Preprint

Storage Strategies for Collections
in Dynamically Typed Languages

Carl Friedrich Bolz

University of Diisseldorf
Hasso Plattner Institute Potsdam
King’s College London

http://cfbolz.de/

Abstract

Dynamically typed language implementations often use
more memory and execute slower than their statically typed
cousins, in part because operations on collections of elements
are unoptimised. This paper describes storage strategies,
which dynamically optimise collections whose elements are
instances of the same primitive type. We implement storage
strategies in the PyPy virtual machine, giving a performance
increase of 18% on wide-ranging benchmarks of real Python
programs. We show that storage strategies are simple to imple-
ment, needing only 1500LoC in PyPy, and have applicability
to a wide range of virtual machines.

Categories and Subject Descriptors D.3.4 [Programming
Languages): Processors—run-time environments, code gen-
eration, incremental compilers, interpreters

General Terms Algorithms, Languages, Performance

Keywords Implementation, collection types, memory opti-
mization, dynamic typing

1. Introduction

Implemented naively, dynamically typed languages tend
to have poor performance relative to statically typed lan-
guages [35]. The flexibility and dynamism of dynamically
typed languages frustrates most traditional static optimisa-
tions. Just-In-Time (JIT) compilers defer optimisations until
run-time, when the types of objects at specific points in a pro-
gram can be identified, and specialised code can be generated.
In particular, variables which reference common types such

[Copyright notice will appear here once ’preprint’ option is removed.]

Storage Strategies for Collections

Lukas Diekmann

University of Diisseldorf
King’s College London

http://lukasdiekmann.com/

Laurence Tratt

King’s College London
http://tratt.net/laurie/

as integers can be ‘unboxed’ [8, 24]: rather than being refer-
ences to an object in the heap, they are stored directly where
they are used. This lowers memory consumption, improves
cache locality, and reduces the overhead on the garbage col-
lector. Unboxing is an important technique in optimising such
languages.

However, JITs do not directly influence how objects are
laid out in the heap. Therefore as soon as objects are added
to a collection (e.g. lists, dictionaries), virtual machines
(VMs) such as PyPy have to revert to boxing objects. This is
necessary since collections in dynamically typed languages
can store objects of multiple types. We call collections which
do so heterogeneously typed. Pointer tagging [21] — where the
spare bits in an aligned pointer are used to represent primitive
data-types such as integers — can partially alleviate this issue.
However, tagging has few bits to play with and some primitive
types (e.g. strings) are not easily tagged. Furthermore, tagging
is complex to implement, and has hard to predict performance
trade-offs (e.g. due to branch prediction). For reasons such as
this, VMs such as HotSpot and PyPy forego tagging.

Dynamically typed languages therefore pay a significant
performance penalty for the possibility that collections may
store heterogeneously typed elements, even for programs
which create no such collections. Statically typed languages
can determine efficient storage representations of collections
storing elements of a primitive type based on a collection’s
static types. The underlying aim of this work is to find a
simple means of achieving a similar effect in dynamically
typed languages. Ideally, we want an approach which is
simpler to implement, understand, and debug than tagging,
and which, unlike tagging, is generalisable to an arbitrary
number of primitive types.

This paper presents storage strategies, a novel approach
for optimising the representation of homogeneously typed
collections (e.g. a list whose elements are all strings) in
VMs for dynamically typed languages, even for those types
that cannot sensibly be represented by pointer tagging. In
essence, each collection has a single storage strategy, though
the storage strategy may change throughout the collection’s

2013/8/30

lifetime. When elements are added to an empty collection,
and when those elements are homogeneously typed, an
optimised storage strategy is used for the collection. When
collections are heterogeneously typed, or when an optimised
storage strategy is not available, a ‘fallback’ storage strategy
is used, which works as a traditional dynamically typed
VM does. Similarly, if an element of a different type is
added to a previously homogeneously typed collection —
forcing the collection to type dehomogenise — the collection’s
storage strategy is changed to a generic one, and its elements’
representation changed. Fortunately, and as is common in
dynamically typed languages [9, 23, 31], this wide-ranging
dynamicity is used infrequently in practise. Similarly, the
storage strategy is reset when a collection is emptied of
elements. Though optimised storage strategies are free to
operate as they please, they customarily unbox elements
and store them alongside one another. Importantly, all this
happens without any input from the end programmer and
without observably changing behaviour.

In order to validate our approach, we modified the PyPy
VM [32] with support for storage strategies. PyPy is a fully
feature-compatible Python JITing VM [7], whose perfor-
mance is amongst the best for dynamically typed VMs [6].
It therefore makes a good test platform for storage strategies
since it is already fairly well optimised: as with any reason-
ably mature VM, meaningful optimisations become harder
to find over time. As our experiments on real-world Python
systems show, storage strategies are a powerful optimisation,
increasing performance in our benchmarks by 18% and low-
ering peak memory usage by 6%. Because of this, storage
strategies were merged into the PyPy development stream
and have been part of shipping releases since version 1.9,
released in June 2012. All the strategies we describe in this
paper have been included in PyPy releases since then.

