
Towards Just-In-Time Partial Evaluation of
Prolog

Carl Friedrich Bolz, Michael Leuschel, Armin Rigo

Institut für Informatik, Heinrich-Heine Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

cfbolz@gmx.de, leuschel@cs.uni-duesseldorf.de, arigo@tunes.org

Abstract. We introduce a just-in-time specializer for Prolog. Just-in-
time specialization attempts to unify of the concepts and benefits of
partial evaluation (PE) and just-in-time (JIT) compilation. It is a variant
of PE that occurs purely at runtime, which lazily generates residual code
and is constantly driven by runtime feedback.
Our prototype is an on-line just-in-time partial evaluator. A major fo-
cus of our work is to remove the overhead incurred when executing an
interpreter written in Prolog. It improves over classical offline PE by re-
quiring almost no heuristics nor hints from the author of the interpreter;
it also avoids most termination issues due to interleaving execution and
specialization. We evaluate the performance of our prototype on a small
number of benchmarks.

1 Introduction

Just-in-time compilers have been hugely successful in recent years, often provid-
ing significant benefits over traditional (ahead-of-time) compilers.1 Indeed, much
more information is available at runtime, some of which can be very expensive
or impossible to obtain ahead-of-time by traditional static analysis. The biggest
success story is possibly the Java HotSpot [22] just-in-time compiler, which now
often matches or beats classical C++ compilers in terms of speed.

Dynamic languages have seen a recent surge in activity and industrial ap-
plications. Dynamic languages, due to their very nature, make traditional static
analysis and compilation nigh impossible. Hence, a lot of hope is put into just-in-
time compilation. Many techniques have been proposed; one of the main recent
successes is the Psyco just-in-time specializer [24] for Python. In the best cases
it can remove all the overhead incurred by the dynamic nature of the language.
Its successor, the JIT compiler generator developed in the PyPy framework [26],
is one of the bases for the present work, where we are interested in applying sim-
ilar techniques to Prolog in general and partial evaluation of Prolog programs
in particular.

1 Even though there is of course room for both. Some applications do require static
compilation techniques and validation, in the form of static analysis or type checking,
which provides benefits over runtime validation.

Partial evaluation [16] is a technology that has been very popular for improv-
ing the performance of Prolog programs. Indeed, for Prolog, partial evaluation
is more tractable than for imperative or object-oriented languages, such as C
or Python. Especially for interpreters (one of the typical Prolog applications),
speedups of several orders of magnitude are possible [2]. However, while some
isolated successul applications exist, there is no widespread usage of partial eval-
uation technology. One problem is that the static input needs to be known ahead
of time, whereas quite often the input that enables optimisations is only available
at runtime. Also, one faces problems such as code explosion, as the specialized
program sometimes needs to anticipate all possible runtime combinations in or-
der not to loose static information. We argue that these problems can be solved
by incorporating and adapting ideas from just-in-time compilation.

In this paper we present the technique of just-in-time partial evaluation along
with an first prototype implementation for Prolog. The key contributions of our
work are:

1. Just-in-time specialization allows us to decide which information is relevant
for good optimisation; we can decide at runtime what is static and dynamic.

2. The specializer can inspect a runtime value at any point in time, and use it
as a static value in order to partially evaluate the code that follows. We call
this concept promotion.

3. Partial evaluation is done lazily; only parts really required are specialized,
and compilation and execution are tightly interleaved.

Our paper is structured as follows. We discuss the problems that trouble
classical partial evaluation in more detail in Sect. 2. The main mechanism of
just-in-time partial evaluation is explained in Sect. 3. These goals are achieved
with the use of “lazy choice points”, which are the basic concept of this work.
The control of our partial evaluator is discussed in Sect. 4. In Sect. 5 we examine
the behaviour of our specializer for some examples. Related work and conclusion
are presented in Sect. 6 and 7 respectively.

2 Problems of Classical Partial Evaluation

Partial evaluation [16] is a well-known source-to-source program transformation
technique. It specialises programs by pre-computing those parts of the program
which depend only on statically known input. The so-obtained transformed pro-
grams are less general than the original but can be much more efficient. In the
context of logic programming, partial evaluation proceeds mostly by unfolding
[19, 17] and is sometimes referred to as partial deduction.

