
Efficient Approximate Verification of Promela
Models via Symmetry Markers

Dragan Bošnački1, Alastair F. Donaldson2, Michael Leuschel3, Thierry
Massart4

1 Department of Biomedical Engineering, Eindhoven University of Technology
dragan@win.tue.nl

2 Codeplay Software Ltd., Edinburgh, ally@codeplay.com
3 Institut für Informatik, Universität Düsseldorf, leuschel@cs.uni-duesseldorf.de
4 Département d’informatique, Université Libre de Bruxelles, tmassart@ulb.ac.be

Abstract. We present a new verification technique for Promela which
exploits state-space symmetries induced by scalarset values used in a
model. The technique involves efficiently computing a marker for each
state encountered during search. We propose a complete verification
method which only partially exploits symmetry, and an approximate ver-
ification method which fully exploits symmetry. We describe how symme-
try markers can be efficiently computed and integrated into the SPIN tool,
and provide an empirical evaluation of our technique using the TopSPIN

symmetry reduction package, which shows very good performance results
and a high degree of precision for the approximate method (i.e. very few
non-symmetric states receive the same marker). We also identify a class
of models for which the approximate technique is precise.

1 Introduction
The design of concurrent systems is a non-trivial task where generally a lot of
time is spent on simulation to track design errors. Model checking methods and
tools [Hol03,McM93,CGP99] can be used to help in this effort by automatically
analysing finite-state models of a system. In practice, exhaustive exploration of
a state-space is impractical due to the infamous state explosion problem, which
has motivated the development of more efficient exploration techniques. In par-
ticular, the model to be checked often consists of a large number of states which
are indistinguishable up to rearrangement of process identifiers. As a result, the
model is partitioned into classes of states where each member of a given class
behaves like every other member of the class (with respect to a logical property
that does not distinguish between individual processes). Symmetry reduction
techniques [CGP99,ID96,CEFJ96,ES96] allow the restriction of model checking
algorithms to a quotient state-space consisting of one representative state from
each symmetric equivalence class. One successful symmetry reduction technique
[ID96] relies on a special data type, called scalarset, used in the specification
to identify the presence of symmetry. Symmetry reduction using scalarsets has
been initially implemented in the Murφ verifier [ID96], and in previous work we
have adapted the same idea for Promela in the SymmSPIN tool [BDH02]. We
have also proposed in [DM05] a method to automatically detect, before search,
structural symmetries in Promela specifications, and such symmetries can be

exploited by the TopSPIN tool [DM06]. Both SymmSPIN and TopSPIN perform
symmetry reduction on-the-fly: each time a global state s is reached, its rep-
resentative state rep(s) is computed and used instead of s. If rep(t) = rep(s)
for every state t in the same class as s then symmetry reduction is said to be
full (i.e. it is memory-optimal). However, the computation of a unique repre-
sentative for an equivalence class (known as the constructive orbit problem) is
NP-hard [CEJS98]; and for some practical examples full symmetry reduction
strategies can be too time consuming. Therefore, partial symmetry reduction
strategies have been defined, which take less time to compute a representative
element. The price to pay is that multiple representatives may be computed
for a given equivalence class and therefore the reduction factor in the number
of global states explored can be smaller than with a full reduction method.

Number of
replicated processes

Size of
Statespace

Spin
(no symmetry reduction)

Full
Symmetry Reduction

Approximate Verification
All Symmetries detected

Partial Symmetry Reduction
Full Verification

Some Symmetries detected

Fig. 1. Illustrating partial symmetry reduction and
approximate verification.

Fig. 1 illustrates the
possible size of the ex-
plored state-space for
the various verification
methods, as a function
of the number of repli-
cated processes in the
system. The solid line
represents exhaustive
state-space exploration
without symmetry re-
duction, the dashed line
a complete verification of
the quotient state-space

modulo full symmetry reduction. Any complete verification method using
partial symmetry reduction would yield a function in the area between these
lines. Recently, we have proposed the symmetry marker method [LM07] in the
framework of the B specification language [Abr96]. This reduction technique
is inspired by the success of SPIN’s bitstate hashing technique [Hol88], which
regards two states as equivalent if they hash to the same value. Bitstate hashing
reduces the per-state storage requirement to a single bit, at the expense of
excluding a small percentage of states due to hash collisions. In a similar vein,
we define a marker function on global states, invariant under symmetry, which
can be computed efficiently. We avoid the underlying complexity induced by the
constructive orbit problem by assuming that two states with the same marker
value are symmetric. As this assumption can be wrong in general, we only have
an approximate verification technique (in the sense that collisions may occur
where non-symmetric states obtain the same marker value); but a very fast one.
If we refer to Fig. 1, our approximate verification method would give a function
on the dashed line when it provides complete verification, or below this line in
case of collisions when it only provides approximate verification.

In this paper, inspired by our previous works on symmetry, we propose two
new symmetry reduction methods for Promela: a complete verification method

which may compute more than one representative for each symmetric equivalence
class, and an approximate verification method which guarantees unique represen-
tatives, but results in a small number of collisions between equivalence classes.
We detail a TopSPIN-based implementation of these methods, and provide en-
couraging experimental results. Note that although we present our methods in
the context of Promela/SPIN, they are clearly transferrable to other explicit-state
model checking frameworks.