As our implementation shows, storage strategies also
have the advantage of being lightweight: PyPy’s storage
strategies are approximately 1500 LoC in total. In comparison
to tagging, which must be spread throughout a VM, storage
strategies are implemented in a single place and are more
easily comprehended. Storage strategies can therefore be
retrofitted to existing VMs, or used within execution engines
running atop an existing VM (e.g. HotSpot). Furthermore,
our experiments demonstrate that storage strategies are an
orthogonal concept to tagging: we still get useful speedups
of 12% on primitive types that are not amenable to tagging.

The paper is structured as follows. We first describe the
general design of storage strategies (Section 3), before de-
tailing the specific implementation of storage strategies in
PyPy (Section 4). Using a wide range of benchmarks, we
then evaluate the speed and memory utilisation of storage
strategies in PyPy (Section 5). Our experimental system is
fully repeatable, and has been accepted by the OOPSLA arte-
fact evaluation committee. It can be downloaded from http:
//soft-dev.org/pubs/files/storage_strategies/

Storage Strategies for Collections

| GC | W_ListObject

|GC| length | | | |

2 | | GC | W_IntObject

storage

|

L

| GC | W_IntObject

1 W_IntObject

|GC

']

Figure 1. Thelist [1, 2, 3] aslaid out in memory in PyPy.

2. Background
2.1 Memory usage in dynamically typed languages

An implicit effect of dynamic typing is that every variable,
object slot, and so on, can reference objects of arbitrary
types. The most natural way to implement this is to box
all objects: that is, to allocate them on the heap with a
common header. Although objects of different types may have
different (and differently sized) bodies, this allows a simple,
common representation for all objects, which simplifies VM
implementation considerably.

However, while universal boxing simplifies an implemen-
tation, it is inefficient. An integer in C typically occupies one
word in memory; in PyPy, in contrast, 3 words are needed (1
word is reserved for the garbage collector; 1 word specifies
the particular type of the object; and the final word stores
the actual integer value). This problem is exacerbated when
integers are stored in a list where the pointer to the boxed
object adds further overhead. In PyPy, the seemingly simple
list [1, 2, 3] is laid out in memory as in Figure 1.! The
raw memory statistics tell part of the story: a list of 1,000,000
integers takes 3.8MiB of memory in C but 15.3MiB in PyPy.
However, other factors are important. In particular, boxed
objects require memory on the heap to be allocated and later
garbage collected, placing extra pressure on the garbage col-
lector. Harder to quantify is the poor cache locality caused
by the extra indirection of boxing, which may mean that
sequentially accessed objects are spread around the heap.

One partial solution to this problem is pointer tagging [21].
This technique makes use of the fact that pointers to objects
in a heap are aligned to multiples of 4 or 8 (depending on
the combination of hardware and memory allocation library
used). This means that at least 2 bits in every object pointer
are unused, since they are always set to 0. Pointer tagging
utilises these spare bits to differentiate genuine pointers from
other sorts of information. Most commonly, this technique is
used to store fixed-width datatypes — most commonly integers
— into a single word. For example, any tagged pointer which
has its least significant bit set may be defined to be a pointer —
a simple OR can recover the real pointer address — otherwise
it is an integer. In so doing, integers that fit into a machine
word do not need to be allocated on the heap. Pointer tagging
can allow a dynamically typed language to represent a list of

' We have elided details related to over-allocation to simplify the explanation.

2013/8/30

http://soft-dev.org/pubs/files/storage_strategies/
http://soft-dev.org/pubs/files/storage_strategies/

integers as memory efficiently as C, substantially improving
performance.

Pointer tagging is not without costs, however. Most obvi-
ously, every access of a tagged pointer requires a check of
its tag type, and, in general, a modification to remove the tag
and recover the pure value, hurting performance (not to men-
tion occasional poor interaction with modern CPU’s branch
prediction). As pointer accesses are extremely frequent, and
spread throughout a VM, it is impossible to localise pointer
tagging to a single portion of a VM: the complexity must be
spread throughout the VM. Retrospective changes to pointer
tagging involve widespread disruption to a VM; similarly,
retrospectively introducing tagging into a previously non-
tagging VM is likely to be a gargantuan effort. There are also
only a finite number of spare bits in a pointer, putting a fixed,
low, bound on the number of types that can be tagged. Finally,
variable length data such as strings can not, in general, be
tagged. Perhaps because of these reasons, pointer tagging
is far from universal, and notable VMs such as the JVM’s
HotSpot do not use this technique, as far as we are aware.

2.2 PyPy and tracing JITs

PyPy? is a Python VM that is fully compatible with the
‘standard’ C Python VM? (known as ‘CPython’). PyPy is
written as an interpreter in RPython, a statically typed subset
of Python that allows translation to (efficient) C. RPython
is not a thin skin over C: it is fully garbage collected and
contains several high-level data-types. More interestingly,
RPython automatically generates a tracing JIT customised
to the interpreter. Tracing JITs were initially explored by the
Dynamo Project [3] and shown to be a relatively easy way
to implement JITs [18]. The assumption underlying tracing
JITs is that programs typically spend most of their time in
loops and that these loops are very likely to take the same
branches on each execution. When a ‘hot’ loop is detected
at run-time, RPython starts tracing the interpreter (‘meta-
tracing’), logging its actions [7]. When the loop is finished,
the trace is heavily optimised and converted into machine
code. Subsequent executions of the loop then use the machine
code version.