Partial evaluation has a number of problems that have prevented it from
being widely used, despite its considerable promise. One of the hardest prob-
lems of partial evaluation is the balance between under- and over-specialization.
Over-specialization occurs when the partial evaluator generates code that is too
specialized. This usually leads to too much code being generated and can lead

2

to “code explosion”, where a huge amount of code is generated, without signifi-
cantly improving the speed of the code.

The opposite effect is that of under-specialization. When it occurs, the resid-
ual code is too general. This happens either if the partial evaluator does not
have enough static information to make better code, or if the partial evaluator
erroneously decides that some of the information it has is actually not useful
and it then discards it.

The partial evaluator has to face difficult choices between over- and under-
specialization. To prevent under-specialization it must keep as much information
as possible, since once some information is lost, it cannot regained. However,
keeping too much information is also not desirable, since it can lead to too much
residual code being produced, without producing any real benefit.

Figure 2 shows an example where Ecce (a partial evaluator for pure Pro-
log [18]) produces bad code when doing partial evaluation. The code in the
figure is a simple Prolog meta-interpreter which stores the outstanding goals
in a list (the point of the jit merge point predicate is explained in Sect.
4.2. Ecce just ignores it). The interpreter works on object-level representa-
tions of append, naive reverse and a predicate replacing the leaves of a tree.
When Ecce is asked to residualize a call to the meta-interpreter interpreting
the replaceleaves predicate, it loses the information that the list of goals can
only consist of replaceleaves terms. Thus eventually the residual code must
be able to deal with arbitrary goals in the list of goals, which causes the full
original program to be included in the residual code that Ecce produces (see
predicates solve 5, my clause 6 and append 7 in the residual code). This is
a case of under-specialization (the code could be more specific and thus faster)
and also of code explosion (the full interpreter is contained again, not only the
parts that are needed for replaceleaves). We will come back to this example
in Section 5.

A related problem are Prolog builtins. Many Prolog partial evaluators do not
handle Prolog builtins very well. For example Ecce only supports purely logical
builtins (which are builtins which could in theory be implemented by writing
down a potentially infinite set of facts). Some builtins are just hard to support
in principle, e.g., a partial evaluator cannot assume anything about the result of
read(X).

The fact that many classical Prolog partial evaluators do not support builtins,
means that quite often user programs have to be rewritten in non-trivial ways –
a time-consuming task.

3 Basics of Just-in-time Specialization

3.1 Basic Setting

We propose to solve the problems described in the previous section by just-in-
time partial evaluation. The basic idea is that the partial evaluator is executed
at runtime rather than ahead of time, interleaved with the execution of the

3

Original code:

solve([]).

solve([A|T]) :-

jit_merge_point,

my_clause(A,B), append(B,T,C), solve(C).

append([], T, T).

append([H|T1], T2, [H|T3]) :-

append(T1, T2, T3).

my_clause(app([],L,L),[]).

my_clause(app([H|X],Y,[H|Z]),[app(X,Y,Z)]).

my_clause(replaceleaves(leaf, NewLeaf, NewLeaf),[]).

my_clause(replaceleaves(node(Left, Right), NewLeaf,

node(NewLeft, NewRight)),

[replaceleaves(Left, NewLeaf, NewLeft),

replaceleaves(Right, NewLeaf, NewRight)]).

my_clause(nrev([],[]), []).

my_clause(nrev([H|T], Z), [nrev(T, T1), app(T1, [H], Z)]).

Residual code for solve([replaceleaves(A, B, C)]) by Ecce :

solve([replaceleaves(A, B, C)]) :- solve__2(A, B, C).

solve__2(leaf,A,A).

solve__2(node(A,B),C,node(D,E)) :- solve__3(A,C,D,B,E,[]).

solve__3(leaf,A,A,B,C,D) :- solve__4(B,A,C,D).

solve__3(node(A,B),C,node(D,E),F,G,H) :-

solve__3(A,C,D,B,E,[replaceleaves(F,C,G)|H]).

solve__4(leaf,A,A,B) :- solve__5(B).

solve__4(node(A,B),C,node(D,E),F) :- solve__3(A,C,D,B,E,F).

solve__5([]).

solve__5([A|B]) :-

my_clause__6(A,C),

append__7(C,B,D),

solve__5(D).

my_clause__6(app([],A,A),[]).

my_clause__6(app([A|B],C,[A|D]),[app(B,C,D)]).

my_clause__6(replaceleaves(leaf,A,A),[]).

my_clause__6(replaceleaves(node(A,B),C,node(D,E)),

[replaceleaves(A,C,D),replaceleaves(B,C,E)]).

my_clause__6(nrev([],[]),[]).

my_clause__6(nrev([A|B],C),[nrev(B,D),app(D,[A],C)]).

append__7([],A,A).

append__7([A|B],C,[A|D]) :-

append__7(B,C,D).

