecode of a predicate at runtime if it looks like the
predicate could benefit from indexing on other arguments
than the first. Thus they avoid heuristics or costly upfront
analysis to find out on which argument indexing should be
performed. This is a great example of how runtime tech-
niques can improve performance of Prolog systems.

7. CONCLUSIONS

In this paper we presented a simple Prolog interpreter writ-
ten in RPython, which can be compiled into a C-level VM
with the PyPy translation toolchain, optionally also generat-
ing a tracing JIT compiler in the process. The resulting VM
is reasonably efficient and can be very fast in cases where
the generated JIT works well. Our approach represents a
success story for partial evaluation on a large language im-
plementation. To the best of our knowledge, it is also the
first Prolog implementation that defers all compilation to
runtime. We argue that Prolog can greatly benefit from JIT
compilation techniques, given its dynamic nature.

At the moment there are also a number of disadvantages
to our approach. The memory usage of the resulting inter-
preter can be very bad, due to the overhead of using many
objects and the lack of low-level control. In addition, the
way the generated JIT works is not always very transpar-

ent, sometimes making it hard to know why certain Prolog
code is compiled efficiently to assembler and other code is
not. Sometimes the JIT compiler itself can take too much
time to be really profitable.

We plan to investigate in much more detail why the JIT is
sometimes not giving very good results; this might make it
necessary to improve the JIT generator of the PyPy project
itself. In addition we want to improve the interpreter itself
by adding more Prolog-level optimizations such as indexing.
We should also find ways to save memory, e.g., by forgoing
some of the abstractions in the interpreter.

8. REFERENCES

[1] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis.
RPython: a step towards reconciling dynamically and
statically typed OO languages. In Proceedings of the
2007 symposium on Dynamic languages, pages 53—64,
Montreal, Quebec, Canada, 2007. ACM.
L. Augustsson. Partial evaluation in aircraft crew
planning. In PEPM, pages 127-136, 1997.
L. Augustsson. O, partial evaluator, where art thou?
In J. P. Gallagher and J. Voigtlander, editors, PEPM,
pages 1-2. ACM, 2010.
S. Barker, M. Leuschel, and M. Varea. Efficient and
flexible access control via logic program specialisation.
In Proceedings PEPM’0/, pages 190-199. ACM Press,
2004.
C. F. Bolz, A. Cuni, M. Fijatkowski, and A. Rigo.
Tracing the meta-level: PyPy’s tracing JIT compiler.
In Proceedings of the 4th workshop on the
Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems,



Classical Prolog Benchmarks

103 F T T T T T T T T T T T

i : : ] ] ] ~ Prolog ] ] ]
I:l SICStus—intérp - iCiao - 6wn—JIT wérm

:l SICStus - %own—inter%p - ﬁuprolog

Times sicstus-interpreted

Figure 10: Results of classical Prolog Benchmarks

Benchmark || SICStus-interp | SICStus SWI Ciao | own-interp | tuProlog
arithmetic 39MB | 3.1MB| 28MB | 9.6 MB 5.8 MB | 101.0 MB
boyer 45MB | 45MB | 3.2MB | 10.9 MB 13.9 MB -
chat_parser 3.5 MB 3.2 MB 2.5 MB 9.5 MB 11.2 MB -
crypt 32MB| 3.0MB| 24MB | 94 MB 3.8 MB | 109.9 MB
deriv 37MB | 3.0MB | 25MB | 9.5MB 7.8 MB -
nrev 44MB | 44MB | 2.8MB | 10.9 MB 52.8 MB | 155.4 MB
primes 36.1 MB | 23.1 MB | 28.0 MB | 36.8 MB 49.2 MB -
gsort 37MB | 3.0MB| 24MB | 94 MB 7.7 MB -
queens 3.0 MB 3.0 MB 2.4 MB 9.4 MB 7.2 MB | 135.7 MB
reducer 45MB | 45MB | 27MB | 99 MB | 542.3 MB -
tak 47MB | 3.0MB | 2.6 MB| 94 MB 11.1 MB | 106.0 MB
zebra 33MB| 3.0MB| 24MB | 94 MB 7.8 MB —

Figure 11: Memory footprint for classical Prolog benchmarks



[10]

[11]

[12]

[16]

[17]

[19]

pages 18-25, Genova, Italy, 2009. ACM.

C. F. Bolz, M. Leuschel, and A. Rigo. Towards
Just-In-Time partial evaluation of Prolog. In
Logic-based Program Synthesis and Transformation
(LOPSTR’2009), LNCS 6037 to appear.
Springer-Verlag.

C. F. Bolz and A. Rigo. How to not write a virtual
machine. In Proceedings of the 3rd Workshop on
Dynamic Languages and Applications (DYLA 2007),
2007.

M. Chang, M. Bebenita, A. Yermolovich, A. Gal, and
M. Franz. Efficient Just-In-Time execution of
dynamically typed languages via code specialization
using precise runtime type inference. Technical Report
ICS-TR-07-10, Donald Bren School of Information and
Computer Science, University of California, Irvine,
2007.

J. J. Cook. P#: a concurrent prolog for the .NET
framework. Softw. Pract. Exper., 34(9):815-845, 2004.
V. S. Costa, K. Sagonas, and R. Lopes.
Demand-Driven indexing of Prolog clauses. In Logic
Programming, pages 395-409, 2007.