An important property of tracing systems is that traces
naturally lead to type specialisation, and escape analysis
on the traces allows many actions on primitive types to be
unboxed [8]. Specifically, most interpreters are able to be
written in a style that makes unboxing primitive types stored
in variables possible [6].

Meta-tracing allows fairly high performance VMs to be
created with significantly less effort than traditional ap-
proaches [6]. PyPy is, on average, around 5-6 times faster on
real-world benchmarks compared to CPython; it is even faster
when measured against Jython, the Python implementation
running atop the JVM [6]. In short, meta-tracing evens out

Zhttp://pypy.org/
3http://python.org/

Storage Strategies for Collections

‘AAM integer ‘
EmptyStrategy oty IntegerStrategy |—2ddobiect ObjectStrategy

N

Add integer

Empty Add object

Figure 2. Strategy transition diagram

the performance playing field for hard to optimise languages
like Python.

3. Storage strategies

In Section 2.1, we saw how memory is typically used in
dynamically typed languages. Pointer tagging is one partial
solution but, as was noted, has limitations and costs as
well. The obvious question is: can one come up with an
alternative scheme which works well in practice? Our starting
assumption is that a significant weakness of VMs such as
PyPy is their treatment of collections. By optimising the use
of primitive types in collections, we have a realistic hope of
broadly matching — and, in some cases, perhaps exceeding —
pointer tagging, without having to deal with its complexity.
As is common in high-performance VMs, it is impossible
to optimise all use cases all of the time. Instead, we need to
determine what bottlenecks real-world programs cause and
focus our attention there. Our hypotheses of how real-world
dynamically typed programs use collections are as follows:

H1 It is uncommon for a homogeneously typed collection
storing objects of primitive types to later type deho-
mogenise.

H2 When a previously homogeneously typed collection type
dehomogenises, the transition happens after only a small
number of elements have been added.

We validate these hypotheses in Section 5.6; for the time
being, we take them as given. These hypotheses give a clear
target when it comes to optimising collections: collections
storing elements of a single primitive type. We must also bear
in mind that the second hypothesis, in particular, is one of
probabilities, not absolutes: even if type dehomogenisation is
rare, it can happen, and the possibility must be catered for.
The design of our solution is straightforward. Each col-
lection references a sforage strategy and a storage area. All
operations on the collection are handed over to the storage
strategy, which also controls how data is laid out in the stor-
age area. An arbitrary number of strategies can be provided
to efficiently store objects of different types. Although a col-
lection can only have one strategy at any point in time, its
strategy can change over time. As the name may suggest, this
idea is an implementation of the Strategy design pattern [19].

2013/8/30

http://pypy.org/
http://python.org/

Figure 2 shows how a collection’s strategy can evolve over
its lifetime. Collections start with the EmptyStrategy, which
is a placeholder while the collection is empty; as soon as
an object is put into the collection, a more specific strategy
will be used. If an object of primitive type, such as an int,
is added to the collection, and if an optimised strategy is
available (e.g. IntegerStrategy), the collection switches to it;
the strategy will unbox the element and store it. As more
elements of that primitive type are added, the collection
will grow accordingly. If an object of a different type is
then added to the collection, the strategy will be changed
to the ObjectStrategy, which has the same performance
characteristics as a typical VM without storage strategies;
any existing objects in the collection will have to be reboxed.
Finally, if the collection is emptied of all objects, its strategy
is returned to the EmptyStrategy.

Storage strategies have low overheads. Each collection
needs only a single extra pointer to a strategy object. Each
strategy can be a singleton or static class, allowing it to
be shared between multiple collections, requiring a small,
fixed overhead per process. As many strategies as desired can
be implemented, and collections can easily move between
strategies over their lifetime. Operations on collections need
one extra method call on the strategy to be implemented,
the cost of which should be offset by the time saved by not
boxing as many elements.

4. Storage strategies in PyPy
4.1 Basic design

We have implemented storage strategies in PyPy for the
three major forms of collections in Python — lists, sets,
and dictionaries (known in different languages as maps or
hashtables) — and three major primitive types — integers,
floats, and strings. List and set storage strategies are relatively
obvious; dictionaries, having both keys and values, less so.
Although we could implement strategies for each pairwise
(key, value) primitive type combination we believe this is
unnecessary as the main bottleneck in dictionary performance
is the hashing and comparing of keys. Therefore dictionary
strategies dictate the storage of keys, but leave values boxed.

For each collection type X, we have implemented an
EmptyXStrategy (for when the collection has no ob-
jects), an ObjectXStrategy (for storing objects of arbi-
trary types), and IntegerXStrategy, FloatXStrategy,
and StringXStrategy (for the primitive types). Collections
return to the EmptyXStrategy when their clear method is
called. Since Python lists do not have such a method, they
can not currently return to the EmptyListStrategy.

Each ObjectXStrategy largely reuses the relevant por-
tion of pre-storage strategy code (with minor modifications),
whereas the other strategies contain all-new code. In addition
to the normal collection operations, we also added shortcuts
to allow collections with optimised storage strategies to inter-
act efficiently with each other (see Section 4.4 for further de-

Storage Strategies for Collections

| GC | W_ListObject storage strategy | | GC | W_ListObject storage

——

|GC| length | 1 | 2 | 3 | |GC IntegerListStrategy | | GC| length | 4 | 5 | 6 |

strategy |

Figure 3. Storage strategies on the two lists [1, 2, 3] and

[4, 5, 6].