Fig. 1. Under-Specialization in Ecce for a Meta-Interpreter

4

specialized code (see Fig. 2). This allows it to observe the runtime behaviour
of the program, giving it more information than a static specializer to base
its decisions on. The approach we take is that the specializer produces some
residual code upon demand, uses assert to put it into the Prolog database and
then immediately runs the asserted code.2 More residual code is produced later,
if that becomes necessary. The details of when this process is started and stopped
are described below.

The specialization process itself proceeds by interpretation of the Prolog
source code. If a deterministic call to a user-predicate is interpreted, it is un-
folded; otherwise specialization stops as described in the following section. If a
call to a built-in is encountered, in the general case the call is skipped, i.e. put in
the residual code; but a number of common built-ins have corresponding custom
specialization rules and produce specialized residual code (or no code at all).

Specializer

resume running user program

Spec. Code

emit code

promote(X)
(value of X
required to
continue)

X = value
continue

specialization
with

X=value
extend code

Promotion
tim

e

= callback to specializer

Fig. 2. Interleaving of partial evaluation and execution of residual code

3.2 Promotion: Lazy Choice Points

The fundamental building block for the partial evaluator to make use of the
just-in-time setting are lazy choice points. When reaching a choice point in the
original program, the partial evaluator does not know which choice would be
taken at runtime. Compiling all cases is undesirable, since that can lead to code

2 On some Prolog systems, dynamically asserted code runs slower than static code.
We can sometimes use workarounds, like compile predicates in SWI-Prolog.

5

explosion. Therefore it inserts a callback to the specializer into the residual code
and stops the partial evaluation to let the residual code run. When the callback
is reached, the specializer is invoked again and specializes exactly the switch case
that is needed by the running code. After specialization has finished, this new
code is generated. See Figure 2 for a diagram of the interactions involved.

Another usage of lazy choice points by the partial evaluator is to get infor-
mation about terms (X in the figure) which are required to obtain good special-
ization but are not available statically. When the actual runtime value (or some
partial info about the value, like the functor and arity) of an unknown term is
needed by the partial evaluator during specialization, specialization stops and
a callback is inserted. Then the residual code generated so far is executed until
the callback point is reached. When this happens, the value of the formerly un-
known term is available (there are no unknown terms at runtime of course). At
this point the specializer is invoked with the now known term and more code can
be produced. We call this process promotion: it promotes a dynamic, unknown
value to a static value available to the specializer.

Our approach is best illustrated by an example. Assume we have the following
predicate:

negation(true(X), false(X)).
negation(false(X), true(X)).

First, our specializer rewrites this predicate in a pre-processing phase into the
following form, which makes the choice point and first-argument indexing visible:

negation(X, Y) :- switch_functor(X, [
case(true/1, (X = true(Z), Y = false(Z))),
case(false/1, (X = false(Z), Y = true(Z)))]).

The predicate switch functor performs a switch on the functor of its first
argument, the possible cases are described by the second argument. It could be
implemented as a Prolog-predicate like this:

switch_functor(X, [case(F/Arity, Body)|_]) :-
functor(X, F, Arity), call(Body).

switch_functor(X, [_|MoreCases]) :-
switch_functor(X, MoreCases).

If the specializer encounters the call negation(X) it cannot know whether
the functor of X will be true or false (if it would know the functor of X it could
continue unfolding with the correct case immediately). Therefore the specializa-
tion process stops. At this point the following code has been generated and put
into the clause database:

’$negation1’(X, Y) :-
’$case1(X), ’$promotion1’(X, Y).

’$case1(true(_)).

6

’$case1(false(_)).
’$promotion1’(X, Y) :-

functor(X, F, N),
callback(F/N, ’$promotion1’, ...),
’$promotion1’(X, Y).