In the remainder of the paper, we briefly recall in Sect. 2 some relevant
features of SPIN and Promela, the notion of a scalarset and the main methods
employed by the SymmSPIN and TopSPIN tools. We outline in Sect. 3 the initial
symmetry marker method presented in [LM07], then describe in Sect. 4 a first
näıve method for Promela and SPIN, which is directly inspired by our symmetry
marker method. In Sect. 5 we describe our “complete” new methods based on
markers for Promela and SPIN. In Sect. 5 we also provide theoretical results
for particular classes of systems where our method is precise, and in Sect. 6
some results which empirically validate both methods compared to methods
without symmetry reduction and existing methods implemented in SymmSPIN

and TopSPIN.

2 Scalarsets in Promela

The SPIN model checker [Hol03] allows verification of concurrent systems speci-
fied in Promela — a C like language extended with Dijkstra’s guarded commands
and communication primitives from Hoare’s CSP. In Promela, system compo-
nents are specified as processes that can interact either by message passing, via
buffered or rendez-vous channels, or memory sharing, via global variables. Con-
currency is asynchronous and modelled by interleaving. SPIN can verify various
safety and liveness properties of a Promela model including any LTL formula. To
cope with the problem of state-space explosion, standard SPIN employs several
reduction techniques, such as partial-order reduction, state-vector compression,
and bitstate hashing. In SPIN each state has an explicit representation called the
state vector. The state vector has the form (G,R1, . . . , Rn), where G comprises
the values of global variables, and R1, . . . , Rn are records corresponding to the
processes in the system. Each process record contains the parameters, local vari-
ables and the program counter for the particular process. The marker algorithms
that we present in the sequel are independent of this representation, but in the
presentation we will refer to the process vector structure and in particular its
form for symmetric models.

SymmSPIN [BDH02] is an extension of SPIN with symmetry reduction based
on the scalarset data type [ID96], by which the user can point out (full) sym-
metries to the verification tool. The values of scalarsets are finite in number,
unordered, and allow only a restricted number of operations which do not break
symmetry. Intuitively, in the context of SPIN, the scalarsets are process identifiers
(pids) of a family of symmetric processes. Such a family is obtained by instanti-
ating a parameterized process type. One restriction is that applying arithmetic
operations to pids is forbidden. Also, since formally there is no ordering between

the scalarset values, the pids can be tested only for equality. We consider models
in Promela that are collections of parallel processes of the form B‖P1‖ . . . ‖Pn.
Processes Pi are instances of a parameterized process template and differ only
in their pid. Process B is a base process and it represents the “non-symmetric”
part of the model (though B must behave symmetrically with respect to the
Pi). Further, we assume that each state is represented explicitly by a state vec-
tor as described above. To illustrate the main ideas behind the strategies for
finding representatives in SymmSPIN, consider the following example adapted
from [BDH02]. Let us assume that we want to choose as a (unique) represen-
tative of each symmetry class (orbit) the state from that class represented by
the lexicographically minimal state vector. Further, suppose that there is an
array M (we call it the main array) at the very beginning (of the global part
G) of the state vector of our model. Let M be indexed by pids (scalarsets, here
1 to 5), but the elements of M are not of scalarset type. The sorted strategy
computes a representative of a state s by sorting M and applying the pid per-
mutation p corresponding to this sorting operation to the rest of the state vector.
This involves sorting the process records, and rearranging the values of scalarset
variables. Fig. 2 shows the state vector before and after sorting an example
main array M with permutation p = {1 7→ 1, 2 7→ 5, 3 7→ 3, 4 7→ 2, 5 7→ 4}.

2 8 7 2 7

2 2 7 7 8

rest of the state vector

"p(rest of the state vector)"

sorting M
induces a
pid permu-
tation p

M [5]M [4]M [3]M [2]M [1]

Fig. 2. A state vector before and after sorting the
main array M .

Note that when M con-
tains several instances
of the same value (here
2 and 7), several or-
bit representatives can be
computed for the same
class of states. Hence, the
sorted strategy only per-

forms partial symmetry reduction. Suppose we applied all pid permutations to
the upper state vector in Fig. 2. Then the lexicographical minimum among
the resulting states, smin say, would start with the same values as the lower
state vector, namely 2, 2, 7, 7, 8. However, the rest of smin need not coin-
cide with the rest of the lower state vector. The reason is that there are other
pid permutations that yield the same ordering of the array M , for example
p′ = {1 7→ 2, 2 7→ 5, 3 7→ 4, 4 7→ 1, 5 7→ 3}, but may give smaller results than p
when applied to the rest of the state vector. The segmented strategy applies all
pid permutations which sort M (in this example there are four of them) to the
whole state vector, and selects the smallest among the resulting states, which
is then guaranteed to be smin. The price to pay for this full reduction strategy
is factorial complexity in the worst case: if all values of M are identical in a
state then all n! scalarset permutations must be considered in order to compute
a representative for the state. However, for many states very few permutations
need to be considered, so this approach is more efficient than the basic approach
of considering every pid permutation at each state. Note that a main array is
always available and can be selected automatically by the model checker – if

no suitable array is explicitly declared in the model then the array of process
program counters can be used, by default.