GC | W_ListObject

/ 6 |ntegerustsnategy / oc oblectL\stStrEtegy

GC length 1 GC

v/

| GC | W_IntObject | 4 | | GC | W_IntObject

storage

strategy W_ListObject

storage

strategy

length

5 | | GC | W_FloatObject

66|

Figure 4. Adding other types: If an object of a different
type is added to a list using an integer strategy, all elements
need to be boxed and the collection will use the object
strategy.

tails). With the normal caution to readers about the dangers of
over-interpreting Lines of Code (LoC) figures, the following
details give a good idea of the simplicity of storage strategies.
In total, storage strategies added 1500LoC* to PyPy when
merged in. Of that total, lists contribute 750LoC, sets 550,
and dictionaries 200. The relatively small LoC count for dic-
tionaries is due to the existing implementation of dictionaries
already having storage strategy-like behaviour, which is hard
to factor out from the newer, full-blown, storage strategies.

Figure 3 shows the memory layout of two lists using
the IntegerListStrategy, one storing [1, 2, 3] and
the other [4, 5, 6]. Comparing them to the conventional
layout shown earlier in Figure 1, we can see that storage
strategies unbox the integers, saving three words per element.
Figure 3 also shows that the use of singleton strategies keeps
the overhead of storage strategies to a fixed minimum.

As Figure 3 suggests, strategies add one extra word to each
collection. If a program used a large number of small, almost
exclusively, heterogeneously typed collections, the overhead
of the extra word may outweigh the savings on homoge-
neously typed collections. Such behaviour seems unlikely,
and none of our benchmarks exhibits it (see Section 5.6).

As motivated in Section 3, users of dynamically typed
languages always have the possibility of changing an ho-
mogeneously typed collection into a heterogeneously typed
collection: it is vital that storage strategies can cope with this.
Figure 4 shows what happens when an object of a different
type (in this case a float) is added to the previously homo-
geneously typed list of ints [4, 5, 6]. The integers in the
list are (re)boxed, the list’s strategy is changed to the generic
ObjectListStrategy, and the data section rewritten ap-
propriately. Clearly, such reboxings are costly when applied

4We exclude blank lines and comments from the count, but otherwise leave
formatting which causes line breaks in.

2013/8/30

class W_ListObject(W_Object):

def __init__(self):
self.strategy = EmptyListStrategy()
self.lstorage = None

def append(self, w_item):
self.strategy.append(self, w_item)

@singleton
class ListStrategy(object):
def append(self, w_list, w_item):
raise NotImplementedError("abstract")

@singleton
class EmptyListStrategy(ListStrategy):
def append(self, w_list, w_item):
if is_boxed_int(w_item):
w_list.strategy = IntegerListStrategy()
w_list.lstorage = new_empty_int_list()
elif ...:

else:
w_list.strategy = ObjectListStrategy()
w_list.lstorage = new_empty_object_list()
w_list.append(w_item)

@singleton
class IntegerListStrategy(ListStrategy):
def append(self, w_list, w_item):
if is_boxed_int(w_item):
w_list.lstorage.append_int (unbox_int(w_item))
return
self .switch_to_object_strategy(w_list)
w_list.append(w_item)

def switch_to_object_strategy(self, w_list):
lstorage = new_empty_object_list()
for i in w_list.lstorage:
lstorage.append_obj(box_int(i))
w_list.strategy = ObjectListStrategy()
w_list.lstorage = lstorage

@singleton
class ObjectListStrategy(ListStrategy):
def append(self, w_list, w_item):
w_list.lstorage.append_obj(w_item)

Figure 5. A simplified view of the various list strategies,
with each showing its part in the user-visible append method.

to collections with large numbers of elements. Fortunately,
this occurs relatively rarely in practise and when it does,
collections contain only a single element on average (see
Section 5.6). The disadvantages, therefore, are significantly
outweighed by the advantages.

4.2 Implementation

To make our explanation of PyPy’s implementation of
storage strategies somewhat more concrete, Figure 5 shows
the relevant sections of code for the append method on lists.
Although Figure 5 necessarily elides and simplifies various

Storage Strategies for Collections

details, it gives a good flavour of the relative simplicity of
storage strategies.

PyPy’s root object class is W_Object from which the list
class W_.ListObject inherits. Each instance of W_List0b-
ject has a storage strategy and a storage area (which is
controlled by the strategy). Calling append on a list object
transfers control over to the list’s strategy (line 7): note that,
as the first parameter, the storage strategy is passed a pointer
to the list object so that it can, if necessary, change the storage
strategy and / or storage area. All list storage strategies are
singletons and subclasses of ListStrategy, which is an
abstract class that can not be directly instantiated. Empty list
objects therefore use a reference to the EmptyListStrategy
class for their storage strategy.

When an object is appended to an empty list, the Empty-
ListStrategy first sees if an optimised storage strategy is
available for that type of object (lines 17-21). For example,
if the incoming object is an integer (line 17), IntegerList—
Strategy is used. If no optimised storage strategy is avail-
able, ObjectListStrategy is used as the fallback (lines
23-24). Once the new strategy is decided upon, its append
method is then called (line 25).