B. Demoen. On the transformation of a Prolog
program to a more efficient binary program. Technical
Report 130, K.U. Leuven, Dec. 1990.

E. Denti, A. Omicini, and A. Ricci. tuProlog: a
light-weight Prolog for internet applications and
infrastructures. In Practical Aspects of Declarative
Languages, pages 184-198. 2001.

D. P. Friedman, W. E. Byrd, and O. Kiselyov. The
Reasoned Schemer. MIT Press, July 2005.

A. Gal, M. Bebenita, and M. Franz. One method at a
time is quite a waste of time. In Proceedings of the
Second Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs
and Systems (ICOOOLPS’2007), pages 11-16, Berlin,
Germany, July 2007.

A. Gal, B. Eich, M. Shaver, D. Anderson, B. Kaplan,
G. Hoare, D. Mandelin, B. Zbarsky, J. Orendorff,

M. Bebenita, M. Chang, M. Franz, E. Smith,

R. Reitmaier, and M. Haghighat. Trace-based
Just-in-Time type specialization for dynamic
languages. In PLDI, 2009.

A. Gal and M. Franz. Incremental dynamic code
generation with trace trees. Technical Report
ICS-TR~06-16, Donald Bren School of Information and
Computer Science, University of California, Irvine,
Nov. 2006.

A. Gal, C. W. Probst, and M. Franz. HotpathVM: an
effective JIT compiler for resource-constrained devices.
In Proceedings of the 2nd international conference on
Virtual execution environments, pages 144—-153,
Ottawa, Ontario, Canada, 2006. ACM.

B. Goldberg and Y. G. Park. Higher order escape
analysis: optimizing stack allocation in functional
program implementations. In Proceedings of the third
European symposium on programming on ESOP 90,
pages 152-160, Copenhagen, Denmark, 1990.
Springer-Verlag New York, Inc.

D. Gudeman. Representing type information in
Dynamically-Typed languages. Technical Report
TR93-27, University of Arizona at Tucson, 1993.

20]

21]

(22]

23]

(24]

[25]

[26]

27]

28]

29]

30]

S. L. Huitouze. A new data structure for implementing
extensions to Prolog. In Programming Language
Implementation and Logic Programming, pages
136-150. 1990.

N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice Hall, 1993.

R. Jones and R. D. Lins. Garbage Collection:
Algorithms for Automatic Dynamic Memory
Management. Wiley, Sept. 1996.

K. M. Kahn and M. Carlsson. How to implement
prolog on a LISP machine. In Implementations of
Prolog, pages 117-134. 1984.

M. Leuschel and D. De Schreye. Creating specialised
integrity checks through partial evaluation of
meta-interpreters. The Journal of Logic Programming,
36(2):149-193, August 1998.

T. Lindgren. A Continuation-Passing style for Prolog.
In Symposium on Logic Programming, pages 603-617,
1994.

U. Neumerkel. Continuation Prolog: A new
intermediary language for WAM and BinWAM code
generation. Post-ILPS’95 Workshop on
Implementation of Logic Programming Languages.
F16G, 1995.

G. Piancastelli, A. Benini, A. Omicini, and A. Ricci.
The architecture and design of a malleable
object-oriented prolog engine. In Proceedings of the
2008 ACM symposium on Applied computing, pages
191-197, Fortaleza, Ceara, Brazil, 2008. ACM.

A. Rigo and S. Pedroni. PyPy’s approach to virtual
machine construction. In Companion to the 21st ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 944-953,
Portland, Oregon, USA, 2006. ACM.

P. Tarau. BinProlog: a continuation passing style
Prolog engine. In M. Bruynooghe and M. Wirsing,
editors, Proceedings of Programming Language
Implementation and Logic Programming, Lecture
Notes in Computer Science, page 479-480. Springer,
Aug. 1992. poster.

P. van Roy. 1983-1993: The wonder years of sequential
Prolog implementation. Journal of Logic
Programming, 19:385-441, 1994.



basic iteration:

iterate(0).
iterate(X) :- Y is X - 1, iterate(Y).

iteration with an asserted predicate:

:— dynamic(iterate_assert/1).
iterate_assert(a).
:— assert(iterate_assert(0)).
:— assert((iterate_assert(X) :-
(Y is X - 1, iterate_assert(Y)))).

iteration with call:

iterate_call(X) :- c(X, c).

c(0, ).
c(X, Pred) :-
Y is X - 1, C =.. [Pred, Y, Pred], call(C).

iteration with a cut:

iterate_cut(0).
iterate_cut(X) :- Y is X - 1, !, iterate_cut(Y).
iterate_cut(X) :- Y is X - 2, iterate_cut(Y).

iteration with exceptions:

e(0).
e(X) :- X >0, X0 is X - 1, throw(continue(X0)).
iterate_exception(X) :-

catch(e(X), continue(X0), iterate_exception(X0)).

iteration with a failure-driven loop:

g(X, Y, Out) :- Out is X - Y.
g(X, Y, Out) :-Y >0, YOis Y - 1, g(X, YO, Out).

iterate_failure(X) :- g(X, X, A), fail.
iterate_failure(_ ).

iteration using findall:

iterate_findall(X) :-
findall (Out,
(g(D, D, Out), O is Out mod 50),
).

iteration with if-then-else:

equal(0, 0). equal(X, X).
iterate_if (X) :- equal(X, 0) -> true ;
Y is X - 1, iterate_if(Y).

Figure 12: A number of iteration benchmarks