The TopSPIN symmetry reduction package [DM06] builds on the ideas intro-
duced with SymmSPIN, supporting more general types of symmetry than just
full symmetry, and providing support for automatic symmetry detection based
on techniques presented in [DM05]. We use TopSPIN for implementation of our
techniques, so it is important to briefly explain the relationship between TopSPIN

and SymmSPIN. TopSPIN includes symmetry reduction strategies based on the
SymmSPIN sorted and segmented strategies. The TopSPIN sorted strategy is a
generalisation of the SymmSPIN sorted strategy: instead of sorting with respect
to one particular main array, sorting is performed in a more general fashion by re-
peatedly applying swap permutations to the entire target state. This generalised
sorted strategy sometimes performs better than the original SymmSPIN sorted
strategy, but both approaches share the problem that symmetry reduction may
result in storage of multiple orbit representatives. The TopSPIN segmented strat-
egy generalises the SymmSPIN segmented approach, and is described in detail
in [DM07]. For the special case of full symmetry, the TopSPIN and SymmSPIN

segmented strategies are analogous.

3 Symmetry Markers

Our symmetry marker technique, initially proposed in [LM07] for the B language,
is partially inspired by Holzmann’s successful bitstate hashing technique [Hol88].
In our case, the hash value is replaced by a marker. This marker has a more
complicated structure, but integrates the notion of symmetry: two symmetric
states will have the same marker and there is a “small chance” that two non-
symmetric states have the same marker. Our adapted model checking algorithm
stores those markers rather than the states and checks a new state only if its
marker has not yet been seen before. The advantages over classical symmetry
reduction are two-fold. First, a precise symmetry marker can be computed very
efficiently (depending on the system, basically linear or quadratic in the size of
the state for which the marker is computed), while classical symmetry reduction
has an inherent factorial complexity (in terms of the number of the symmetric
data values). The second advantage is the size of the state-space explored with
our marker method, which is equal or less than the size of the state space explored
with a full symmetry reduction method (smaller if collisions occur). The price
we pay is that – just as with the bitstate hashing technique – we no longer
have a complete verification method: two non-symmetric states s1, s2 can have
the same marker meaning that the second state s2 would not be checked, even
though it could lead to an error while no error is reachable from s1.

In the B language [Abr96], the deferred sets construct gives rise to symmetric
data values similar to scalarsets [LM07]. The value of a global state s can be
given as a vector of values of its global variables and constants, which are clas-
sified by the following types: simple non-symmetric (e.g. booleans, and integer
subranges), simple scalarset (i.e. a deferred set), pair, or finite (multi)sets. In
this setting, a set of pairs defines a relation and an array is defined as a total

function (i.e. a particular type of relation) between its indexes and the value
of its components. We adopt a standard structured view of a state as a rooted
acyclic graph whose nodes are labelled by their type and whose leaves are val-
ues. The root has n ordered children corresponding to n variables or constants.
Simple values are leaves of the graph, pair values have two ordered children and
(multi)sets have unordered children, one for each element in the (multi)set. The
idea of our marking function is to transform a state s into a marker by replac-
ing the scalarset values by so-called vertex invariants. In graph theory, a vertex
invariant inv is a function which labels the vertices of an arbitrary graph with
values so that symmetrical vertices are assigned the same label. Examples of
simple vertex invariants include the in-degree and the out-degree for the spec-
ified vertex. Our technique uses a more involved vertex invariant for scalarset
elements. Informally, a symmetry marker m(s) for a given state s is computed as
follows: (1) For every scalarset element d used in s, compute structural informa-
tion about its occurrence in s, invariant under symmetry. This is computed as
the multiset of paths that lead to an occurrence of d in s. (2) Replace all scalarset
elements by the structural information computed above and compute a marker
with an algorithm similar to the computation of the canonical form in the tree
isomorphism problem [Val02]. The resulting complexity is quadratic in the size
of the state in the worst case. We have proved in [LM07] that our definition is
indeed invariant under symmetry, i.e. that if s1 and s2 are symmetric states in a
system M then m(s1) = m(s2); we have also identified classes of systems where
the marker method is precise, i.e. it provides a full symmetry reduction method.
Note that the method is quite general and abstract and could be instantiated in
other contexts than those of SPIN/Promela and B.

4 A First Näıve Approach

As a stepping stone towards our approximate techniques, we first describe a
näıve strategy that we call flattened. In this approach we “flatten” the state
vector by assigning to each scalarset variable the same value. (The choice of the
concrete value is irrelevant – it can be from the range of the scalarset or some
other “neutral” value.) Basically, this amounts to distinguishing processes by the
values of their non-scalarset local variables only. Then we apply to the flattened
state vector TopSPIN’s sorted strategy, described in Sect. 2. Obviously, because
of the flattening, states that are not symmetric may have the same representa-
tive. As a result a full state-space coverage is not guaranteed. We illustrate this
basic technique using Peterson’s n-process mutual exclusion protocol [Pet81],
which has been used for experiments with SymmSPIN [BDH02]. We consider
various configurations of a Promela specification of this protocol, adapted from
the specification used in [BDH02]. Promela code for the specification with five
processes is given in Fig. 3. We check the mutual exclusion property, which
is embedded into the specification using an assertion, and also verify that the
model associated with each specification is deadlock-free. For various configu-
rations of the protocol, Fig. 4 shows the state-space size and time (in seconds)
for unreduced verification, and verification using the SymmSPIN segmented and