The final interesting case is when appending an item to
a list using an optimised storage strategy. For example, if
the IntegerListStrategy is being used, then append has
two choices. If the object being appended is also an integer
(line 30), it is unboxed, added to the storage area, and the
function returns (lines 31-32). If, however, an object of a
different type is appended, the list must be switched to the
ObjectListStrategy. First a temporary storage area is
created (line 37), and all the list’s integers boxed and put
into it (38-39). The temporary storage area then replaces the
original and the strategy is updated (lines 40-41).

4.3 Exotic storage strategies

PyPy, as of writing, has 17 storage strategies, some of which
implement less obvious optimisations.

For example, consider Python’s range (i, j, s) func-
tion which generates a list of integers from i to j in steps
of s. Its most common uses are in for statements and func-
tional idioms such as map. Conceptually, range creates a full
list of integers, but this is highly inefficient in practise: its
most common idioms of use require neither random access
nor, often, do they even read the full list (e.g. when a for
loop contains a break). In order to optimise this common
idiom, Python 3’s range operator’ returns a special ‘range’
type which is not a proper list (for example, items can not
be written to it). If the programmer does want to use it as a
normal list, it must be manually converted.

Storage strategies provide a natural solution to this prob-
lem, optimising the common case, while making the general
case transparent to the programmer. Internally, PyPy provides
a RangeListStrategy, which the range function uses. A

5 Effectively, Python 2’s xrange function has subsumed the original range.

2013/8/30

list using this strategy stores only three words of informa-
tion, no matter the size of the range created: start, stop, and
step (all as integers). Typical operations on such a collection
(e.g. contains) do not need to search all elements, instead
using a simple mathematical calculation. If the user does add
or remove an element from the range, it changes to an appro-
priate strategy (e.g. IntegerListStrategy upon element
removal). The beauty of storage strategies is that, outside
the RangeListStrategy itself, only the range function
needs to be aware of its existence. All other code operates on
such collections in blissful ignorance. The implementation of
RangelListStrategy is straightforward, being well under
200LoC, but leads to a highly effective optimisation.

Dictionaries have a special storage strategy Identity-—
DictStrategy which optimises the case where key equality
and hashing are based on object identity. This happens
when user-defined classes which inherit from Python’s root
object class do not override equality and hashing. This
allows operations on dictionaries storing such objects to be
optimised more effectively.

Similarly, storage strategies can be used to provide ver-
sions of normal datatypes customised to specific use cases.
Python modules, classes, and objects can all have their con-
tents accessed as dictionaries. Modules’ and class’ dictio-
naries are rarely written to after initialization. Objects’ dic-
tionaries, on the other hand, are often written to, but each
class’s instances tends to have a uniform set of keys. Us-
ing maps [12] as inspiration, optimised storage strategies for
objects, modules, and classes optimise these use cases [6].
A similar strategy is used for the dictionaries that hold the
variadic arguments of functions that take arbitrary (keyword)
arguments.

4.4 Optimising collection creation and initialisation

Conceptually, collections are always created with an EmptyX-
Strategy, with elements then added to them. In practice,
PyPy has fast paths to optimise common cases which do not
need the generality, and consequent overhead, associated with
the simple route. We now give two examples.

First, collections are sometimes created where the type of
all the elements is known in advance. A simple example is the
split(d) method on strings, which separates a string (using
d as a delimiter) into a list of sub-strings. Rather than create
a collection which starts in the EmptyListStrategy before
immediately transitioning to the StringListStrategy, a
fast path allows lists to be created which are initialised to the
StringListStrategy. This technique is particularly useful
when PyPy knows that a collection will be homogeneously
typed and can use an optimized strategy immediately. This
bypasses type-checking every element of the new collection.

Second, collections are often initialised from another
collection: for example, cloning a list, or initialising sets
with lists. In Python, for example, it is common to initialise
sets with lists i.e. set ([1,3,2,2]) creates a set {1,2, 3}.
The naive approach to creating the set is to iterate over

Storage Strategies for Collections

the list, boxing each of its elements if necessary, and then
putting them into the set which — if it uses storage strategies
— may then unbox them again. Since, in our implementation,
the list will be stored using the IntegerListStrategy, a
few LoC in the set initialization code can detect the use
of the other collection’s strategy and access the integers
directly. Not only does this bypass boxing, type-checking,
and unboxing, it allows the set storage strategy to perform
hash operations directly on the primitive types rather than
requiring an expensive type dispatch.

4.5 Optimising type-based operations

Optimised storage strategies such as IntegerListStrat-
egy can make use of the type of data to improve the ef-
ficiency of common operations. A simple example is the
contains (o) method which returns true if o is found in
a collection. The IntegerListStrategy has a specialised
contains method which, if passed an integer, performs a
fast machine word comparison with the collection’s contents.
If passed a user object with a custom definition of equality,
standard — expensive — method dispatch occurs. Since the
most likely test of equality on a collection is to see if an
object of the same type exists in it, this can be a substantial
optimisation, and is only a few LoC long. Furthermore, it is a
benefit even when the VM is running as a ‘pure’ interpreter
(i.e. when the JIT is not running). This technique can be used
for many other collection methods, such as a list’s sort or a
set’s difference or issubset methods.