The predicate ’$negation1’ is the entry-point of the specialized version of
negation. The ’$case1’ predicate ensures that X is bound when ’$promotion1’
is called. The ’$promotion1’ predicate is the lazy choice point. At this point this
predicate has only one clause, which is for invoking the specializer again. More
clauses will be added later. If it is executed, partial evaluation will be resumed
by calling callback, passing in the functor and the arity of the argument as
information for specializing more code. Thus, one concrete clause of the choice
point will be generated. After this is done, the promotion predicate is called
again, which will execute the newly generated case.

The callback gets the functor and arity as its first argument. The second
argument is the name of the predicate that should get a new clause added. The
further arguments (shown only as ... in the code above) contain the Cases in
the switch functor call, the continuation of what the partial evaluator still has
to evaluate after the choice point. When callback is called, it will use its first
argument to decide which of the cases it should partially evaluate further.

Let us assume that ’$negation1’ is first called with false(X) as an ar-
gument. Then ’$promotion1’ will be executed, calling callback(false/1,
’$promotion1’, ...). This will resume the partial evaluator which then gener-
ates residual code only for the case where X is of the form false(). The residual
code looks as follows:

’$promotion1’(false(Z), Y) :-
!, Y = true(Z).

This code will be asserted using asserta, which means that it will be tried
before the clause of ’$promotion1’ shown above. This has the effect that the
next time ’$negation1’ is called with false(X) as an argument, this code will
be used and no specialization will be performed. The cut is necessary to prevent
the backtracking into the clause calling back into the specializer.

If the ’$negation1’ predicate is never actually called with an argument of
the form true(X), then the other case of the switch will never be specialized,
saving time and memory. This might not matter for such a trivial case as the
one above, but it strongly reduces specialization time and size of the residual
code for more realistic cases (e.g. consider what happens if the body of negation
contains calls to many predicates). If the other case will be specialized eventually,
the residual code would look like this:

’$promotion1’(true(Z), Y) :-
!, Y = false(Z).

This code will again be inserted into the database using asserta so that it
too will be tried before the specialization case.

7

3.3 Other uses of lazy switches

The switch functor primitive has some other uses apart from the obvious
ones that it was designed for. These other uses also exploit the laziness of
switch functor, less so the switching part. One of them is to implement a
lazy version of disjunction (the “;” builtin).

Another use of switch functor is to support the call(X) builtin (which
very few partial evaluators for Prolog do efficiently). This can be considered to
be a switch of X over all the predicates in the program. Since switch functor
is lazy, only those predicates that are actually called at runtime need to be
specialized. An example for this can be found in Sect. 4.3.

4 Control and Ensuring Termination

4.1 Code Generation and Local Control

So far we have not explained exactly how we generate the specialized code (apart
from the lazy switches). Basically, we use the well-known partial evaluation
framework as presented in [17] (which builds upon the original work in [19]).
The control of partial evaluation for logic programs is often separated into local
and global control [21], where the global control decides which calls are special-
ized and the local control performs the unfolding of those calls. In the simple
setting described so far, we can simply view the local control of our just-in-
time specializer as performing unfolding until a choice point is reached. At this
point, the specializer stops and generates a resultant clause with a callback into
the specializer (as explained in the last section). More precisely, the unfolding
rule will recursively process the leftmost literal in a goal that has not yet been
examined, with the following options:

1. If it is a switch functor which is sufficiently instantiated, the proper case
will be chosen.

2. If it is a switch functor which is not sufficiently instantiated, unfolding
stops and a call back into the specializer is inserted into the resultant, using
a lazy switch, as explained in the previous section.

3. If it is a built-in, then the built-in is specialized, yielding a single computed
answer along with a specialized version of the built-in to be put into the
residual code. For non-deterministic built-ins, the computed answer is gen-
eral enough to cover all solutions. Failure can also be detected, in which case
the branch is pruned.

4. If the leftmost literal is a user-predicate, it will be simply unfolded. Ob-
serve that this is deterministic, as all choice points are encoded via the
switch functor primitive.

To ensure that the semantics are preserved in the presence of impure built-ins
or predicates, we do not always left-propagate bindings (in case we do not select
the leftmost literal). Bindings are left-propagated only until impure built-ins are
met, using techniques from [23].