byte flag[6] = 0; // an array from PID to byte (flag[0] is not used)
pid turn[5] = 0; // an array from [0..4] to PID
byte inCR = 0 // number of processes in critical region
proctype user () {

byte k; bool ok;
do :: k = 1;

do :: k < 5 -> flag[_pid] = k; turn[k] = _pid;
again: atomic {

ok = ((_pid==1)||(_pid!=1 && flag[1]<k))&&
((_pid==2)||(_pid!=2 && flag[2]<k))&&
((_pid==3)||(_pid!=3 && flag[3]<k))&&
((_pid==4)||(_pid!=4 && flag[4]<k))&&
((_pid==5)||(_pid!=5 && flag[5]<k));

if :: ok || turn[k] != _pid
:: else -> goto again

fi
};
k++

:: else -> break
od;
atomic { inCR++; assert(inCR == 1) }; inCR--; flag[_pid] = 0;

od;
}
init { // start the processes

atomic{ run user(); run user(); run user(); run user(); run user(); }
}

Fig. 3. Promela code for Peterson’s mutual exclusion protocol, with five processes.

sorted strategies, the TopSPIN sorted strategy, and our flattened strategy. An
entry marked ‘−’ indicates that memory requirements for verification exceeded
available resources, or that verification did not complete within five hours. All
experiments were performed on a PC with a 1.7 GHz Pentium processor, 760 Mb
of main memory, using SPIN version 4.2.6. Recall that the SymmSPIN segmented
strategy is guaranteed to give memory-optimal symmetry reduction. For this
example, therefore, we see that TopSPIN sorted also provides memory-optimal
symmetry reduction. In comparison, SymmSPIN sorted performs visibly poorly
on the Peterson 7 configuration, and could not be practically applied to larger
configurations. The flattened strategy yields very fast verification in compari-
son to all other strategies. Correspondingly, the state-space explored using this
strategy is much smaller than the symmetry-reduced state-space explored using
the SymmSPIN segmented strategy. The speed-up gained using this approach is
encouraging, but state-space coverage is clearly too low for this technique to be
acceptable in practice. Motivated by the efficiency of the flattened strategy, we
now develop more sophisticated symmetry marker techniques for Promela.

Peterson SPIN SymmSpin SymmSpin TopSPIN TopSPIN

(unreduced) segmented sorted sorted flattened
n states time states time states time states time states time

3 2636 0.4 494 0.3 907 0.4 494 0.4 251 0.1
4 60577 0.6 3106 0.4 9373 0.4 3106 0.4 1177 0.1

5 1.56× 106 11 17321 1 95303 2 17321 1 5148 0.3

6 4.48× 107 2666 89850 7 885399 18 89850 7 21752 2

7 - - 442481 85 7.94× 106 383 442481 56 89969 10

8 - - 2.09× 106 1166 - - 2.09× 106 412 366424 63

9 - - 9.62× 106 16673 - - 9.62× 106 3034 1.47× 106 393

Fig. 4. Experimental results for Peterson’s mutual exclusion protocol, using
SymmSPIN, TopSPIN, and a näıve “markers”-based approach.

5 The New Marker Methods for Promela

The marker method developed for B [LM07] inspires the definition of effi-
cient symmetry reduction techniques for other specification languages, such as
Promela. However, adapting the techniques for Promela is not trivial. The re-
quirement to extend SPIN (more precisely SymmSPIN or TopSPIN) to include the
new concepts means that we cannot simply use data structures like multisets of
paths as defined in [LM07], but need to define an efficient encoding in the context
of the data structures used for state-space representation by SPIN. The meth-
ods we propose respect this constraint through transformations of state vectors
which preserve its structure. We also derive a new technique, which can be used
as a complete verification method.

Datatypes and state representation We first define the following simple Promela
datatypes:

– a single scalarset I (whose elements are called pids) of cardinality N with
values 1..N. Sometimes we also need to use the special value 0, representing
an undefined value (as in [ID96]). We define I0 = I ∪ {0}.

– simple non-scalar datatypes such as byte, bool and mtype (an enumerated
message type included in the Promela language), denoted by NS .
We assume that we do not have nested arrays or queues (i.e., the elements

of arrays or queues cannot be in turn arrays or queues), and that our Promela
model is composed with a base process G in parallel with instances Pi of a
parameterized family of processes.

Definition 1. The state of a Promela specification is described by the following
quadruple 〈−→n ,−→s ,−→sn,−→ss〉 where

– −→n is a vector of values from NS (i.e., of non-scalar type)
– −→s is a vector of values in I0
– −→sn is a vector of arrays indexed by the scalarset I and with range values
from NS

– −→ss is a vector of arrays indexed by the scalarset I and with range from I0

One can make the following observations. Conceptually there are no local
process variables: they are treated as entries of a global array indexed by the
pids. In other words, the local variables become part of −→sn and −→ss. The program
counter pci of each process i is conceptually handled as part of −→sn.

Some datastructures are missing from Def. 1. However, without loss of gen-
erality, they can be incorporated into the state as follows:

1. Arrays NS → I0 from non-scalar to scalarset values can be seen as part of
−→s by expanding out the array and treating each array element as a distinct
variable.