4.6 Interaction with RPython’s Tracing JIT

Storage strategies give PyPy extra information about the
types of objects in a collection. Most obviously, when
a collection uses an optimised storage strategy such as
IntegerListStrategy, we implicitly know that every ele-
ment in the collection must be an integer. This is of particular
interest to RPython’s tracing JIT, which can use this knowl-
edge to prove additional properties about a trace, leading to
more extensive optimisation.
Consider the following code fragment:

i=0
for x in c:
i+=x

Let us assume that ¢ stores only integers. In a normal
implementation, every read of an element from ¢ would be
followed by a type-check before the addition is performed,
constituting a sizeable overhead in such a simple loop. With
storage strategies, the first iteration of the list will deduce
that the list uses the IntegerListStrategy. The resulting
trace will naturally establish that the contents of ¢ are not
changed, and that since i is also an integer, no further type
checks need to be performed on the elements coming out of
c at all. No matter the size of the list, only a simple check on
c’s strategy is needed before the loop is executed. Assuming

2013/8/30

this condition is met, the integers extracted from c can be
accessed unboxed, leading to highly efficient machine code.

This same basic idea works equally well on more complex
collection operations. Consider code which writes an object
into a dictionary. Potentially, the object may provide custom
hashing and comparison operations which may have arbitrary
side effects, including mutating other objects. Even though
few hash methods do such mutations, the possibility prevents
the JIT from proving several seemingly obvious properties
of the system before and after the dictionary write, hindering
optimisations. However, when the dictionary uses an opti-
mised storage strategy, the JIT can trivially prove that such
mutation is impossible, leading to significant optimisations
in the resulting traces.

5. Evaluation

In this section we evaluate the effectiveness of storage strate-
gies on two axes: execution speed and memory usage. We
first detail the sets of benchmarks we use, before then describ-
ing the PyPy variants with various strategies turned on/off.
Having done this, we are then in a position to present ex-
ecution speed and memory usage measurements. We then
explore why storage strategies work as they do, validating our
earlier hypotheses.

5.1 Benchmarks

To perform our evaluation we use two sets of benchmarks:
PyPy’s standard reference benchmarks [28]; and a set of
benchmarks of real-world programs we have compiled for
this paper, shown in Table 1. PyPy’s benchmarks derive from
those used for the (now defunct) Unladen Swallow Python
VM, and have a fairly long heritage, being a mix of synthetic
benchmarks and (parts of) real-world programs. However,
while PyPy’s benchmarks measure performance — includ-
ing several difficult corner-cases — reasonably well, few of
the benchmarks allocate significant memory. In other words,
while differences to their execution speed is relevant for stor-
age strategies, their peak memory usage is, generally, insignif-
icant. The real-world programs in Table 1 use programs that
use much larger heaps (ranging, approximately, from 10 to
1000MiB). In most cases, the actual benchmarks consist of
a few LoC, which then exercise library code. The precise
details are available in our downloadable and repeatable ex-
periment (see page 2).

5.2 PyPy variants

Table 2 shows the PyPy variants with different strategies
turned on/off we created to measure their effect.

From the point of view of an end-user, the most significant
variants are pypy-none (which turns off nearly all strategies)
and pypy-all (which turns on nearly all strategies). The
other variants allow us to determine which strategies play
the biggest role in optimising performance. All the PyPy
variants (including pypy-none) have object, method, and class

Storage Strategies for Collections

strategies turned on, because these are fundamental to PyPy’s
optimisations and, in various forms, have been present long
before the current work.

The strategies themselves have all been described previ-
ously in the paper, with the exception of ‘KW args’. This is a
special strategy for optimising Python’s keyword arguments,
which are dictionaries mapping strings to objects, and which
are typically constant at a given call location.

5.3 Methodology

For the execution speed benchmarks, we are most interested
in the steady-state performance once the JIT has warmed up,
since the resulting numbers are stable. Determining when
the steady-state has been reached is impractical since the
branching possibilities of a program are vast: there is always
the possibility that a previously unvisited branch may later
be involved in a hot loop. However, by running a program
for a large number of iterations, we increase the chances that
we are at — or at least near — the steady-state. Using the PyPy
reference benchmarks and those of Table 1, we execute each
benchmark 35 times within a single process, discarding the
first 5 runs, which are likely to contain most, if not all, of
the warm-up process. We report confidence intervals with
a 95% confidence level [20]. For ratios of speeds we give
the confidence interval assuming that the measurements are
normally distributed. Speed ratios are calculated using the
geometric mean, which is better suited to these kinds of
benchmarks than the arithmetic mean [17].

While execution speed is the most obvious motivation for
storage strategies, memory usage can be as important for
many users. However, while execution speed has an obvious
definition, memory usage is somewhat trickier. We use what
we think is probably the most important factor from a user’s
perspective: peak memory. In simple terms, peak memory
is the point of greatest memory use after garbage collection.
This measure is relevant because RAM is a finite resource:
a program that needs 10GiB of memory allocated to it at its
peak will run very slowly on an 8GiB RAM machine, as it
thrashes in and out of swap. To benchmark peak memory, we
use benchmarks from Table 1; we exclude the PyPy reference
benchmarks from our measurements, as they are unusually
low consumers of memory (most were specifically designed
to be useful measures of execution speed only). We manually
determined the point in the program when memory usage is
at, or near, its peak. We then altered the programs to force a
garbage collection at that point, and measured the resulting
heap size. This approach minimises the effects of possible
non-determinism in the memory management subsystem.