8

As our just-in-time specializer interleaves ordinary execution with code gen-
eration, the overall procedure cannot always terminate (namely when the user
query under consideration does not terminate). However, we would like to ensure
that if the unspecialized program itself terminates (existentially or universally
respectively) then the just-in-time specializer process should also terminate (exis-
tentially or universally respectively). The above process does not fully guarantee
this, as our just-in-time specializer may not detect that a call to a built-in in
point 3 actually fails. This means that the just-in-time specializer would proceed
specialization on a computation path which does not occur at runtime, which is
a problem if this path is infinite.

One pragmatic solution is to ensure that the just-in-time specializer will
maximally perform N specialization steps before executing residual code again.
Every time the residual code is executed, the computation progresses. Therefore
the presence of the just-in-time specializer specializer can only lead to a linear
slowdown, which means in particular that it preserves termination behaviour.

4.2 Global Control

In some cases the specialization technique described so far can be sufficient.
However, it does not reuse any of the generated residual code (i.e., the specializer
produces a tree of predicate); what we want is to eventually obtain a jump to
an already-specialized predicate, typically closing a loop. Instead of a tree, the
final result should be an arbitrary graph of residual predicates.

In the current prototype, the specializer never tries to reuse existing residual
code on its own. To trigger global control, the specialized program needs to re-
quest the attempt to reuse existing residual code by inserting a call to a special
predicate called jit merge point. This predicate does nothing if executed nor-
mally, but is dealt with by the partial evaluator in a special way. For an example
usage, see Figure 2.

The need for this sort of explicit hint is clearly not ideal, but we felt that
it simplified implementation enough to still be a good choice, given that most
programs with an interpretative nature need to contain only one call or a small
number of calls to this predicate. We plan to find ways of automatically placing
this call in the future.

At the places where a call to jit merge point is seen, the partial evaluator
tries to reuse an already existing residual predicate. It does this by comparing
the continuations that the partial evaluator has currently with those it had at
earlier calls to jit merge point. If those continuations are similar enough the
partial evaluator inserts a call to the residual predicate produced earlier and
stops the partial evaluation process. The exact conditions when this is possible
are outside the scope of this paper and are fully explained in [3]. In summary, the
procedure remembers which parts of the term have been used to resolve choice
points; parts which did not contribute in any way to improve the specialisation
are thrown away.3

3 In some sense this can be seen as an evolution of the generalisation operator from
[12] to a just-in-time specialisation setting.

9

In the next subsection we present a simple example which illustrates this
aspect of our system, and also highlights the potential of our just-in-time spe-
cialization compared to traditional partial evaluation.

4.3 A Worked Out Example: Read-Eval-Print Loop

As an showcase example we wrote a minimal read-eval-print loop for Prolog,
which can be seen in Fig. 3. Most classical partial evaluators have a hard-time
producing good code for read eval print loop, because after read(X) the value
of X is unknown, which makes it impossible to figure out which predicate call(X)
will ultimately call.

For our prototype this represents no real problem. The functor of X can be
promoted, thus observing at runtime which predicate is to be called. Subse-
quently, this predicate can be specialized. Fig. 3 also shows an example session
as well as the residual code that our prototype generated for this session (note
that the clauses for ’$callpromotion1’ are shown in the order in which they are
in the database, which is the reverse order in which they have been generated).

5 Experimental Results

To get some impression for the performance of our dynamic partial evaluation
system, we ran a number of benchmarks. We compared the results with those
of Ecce [18], an automatic online program specializer for pure Prolog. The ex-
periments were run on a machine with a 1.4 GHz Pentium M processor and
1GiB RAM, using Linux 2.6.24. For running our prototype and the original and
specialized programs we used SWI-Prolog Version 5.6.47 (Multi-threaded, 32
bits). Ecce was used both in “classic mode” which uses normal partial evalua-
tion and in “conjunctive mode” (which uses conjunctive partial deduction with
characteristic trees and homeomorphic embedding; see [9]). Conjunctive partial
evaluation is considerably more powerful, but also much more complex.

Figure 5 presents five benchmarks. The first three are examples for a typical
logic programming interpreter with one and also with two levels of interpretation.
The fourth example is a higher-order example, using the meta-predicates =..
and call. Finally, the fifth is a small interpreter for a dynamic language. Note
that “spec” refers to the specialization time and “run” to the runtime of the
specialized code. For Ecce the specialization time was not measured.