2. Similarly, arrays NS → NS from non-scalar to non-scalar values can be
viewed as part of −→n by expanding them out.

3. Queues of (scalar or non-scalar) values are translated into arrays (indexed
by non-scalar values) of the same size, padded with zeroes if the queue is not

full, together with an integer to record the current length of the queue. For
example, queue = [2, 3] of length 4 becomes array = [2, 3, 0, 0], length = 2.
The resulting arrays can then be expanded according to points 1 and 2,
depending on the type of values which they contain. A queue for which
messages consist of multiple fields can be handled using a series of arrays,
one per field.

4. Records can be handled by treating each field as an individual variable.

Example 1. Consider the Promela code for Peterson’s mutual exclusion protocol
[Pet81] with 5 processes, shown in Fig. 3 and introduced in Sect. 4. For this
Promela specification the components of a state s from Def. 1 will look as follows
(where xs denotes the value of the global variable x in the state s and ysi denotes
the value of the local variable y for process i in s):

– −→n = 〈inCRs〉
– −→s = 〈turns[0], . . . , turns[4]〉
– −→sn = 〈[pcs1, . . . , pcs5], [flags1, . . . , f lag

s
5], [ks1, . . . , k

s
5], [oks1, . . . , ok

s
5]〉

– −→ss = 〈〉
The structure of s is also depicted in Fig. 5 below.

To compute our markers (see algorithm 5.1), we use the notions of permutation
and mapping of a state s as defined below where s = 〈−→n ,−→s ,−→sn,−→ss〉 with −→sn =
〈−→sn1, . . .−−→snk〉 and −→ss = 〈−→ss1, . . .−→ss`〉.
Definition 2. A permutation π is a bijection from I to I.

We extend the application of a permutation π to a data value v, denoted by
vπ, as follows: vπ =

– v if v is a non-scalar value or v = 0
– π(v) if v ∈ I
– 〈vπ1 , . . . , vπk 〉 if v = 〈v1, . . . , vk〉 is an array or vector indexed by non-scalars
– 〈(vπ−1(1))π, . . . , (vπ−1(k))π〉 if v = 〈v1, . . . , vk〉 is an array indexed by
scalarset values
The application of a permutation π to the state s is defined by sπ =

〈−→n ,−→s π, 〈−→sn1
π, . . .−−→snkπ〉, 〈−→ss1π, . . .−→ss`π〉〉.

Finally, we say that state s′ is symmetric to s iff there exists a permutation
π such that sπ = s′.

We sometimes write permutations (and mappings) in explicit form as follows:
{1 7→ j1, . . . , N 7→ jN}.

For example, let π = {1 7→ 2, 2 7→ 1, 3 7→ 3} and let a = [1, 2, 2] be an array
NS → I. Then aπ = [2, 1, 1]. However, if a is of type I → I then aπ = [1, 2, 1].

Definition 3. A mapping ρ is a function (which may not be a bijection) from
I to I. We extend the application of a mapping ρ to a data value v and state s,
denoted resp. by ρ(v) and ρ(s) in a way similar to what we did for permutations,
except for arrays v = 〈v1, . . . , vk〉 indexed by scalarset values which is defined by
〈ρ(v1), . . . , ρ(vk)〉.

Note that, contrary to permutations, a mapping does not necessarily permute
the indexes of vectors indexed by scalarset values.

1 2 1 2 5
pc flag k ok

n s sn ss
inCR turn[0] turn[1] turn[2] turn[3] turn[4]state

s

0 1 0 1 0marker
ms(2)

s' sn' ss'

→ → →

→ → →

Fig. 5. The structure of Promela states and markers for Peterson-5.

Marker algorithms for approximate and exact verification We will now present
a way to efficiently compute for any given state s a marker m(s). The central
idea of our approach is to analyse the current state s of a Promela specification
in order to compute information about every scalarset value p. This information
ms(p) is called the marker of p in s and captures structurally how p is used
within s.

Definition 4. The marker ms(p) of a scalarset value p ∈ I in the state s=
〈−→n ,−→s ,−→sn,−→ss〉 is the triple 〈

−→
s′ ,
−→
sn′,−→ss′〉 where

–
−→
s′ is a vector of bits of the same length as −→s , where

−→
s′ i = 1 iff −→s i = p

–
−→
sn′ is a vector of non-scalar values and of the same length as −→sn where−→
sn′i= −→sni[p]

–
−→
ss′ is a vector of non-scalar values and of the same length as −→ss where

−→
ss′i=

number of occurrences of p in the range of −→ssi
For a particular Promela specification with possible states S we define the set

of scalarset markers M = {ms(p) | s ∈ S ∧ p ∈ I}. By <M we denote a total
order relation < on M.1

Consider the Peterson-5 example (Fig. 3 and Ex. 1). For p ∈ I we have that (see
also Fig. 5):

–
−→
s′ is a vector of 5 bits, one for each entry of turn, with

−→
s′i = 1⇔turns[i] = p

–
−→
sn′ = 〈pcsp, f lagsp, ksp, oksp〉

–
−→
ss′ = 〈〉
Our algorithm takes a state s of a Promela specification and computes the

marker m(s) for the state. Ideally we want the property that if two states are
symmetric then they have the same marker, and vice versa. However, in order
to make the computation of the marker more efficient, we are willing to accept
a tradeoff. We will present two possible tradeoffs below. The method which uses
the exact markers mexact(s) does not always detect that two symmetrical states
are symmetric; the method which uses the approximate marker m(s) may merge
two states which are not symmetrical.