All benchmarks were run on an otherwise idle Intel Core
17-2600S 2.8GHz CPU with 8GB RAM, running 64-bit Linux
3.5.0 with GCC 4.7.2 as the compiler. The measurement
system is fully repeatable and downloadable (see page 2).

2013/8/30

Name Version Description

disaster 1.1 Disambiguator and statistical chunker [30]
Feedparser 5.1.3 RSS library [16]

invindex n/a Calculates inverted index [33]

multiwords n/a LocalMax algorithm [15]

NetworkX 1.7 Graph Network analysis [26]
nltk-wordassoc ~ 2.0b9 Real-world text analysis using the Natural Language Toolkit [5]
orm n/a Object-relational mapping benchmark [4]
PyDbLite 2.7 In-memory database [29]

PyExcelerator 0.6.4.1 Excel file manipulation [27]

Scapy 2.1.0 Network packet manipulation [25]
slowsets n/a Builds combinations from letters

whoosh 24.1 Text indexing and searching library [36]

Table 1. The set of memory-intensive real-world libraries we use as benchmarks in this paper.

Data types Collection types Other strategies
Ints Floats Strings Lists Dicts Sets Range KW args
pypy-none o o o)) o o o
pypy-list)) . . o o °)
pypy-dict ° o ° o °) o °
pypy-set . ° ° o o ° o o
pypy-ints) o o)) . o)
pypy-floats o . o))) o)
pypy-strings o)))))) °
pypy-all ° ° ° ° ° ° ° °

Table 2. The PyPy variants (along the left) and the aspects they contain (along the top). pypy-list, for example, contains
IntListStrategy, FloatListStrategy, StringlistStrategy, and RangeListStrategy.

5.4 Execution speed

Table 3 shows the speed ratios of the results of running several
of our PyPy variants over the full set of benchmarks (i.e. the
PyPy reference benchmarks and those of Table 1). The

unnormalized results can be found in Table 5 in Appendix A.

While there is inevitable variation amongst the benchmarks,
the relative speedup of pypy-all compared to pypy-none
shows a clear picture: storage strategies improve performance
by 18%. Some benchmarks receive much larger performance
boosts (invindex runs over seven times faster); some such as
Feedparser are only imperceptibly sped up. We explain the
reason for the latter in Section 5.6.

One expectation of Table 3 might be that the figure for
pypy-all should equal both the combination of pypy-list *

pypy-set * pypy-dict or pypy-ints * pypy-strings * pypy-floats.

Both are true within the margin of error, though the latter is
sufficiently different that a more detailed explanation is worth
considering.

pypy-ints * pypy-strings * pypy-floats (0.783 £ 0.057) is
faster than pypy-all (0.816 £ 0.034), albeit within the margin
of error of the two ratios. If we break the comparison down on

Storage Strategies for Collections

a benchmark-by-benchmark basis, then 12 benchmarks are
unequal when pypy-dict or pypy-ints * pypy-strings * pypy-
floats is considered vs. pypy-all (taking confidence intervals
into account). Of those, the figures of 9 are faster than pypy-
all and 3 slower. We believe the faster benchmarks are likely
to be due to the overlap between storage strategies: each has
the same overall optimisations for lists, dictionaries, and sets
(e.g. the initialisation optimisations of Section 4.4), but sim-
ply turns off two of the primitive types. The more commonly
used a primitive type, the more likely that such optimisations
have a cumulative effect. The slower benchmarks are harder
to explain definitively. We suspect that several factors play a
part. First, turning off parts of PyPy’s code may interact in
hard-to-examine ways with various tracing-related thresholds
(e.g. when to trace). Second, the removal of some code is
likely to make the trace optimiser’s job artificially harder
in some cases (see Section 4.6), frustrating some optimisa-
tions which may initially seem unrelated to storage strategies.
‘Diffing’ traces from two different PyPy variants is currently
a manual task, and is unfeasible when two interpreters have
changed sufficiently. Table 6 in the appendix provides the de-