Our prototype is in all cases faster than the original code, but also in all cases
slower (by a factor between 2 and 8) than Ecce in conjunctive mode. On the
other hand, our prototype is faster than Ecce in classical mode in two cases.
These are not bad results, considering the relative complexity and maturity of
the two projects. Our prototype is rather straightforward. It was written from
scratch over the course of some months and consists of about 1500 lines of
Prolog code. On the other hand, Ecce is a mature system that employs serious
theoretical results and consists of about 25000 lines of Prolog code.

10

Repl code and some example predicates:

read_eval_print_loop :-

jit_merge_point,

read(X),

call(X),

print(X),

nl, read_eval_print_loop.

% example predicates

f(a). f(b). f(c).

g(X) :- h(Y, X), f(Y).

h(c, d).

k(_, _, _) :- g(X), g(X).

Example session:

|: f(c).

f(c)

|: g(X).

g(d)

|: fail.

No

Produced residual code (promotion specialization cases not shown):

’$entrypoint1’ :-

read(A),

’$callpromotion1’(A).

’$callpromotion1’(fail) :- !,

fail.

’$callpromotion1’(g(A)) :- !,

A=d,

print(g(d)),

nl,

’$entrypoint1’.

’$callpromotion1’(f(A)) :- !,

’$case1’(A), ’$promotion1’(A).

’$case1’(a). ’$case1’(b). ’$case1’(c).

’$promotion1’(c) :- !,

print(f(c)),

nl,

’$entrypoint1’.

Fig. 3. A Simple read-eval-print-loop for Prolog

11

Experiment Inferences CPU Time Speedup

A vanilla meta-interpreter [14, 20] run-
ning append with a list of 100000 ele-
ments. The interpreter can be seen in
Figure 2.

Vanilla - Append
original 500008 0.35 s 1.0
JIT PE, spec+run 281842 0.13 s 2.69
JIT PE, run 200016 0.11 s 3.18
ecce classic 100003 0.03 s 11.67
ecce conjunctive 100003 0.03 s 11.67

The vanilla interpreter running itself
running append with a list of 100000 el-
ements.

Vanilla - Vanilla - Append
original 2000023 1.42 s 1.0
JIT PE, spec+run 1577228 0.66 s 2.15
JIT PE, run 700020 0.32 s 4.44
ecce classic 100003 0.04 s 35.5
ecce conjunctive 100003 0.04 s 35.5

The vanilla interpreter running
replaceleaves, see Figure 2. Input was
a full tree of depth 18.

Vanilla - Replace Leaves
original 2621438 2.76 s 1.0
JIT PE, spec+run 2493636 1.77 s 1.56
JIT PE, run 2097162 1.58 s 1.75
ecce classic 2097074 2.64 s 1.05
ecce conjunctive 589825 0.78 s 3.54

A higher order example: reduce in Pro-
log using =.. and call. This is summing
a list of 100000 integers, knowing stat-
ically the functor that is used for the
summation.

Reduce - Add
original 1492586 16.73 s 1.0
JIT PE, spec+run 5082861 3.53 s 4.74
JIT PE, run 5000014 3.24 s 5.16
ecce classic 1134504 8.5 s 1.97
ecce conjunctive 2000001 1.85 s 9.04

An interpreter (∼100 lines of Prolog) for
a small stack-based dynamic language.
The benchmark is running an empty
loop of 100000 iterations.

Stack Interpreter
original 2100010 3.13 s 1.0
JIT PE, spec+run 5699992 1.46 s 2.14
JIT PE, run 200019 0.08 s 39.13
ecce classic 100003 0.05 s 62.6
ecce conjunctive 100003 0.04 s 78.25

Fig. 4. Experimental Results

As we have also seen in Section 2 the third benchmark is one where Ecce in
classical mode produces rather bad code. This can be seen in the benchmark re-
sults as well, there is nearly no speedup when compared to the original code. Our
prototype has the same problem, it also loses the information that all the goals
in the goal list are replaceleaves calls. However, in our case this is not a prob-
lem, since that information can be regained with a promotion, thus preventing
code explosion and under-specialization.

6 More Related Work

Promotion is a concept that we have already explored in other contexts. Psyco
is a run-time specializer for Python that uses promotion (called “unlift” in [24]).