Below, by | −→v | we denote the length of a vector −→v . We compute the markers
for all i ∈ I and based on the markers (which contain no scalarset values) find a
1 Such an order is easy to define, e.g. using lexicographical ordering, as no scalarset

values occur inside the markers.

5 4 5 3
pc flag k ok

n s sn ss
inCR turn[0] turn[1] turn[2] turn[3] turn[4]m(s)=

mexact(s)

→ → →

4

Fig. 6. m(s) and mexact(s) for s in Fig 5.

way to permute the values in I. To handle the case where two values in I have
the same marker, we also compute the information local(i) for every i ∈ I which
captures which other markers i refers to in its entries of −→ss (which is usually
part of its local state).

Algorithm 5.1[Computation of the markers m(s) and mexact(s) for s]

Input: A state s = 〈−→n ,−→s ,−→sn,−→ss〉 of a Promela specification

Output: The markers m(s) and mexact(s) for s

let a = 〈ms(1), . . .ms(N)〉; sort a according to <M
let mvals(i) = if i=0 then 0 else max({j | a[j] = ms(i)}) fi ;
for i ∈ I do % compute which other markers does i refer to in its part of −→ss

let locals[i] = 〈mvals(−→ss1[i]), . . . ,mvals(−→ss|−→ss|[i])〉
od ;
let b = 〈(ms(1), locals[1], 1), . . . , (ms(n), locals[n], n)〉;
sort b where (m1, l1, n1) < (m1, l2, n2) iff m1 <M m2 or m1 = m2 and

l1 <locals l2 (using some total order <locals on arrays of numbers);
let newvals(i) = max({j | ∃k.b[j] = (ms(i), locals[i], k)}) ;
let pos(i) = value j such that b[j] = (ms(i), locals[i], i) ;
let π = {1 7→ pos(1), . . . , N 7→ pos(N)};
let mexact(s) := sπ; % Apply permutation π

let ρ = {pos(1) 7→ newvals(1), . . . , pos(N) 7→ newvals(N)}; % may not be a perm.

let m(s) := ρ(mexact(s)) % Apply mapping ρ

Example 2. Take the state s partially illustrated in Ex. 1. If the markers compu-
tation gives that ms(3) < ms(4), we have π = {1 7→ 5, 2 7→ 4, 3 7→ 1, 4 7→ 2, 5 7→
3} and m(s) = mexact(s) as outlined by Fig. 6 where for −→sn we just showed that
values initially in position 2 are now in position 4. Note that since −→ss is empty,
a big part of the algorithm can be simplified.

Example 3. In Fig. 7, the states s1 and s2 are symmetrical through the permu-
tation π = {1 7→ 4, 2 7→ 3, 3 7→ 2, 4 7→ 1}. However, both for states s1 and s2,
ms(2) = ms(3) and hence without locals it would be unclear in which order to
put the scalarset values 2 and 3. Our algorithm will guarantee that s1 and s2
have the same marker, as shown in the Fig. 7 and detailed in the following table:

element value for s1 value for s2
a sorted ms1 (2) = ms1 (3) < ms1 (1) < ms1 (4) ms2 (2) = ms2 (3) < ms2 (4) < ms2 (1)
locals 〈0, 4, 3, 0〉 〈0, 3, 4, 0〉
b sorted 〈〈ms1 (3), 3, 3〉, 〈ms1 (3), 4, 2〉, 〈〈ms2 (3), 3, 2〉, 〈ms2 (3), 4, 3〉,

〈ms1 (1), 0, 1〉, 〈ms1 (4), 0, 4〉〉 〈ms2 (4), 0, 4〉, 〈ms2 (1), 0, 1〉〉
π 〈1 7→ 3, 2 7→ 2, 3 7→ 1, 4 7→ 4〉 〈1 7→ 4, 2 7→ 1, 3 7→ 2, 4 7→ 3〉

Proposition 1. Let s, s′ be states. Then the following hold:

s1

sn1
→ ss1

→n1

1
x

0 4 0

s1
→

4
z
1

y

s2

sn2
→ ss2

→n2

1
x

0 4 0

s2
→

1
z
4

y

m(s1)=m(s2)= mexact(s1)=mexact(s2)

sn1
→ ss1

→n1

0
x

3 4 0

s1
→

4
z
3

y

Fig. 7. m(s) and mexact(s) for s1 and s2.

1. m(s) = m(sπ) for any permutation π
2. mexact(s) = mexact(s′) ⇒ ∃π.s′ = sπ

3. mexact(s) = mexact(s′) ⇒ m(s) = m(s′)

Proof. Point 1 can be proven as follows. It is easy to see that ms(π(i)) = msπ (i) and

hence the sorted arrays a in Alg. 5.1 are identical for s and sπ. Hence, mvals(π(i)) =

mvalsπ (i). This in turn implies locals[π(i)] = localsπ [i] and that newvals(π(i)) =

newvalsπ (i). The only potential difference between i and π(i) could be the value of pos.

However, in that case there must exist another j ∈ I with ms(j) = ms(i) ∧ locals[i] =

locals[j] ∧newval(j) = newval(i) with the same value of pos as π(i); and hence the

resulting markers must be identical. Point 2 can be proven by composing π from Alg. 5.1

for s with the inverse of π from Alg. 5.1 for s′. Point 3 follows directly from the two

other points (m(s′) = m(sπ) = m(s)).

Point 1 means that all symmetries are detected by our approximate markers.
Point 2 means that using exact markers yields a complete verification method.

In general the ordinary markers do not provide a complete verification
method, but in the next proposition we establish a class of models for which
ordinary markers do:

Proposition 2. Let s, s′ be two states. If s = 〈−→n ,−→s ,−→sn,−→ss〉 with −→ss = 〈〉 and
m(s) = m(s′) then ∃π.s′ = sπ.

Proof. We will prove that −→ss = 〈〉 implies that for any s: mexact(s) = m(s). Hence,

by Point 2 of Proposition 1 we have proven our result. First it is clear to see that if

for all i ∈ I all markers are distinct, then mexact(s) = m(s) as newval(i) = pos(i). Let

j ∈ I be such that newval(j) 6= pos(j) (i.e., there must be at least one other k ∈ I
with k 6= j with ms(k) = ms(j)). In this case we know that j does not occur as a value

in −→s (otherwise we cannot have another k 6= j with the same marker). But then, as
−→ss = 〈〉, applying ρ has no effect for j. This reasoning can be applied to all j ∈ I and

hence our result holds.

6 Empirical Results

We have implemented symmetry reduction using symmetry markers in the
TopSPIN symmetry reduction package. The result is two new TopSPIN strategies:
exact markers and approx markers. Use of the exact markers strategy results in
complete verification since the strategy guarantees that at least one state from
each symmetric equivalence class is explored. On the other hand, the approx
markers strategy does not guarantee sound model checking since several equiv-
alence classes may be represented by the same state. However, our results show

Peterson SPIN SymmSpin TopSPIN TopSPIN

(unreduced) segmented sorted markers
n states time states time states time states time
3 2636 0.4 494 0.3 494 0.4 494 0.3
4 60577 0.6 3106 0.4 3106 0.4 3106 0.4

5 1.56× 106 11 17321 1 17321 1 17321 1

6 4.48× 107 2666 89850 7 89850 7 89850 3
7 - - 442481 85 442481 56 442481 24

8 - - 2.09× 106 1166 2.09× 106 412 2.09× 106 175

9 - - 9.62× 106 16673 9.62× 106 3034 9.62× 106 1333

Fig. 8. Symmetry markers applied to Peterson’s mutual exclusion example.

that this strategy can provide a reduction in verification time whilst maintaining
high state-space coverage. We illustrate our implementation using two families
of Promela specifications: the Peterson mutual exclusion protocol (see Sect. 4),
and an email system adapted from [CM03] (and similar to an example used
for experiments in [DM06]). A configuration of the email example consists of
n client processes which exchange messages via a mailer process. The mailer
is modelled using the Promela init process, and can be viewed as part of the
base process discussed earlier. Experiments were carried out on the platform
described in Sect. 4, and once again a ‘−’ result indicates that verification was
intractable, or took longer than 5 hours, for a given configuration. For each con-
figuration we check basic safety properties expressed using assertions, and for
deadlock-freedom. Note that symmetry reduction can be used, in principle, for
model checking symmetric CTL∗ formulas [ES96]; our implementation is limited
to basic safety properties due to restrictions of SPIN and TopSPIN [DM06].

Fig. 8 shows state-space sizes and verification times for various configurations
of the Peterson protocol. To ease readability, some of the results from Fig. 4 are
duplicated in Fig. 8. For the Peterson examples, the set−→ss is empty. Therefore, by
Propositions 1 and 2, we anticipate that the exact markers and approx markers
strategies should both provide full symmetry reduction and complete verification.
This is indeed the case – the states column for the TopSPIN exact markers and
SymmSPIN segmented strategies are identical. Results for the approx markers
strategy are not shown in Fig. 8, as they are the same as for the exact markers
strategy. Verification using symmetry markers is significantly faster than using
the TopSPIN sorted or SymmSPIN segmented strategies.

Results for configurations of the email example are given in Fig. 9. It was
not possible to apply SymmSPIN to these examples due to limitations of the
prototype SymmSPIN implementation; therefore we used the TopSPIN segmented
strategy to compute (where practical) the optimal symmetry-reduced state-space
for each configuration (see Sect. 2). Fig. 9 and Fig. 10 back up the predictions of
our theory: that, with systems with arrays both indexed by scalarset and range
from scalarset, the approx markers strategy may sometimes regard inequivalent
states as equivalent, whereas the exact markers strategy may not always recog-
nise equivalent states as such. The left of Fig. 10 in particular (see also Fig. 1)
highlights the precision of our methods – note how close the respective curves
lie to the curve for full symmetry reduction (TopSPIN segmented). For this ex-
ample, TopSPIN sorted also computes multiple representatives from each orbit.
The results of Fig. 9 clearly illustrate the benefits of using symmetry markers:

Email SPIN TopSPIN TopSPIN TopSPIN TopSPIN

(unreduced) segmented sorted exact markers approx markers
n states time states time states time states time states time

2 938 0.5 471 0.3 471 0.3 471 0.3 470 0.4
3 37793 0.5 6335 0.4 6361 0.5 6337 0.4 6316 0.4

4 1.33× 106 11 56631 4 60566 2 57398 1 55711 1
5 - - 399534 64 481964 30 430212 12 380040 9

6 - - 2.42× 106 1415 3.40× 106 366 3.05× 106 131 2.21× 106 82

7 - - - - - - - - 1.17× 107 766

Fig. 9. Symmetry markers applied to a Promela email specification.