12

Similarly, the PyPy project [25, 4], in which all three authors are also involved,
contains a just-in-time specialization system built on promotion [26].

Greg Sullivan describes a runtime partial evaluator for a small dynamic lan-
guage based on lambda calculus [27]. Sullivan [27] further distinguishes two cases
(quoting): “Runtime partial evaluation [...] defers some of the partial evaluation
process until actual data is available at runtime. However the scope and actions
related to partial evaluation are largely decided at compile time. Dynamic par-
tial evaluation goes further, deferring all partial evaluation activity to runtime.”
Using this terminology, our system does dynamic partial evaluation.

One of the earliest works on runtime specialization is Tempo for C [8, 7].
However, it is essentially an offline specializer “packaged as a library”; decisions
about what can be specialized and how are pre-determined.

Another work in this direction is DyC [13], another runtime specializer for C.
Specialization decisions are also pre-determined, i.e. dynamic partial evaluation
is not attempted, but “polyvariant program-point specialization” gives a coarse-
grained equivalent of our promotion. Targeting the C language makes higher-
level specialization difficult, though (e.g. malloc is not optimized).

Polymorphic inline caches (PIC) [15] are very closely related to promotion.
They are used by JIT compilers of object-oriented language and also insert a
growable switch directly into the generated machine code. This switch exam-
ines the receiver types for a message for a particular call site. From that angle,
promotion is an extension of PICs, since promotions can be used to switch on
arbitrary values, not just receiver types.

The recent work on trace-based JITs [11] (originating from Dynamo [1])
shares many characteristics of our work. Trace-based JITs concentrate on gener-
ating good code for loops, and generate code by observing the runtime behaviour
of the user program. They also only generate code for code paths that are actu-
ally followed by the program at runtime. The generated code typically contains
guards; in recent research [10] on Java, these guards’ behavior is extended to
be similar to our promotion. This has been used by several implementations to
implement a dynamic language (JavaScript) [5, 6].

7 Conclusion and Future Work

In this paper we drew explicit parallels between partial evaluation and just-in-
time compilers. We showed with a Prolog prototype of a just-in-time partial
evaluator that these two domains might benefit a lot from a synergy. In par-
ticular, inspired by Polymorphic Inline Caches, we have developed the notion
of promotion for partial evaluation. We hope that our approach can help ad-
dress several fundamental issues that so far prevent classical partial evaluation
to reach its fullest potential: code explosion, termination, full Prolog support,
and scalability to large programs.

Due to the use of promotion our just-in-time partial evaluator works reason-
ably well for interpreters of dynamic languages and generally in situations where
information that the partial evaluator needs is only available at runtime. This is

13

an advantage that a classical partial evaluator can never possess for fundamen-
tal reasons. We have not tried our prototype on really large programs yet, so it
remains to be seen whether it works well for these.

There are some downsides to our approach. In particular promotion needs
a Prolog system that supports assert well, since the whole approach depends
on that in a crucial manner. We have not yet evaluated our work on any Prolog
system other than SWI-Prolog (which supports assert rather well). In the future
we would like to support other Prolog platforms like Ciao Prolog or Sicstus
Prolog as well.

Global control is another area that still needs further work. We plan to
explore ways of inserting the jit merge points automatically. Furthermore,
the global control strategy needs further evaluation and possible refinement.

Finally we need to take a look at the speed of the partial evaluator itself,
which we so far disregarded completely. Since partial evaluation happens at
runtime it is necessary for the partial evaluator to not have too bad performance.

References

1. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic opti-
mization system. ACM SIGPLAN Notices, 35:1–12, 2000.

2. S. Barker, M. Leuschel, and M. Varea. Efficient and flexible access control via logic
program specialisation. In Proceedings PEPM’04, pages 190–199. ACM Press, 2004.

3. C. F. Bolz. Automatic JIT Compiler Generation with Runtime Partial Evaluation.
Master thesis, Heinrich-Heine-Universität Düsseldorf, 2008. http://www.stups.uni-
duesseldorf.de/thesis detail.php?id=14.

4. C. F. Bolz and A. Rigo. How to not write a virtual machine. In Proceedings of 3rd
Workshop on Dynamic Languages and Applications (DYLA 2007), 2007.