 0

 500000

1000000

1500000

2000000

2500000

3000000

3500000

 2 3 4 5 6
#(scalarset)

Spin (no sym)
TopSpin segmented

TopSpin sorted
Exact Markers

Approx Markers

 0

 1

 10

 100

 1000

 2 3 4 5 6

lo
g(

tim
e)

#(scalarset)

Fig. 10. Number of states and log of model checking times for the Email benchmark.

– The exact markers strategy outperforms TopSPIN sorted both in terms of
memory requirements and verification time

– The difference between the state-space size using full symmetry reduction
compared with exact markers is relatively small

– The approx markers strategy provides very good coverage of the symmetry-
reduced state-space, and runs significantly faster than the other strategies.

The value of the approx markers strategy is further illustrated by the fact that
exact verification of the email 7 configuration was not possible: full symmetry
reduction using the segmented strategy is not feasible (for some states, as many
as 7! symmetries would need to be considered), and the state-spaces generated
using exact markers and standard TopSPIN strategies exceed memory require-
ments. Verification of deadlock-freedom using approx markers does not guarantee
deadlock-freedom for the full model, but the high coverage rate of this strategy
provides us with a reasonable degree of confidence that the model does not
deadlock.

7 Related and Future Work

The SMC symmetry reduction tool [SGE00] employs a somewhat similar ap-
proach to our symmetry markers in order to determine state equivalence. Given
two states to be tested for equivalence, SMC computes a checksum for each state.
If the checksums are not equal then the states are not symmetrically equivalent.
This simple pre-test quickly identifies many inequivalent states, but (as with
markers), equality of checksums does not guarantee equivalence. The tool ap-
plies an approximate strategy to conservatively determine whether states with

equal checksums are genuinely equivalent. Symmetry markers are more precise
than the checksums computed by SMC, and can effectively handle the complica-
tions introduced by pid variables and pid-indexed arrays, which are not supported
in the SMC input language.

Symmetry markers are currently limited to apply to fully symmetric systems.
Although full symmetry occurs most frequently in practice, concurrent systems
with ring or tree-like structures can exhibit other forms of structural symmetry
[CEJS98,DM05]. It should be straightforward to extend the markers approach
to handle multiple families of symmetric processes. A more challenging research
topic involves generalising the markers approach to apply in the presence of an
arbitrary symmetry group.

References

[Abr96] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
[BDH02] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric Spin. STTT, 4(1):92–

106, 2002.
[CEFJ96] E. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in tem-

poral logic model checking. Form. Methods Syst. Des., 9(1-2):77–104, 1996.
[CEJS98] E. Clarke, E. Emerson, S. Jha, and A. Sistla. Symmetry reductions in model

checking. In CAV’98, LNCS 1427, pages 147–158. Springer, 1998.
[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[CM03] M. Calder and A. Miller. Generalising feature interactions in email. In

FIW’03, pages 187–204. IOS Press, 2003.
[DM05] A. Donaldson and A. Miller. Automatic symmetry detection for model check-

ing using computational group theory. In FM’05, LNCS 3582, pages 481–496.
Springer, 2005.

[DM06] A. Donaldson and A. Miller. Exact and approximate strategies for symmetry
reduction in model checking. In FM’06, LNCS 4085, pages 541–556. Springer,
2006.

[DM07] A. Donaldson and A. Miller. Extending symmetry reduction techniques to a
realistic model of computation. ENTCS, 185:63-76, 2007.

[ES96] E. Emerson and A. Sistla. Symmetry and model checking. Formal Methods
in System Design, 9(1/2):105–131, 1996.

[Hol88] G. Holzmann. An improved protocol reachability analysis technique. Softw.,
Pract. Exper., 18(2):137–161, 1988.

[Hol03] G. Holzmann. The SPIN model checker: Primer and reference manual. Ad-
dison Wesley, 2003.

[ID96] C. Ip and D. Dill. Better verification through symmetry. Formal Methods in
System Design, 9(1/2):41–75, 1996.

[LM07] M. Leuschel and T. Massart. Efficient approximate verification of B via sym-
metry markers. In Proc. of the International Symmetry Conference, pages
71–85, Edinburgh, UK, January 2007.

[McM93] K. McMillan. Symbolic Model Checking. PhD thesis, Boston, 1993.
[Pet81] G. Peterson. Myths about the mutual exclusion problem. Inf. Process. Lett.,

12(3):115–116, 1981.
[SGE00] A. Sistla, V. Gyuris, and E. Emerson. SMC: a symmetry-based model checker

for verification of safety and liveness properties. ACM Trans. Softw. Eng.
Methodol., 9(2):133–166, 2000.

[Val02] G. Valiente. Algorithms on Trees and Graphs. Springer, 2002.