5. M. Chang, M. Bebenita, A. Yermolovich, A. Gal, and M. Franz. Efficient just-in-
time execution of dynamically typed languages via code specialization using precise
runtime type inference. Technical report, Donald Bren School of Information and
Computer Science, University of California, Irvine, 2007.

6. M. Chang, E. Smith, R. Reitmaier, M. Bebenita, A. Gal, C. Wimmer, B. Eich,
and M. Franz. Tracing for web 3.0: Trace compilation for the next generation
web applications. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual ExecutionEnvironments, pages 71–80, Washington,
DC, USA, 2009. ACM.

7. C. Consel, L. Hornof, F. Noël, J. Noyé, and N. Volansche. A uniform approach
for compile-time and run-time specialization. In O. Danvy, R. Glück, and P. Thie-
mann, editors, Dagstuhl Seminar on Partial Evaluation, LNCS 1110, pages 54–72.
Springer, 1996.

8. C. Consel and F. Noël. A general approach for run-time specialization and its
application to c. In POPL, pages 145–156, 1996.

9. D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H.
Sørensen. Conjunctive partial deduction: Foundations, control, algorithms and
experiments. The Journal of Logic Programming, 41(2 & 3):231–277, November
1999.

10. A. Gal and M. Franz. Incremental dynamic code generation with trace trees. Tech-
nical report, Donald Bren School of Information and Computer Science, University
of California, Irvine, Nov. 2006.

14

11. A. Gal, C. W. Probst, and M. Franz. HotpathVM: an effective JIT compiler for
resource-constrained devices. In Proceedings of the 2nd international conference on
Virtual execution environments, pages 144–153, Ottawa, Ontario, Canada, 2006.
ACM.

12. J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program
specialisation. New Generation Computing, 9(3 & 4):305–333, 1991.

13. B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers. DyC: an expres-
sive annotation-directed dynamic compiler for c. Theoretical Computer Science,
248:147–199, 2000.

14. P. Hill and J. Gallagher. Meta-programming in logic programming. In D. M.
Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, volume 5, pages 421–497. Oxford Science
Publications, Oxford University Press, 1998.

15. U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In Proceedings of the European
Conference on Object-Oriented Programming, pages 21–38. Springer-Verlag, 1991.

16. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

17. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial de-
duction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–
515, July & September 2002.

18. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and poly-
variance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems, 20(1):208–258, January 1998.

19. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11(3& 4):217–242, 1991.

20. B. Martens and D. De Schreye. Two semantics for definite meta-programs, using
the non-ground representation. In K. R. Apt and F. Turini, editors, Meta-logics
and Logic Programming, pages 57–82. MIT Press, 1995.

21. B. Martens and J. Gallagher. Ensuring global termination of partial deduction
while allowing flexible polyvariance. In L. Sterling, editor, Proceedings ICLP’95,
pages 597–613, Kanagawa, Japan, June 1995. MIT Press.

22. M. Paleczny, C. Vick, and C. Click. The java HotSpot server compiler. In Proceed-
ings of the Java Virtual Machine Research and Technology Symposium on Java
Virtual Machine Research and Technology Symposium - Volume 1, Monterey, Cal-
ifornia, 2001. USENIX Association.

23. S. Prestwich. An unfold rule for full Prolog. In K.-K. Lau and T. Clement, editors,
Logic Program Synthesis and Transformation. Proceedings of LOPSTR’92, Work-
shops in Computing, pages 199–213, University of Manchester, 1992. Springer-
Verlag.

24. A. Rigo. Representation-based just-in-time specialization and the psyco prototype
for python. In N. Heintze and P. Sestoft, editors, PEPM, pages 15–26. ACM, 2004.

25. A. Rigo and S. Pedroni. PyPy’s approach to virtual machine construction. In
Companion to the 21st ACM SIGPLAN conference on Object-oriented program-
ming systems, languages, and applications, pages 944–953, Portland, Oregon, USA,
2006. ACM.

26. A. Rigo and S. Pedroni. JIT compiler architecture. Technical Report D08.2, PyPy
Consortium, 2007. http://codespeak.net/pypy/dist/pypy/doc/index-report.html.

27. G. T. Sullivan. Dynamic partial evaluation. In Proceedings of the Second Sympo-
sium on Programs as Data Objects, pages 238–256. Springer-Verlag, 2001.

15