2013/8/30

Benchmark pypy-all pypy-list pypy-set pypy-dict pypy-ints pypy-strings pypy-floats
disaster 0.939 £ 0021 1.030 £ 0021 0.949 L0019 0.967 £ 0020 0943 £oov 0.931 £ 0019 0.932 + o016
Feedparser 0.999 + 0461 0.997 £ o450 0.999 + 0431 0.995 £ 0453 1.003 £ o042 1.003 + 0454 0.996 + 0.441
invindex 0.136 £ 0002 0.136 + 0001 1.152 + oon 1.172 £ o010 1.144 £ 0010 0.137 + 000 1.203 + o012
multiwords 0.958 £ 0016 0.953 £ 006 0972 £ 005 0994 £ o007 0.989 £0030 1.036 + 0037 1.014 + o0u
NetworkX 0.582 + 0015 0954 £o002 1.044 £ 0025 0.623 o005 0.561 0014 0.738 + o018 0.782 + o021
nltk-wordassoc 0.928 + 0017 0.948 + o016 1.009 + o018 0.984 + o016 1.014 + o017 0.915 + o017 1.017 + o018
orm 0.990 o115 0998 £oms 0.998 L0116 0977 xon7 0987 £oaz 0.971 £ 0119 1.005 + 0120
PyDbLite 0.888 007 1.029 £ o005 1.042 £ 003 0.876 £ oo 1.147 £ 0014 0.890 + 0011 1.144 + o014
PyExcelerator 0.986 + 000s 1.057 £ 0006 0.980 +000s 0.944 + 000+ 1.015 +000s 0.956 + 0.005 0.994 + 0.004
Scapy 0.671 o164 0.999 £ 023 1.005 £ 0217 0.677 0163 0.839 £ 0217 0.697 + 0167 0.860 + 0222
slowsets 0.881 + 0022 1.018 £ o008 0.907 £ 0022 1.009 +£ 0004 0.985 0007 0.893 + 0022 0.987 + 0.004
whoosh 0.915 £ o01a 0972 £ 003 0.987 £o01a 0900 £ 0017 0.966 £ 0014 0.891 + 0013 0.976 + o013
ai 0.748 £ 008 0.859 0065 0.853 £ 00ss 0.948 £ o012 0.741 £ o00ss 1.044 + 0075 0.886 + 0.065
bm_chameleon 0.893 £ 0000 0.967 £o000s 0.925 0004 0.851 £ 0003 0971 o004 0.911 + 0004 0.946 + 0.00s
bm_mako 0.956 + os15 1.032 + o665 1.042 + o663 1.020 + 064 1.009 = o651 1.051 = o651 1.025 + o667
chaos 0.403 + oon1 0.402 + oont 0.783 + 0023 0.781 + 0023 0.407 + oon 1.022 + 0028 1.033 + 002
crypto_pyaes 0.985 000 0983 +o00s0 0.991 + 049 0.969 + 0040 0.972 £ 00e0 0.983 + 0.050 0.984 + 0.050
django 0.721 £ oon 0931 +o002 1.010 £ 002 0.794 £ 001 0.874 + 003 0.710 + 0011 0.873 + 0012
fannkuch 0.956 £ 000s 0.966 + 0006 1.155 + 0.007 1.134 £ 0006 0.967 + 0.005 1.213 + 0007 1.067 + 0.006
genshi_text 0.871 0086 0.995 £ 0007 1.077 + 0102 0.870 007 1.041 + 0000 0.884 + 0.088 1.013 + 009
go 0940 + 057 0968 +o0s30 1.000 + 0531 0993 059 0938 +osi3 1.014 + 0534 1.008 + 0533
html5lib 0.924 £ 0026 0.939 000 1.021 + 0031 0.955 0030 0.933 £002s 0.916 + 0025 0.934 + 0025
meteor-contest 0.645 + o017 1.016 £ 0020 0.635 £ 0014 1.010 £ 0015 0.648 £ 0017 0.944 + 0010 0.679 + o015
nbody_modified 0.986 + 007 0.920 £ 0006 0.947 +00om 0930 0008 0.933 £ 0007 0.939 + 0007 0.938 + 0.007
pyflate-fast 0.850 £ 0027 0.868 £ o031 1.017 £ 0050 1.025 £ 0022 0.940 £ 0027 0.912 & 0040 0.999 + 0030
raytrace-simple 0.990 + 0201 1.050 0283 1.073 + 02020 1.031 £ 0200 1.012 £ 0251 1.007 + 0252 1.030 -+ o361
richards 0.882 + 0066 0.889 0066 1.022 001 0.896 £ 0067 0.897 £ 0067 0.990 + 0299 0.940 + o.068
slowspitfire 0.908 £ o014 0.825 0036 0.981 0020 0985 10022 1.001 £ 0066 0.909 & 0074 1.032 =+ 0050
spambayes 0956 + 073 0981 +o070 1.012 +07m 0974 £ 0744 0.970 £ 0765 0.971 + 0702 0.981 + 0760
spectral-norm 0993 + 013 0994 +o0137 0995 + 0138 1.003 o122 0.991 +o0137 0.994 + 0135 0.994 + 038
sympy_integrate 0.935 £ o201 1.018 £ o354 0.996 £o03s6 0.974 £ o3 1.014 £ o035 0.962 1 02w 1.005 =+ 0346
telco 0.858 £ 0155 0.900 + 0181 0.947 £ 0196 0.870 =+ 0201 0.858 + o161 0.855 + 0.196 0.914 + 0166
twisted_names 0.921 £ 0032 0998 £o003¢ 1.004 £ 0022 0913 £ 0031 0983 £ooss 0.931 £ 0030 0.981 + 0032
Ratio 0.816 + 0034 0.888 + 0037 0.981 + o040 0.934 +0039 0.915 +o03s 0.882 +0037 0.970 + o041

Table 3. Benchmark speed ratios. All figures are given relative to pypy-none: lower is better. Benchmarks where storage

strategies perform worse are highlighted in bold.

tailed comparison figures for those readers who are interested
in exploring the individual datapoints further.

An interesting question is how close the figures of Table 3
come to the theoretical maximum. Unfortunately, we do not
believe that there is a meaningful way to calculate this. One
possibility might seem to be to create a statically typed variant
of each benchmark, optimise its collections statically, and use
the resulting figures as the theoretical maximum. However, a
type inferencer (human or automatic) would inevitably have
to conclude that many points in a program which create collec-
tions must have the most general type (ObjectXStrategy)
even if, at run-time, all of its instances were type homoge-
neous over their lifetime. For such programs, it is quite proba-
ble that the statically optimised version would execute slower
than that using storage strategies. An alternative approach is
V8’s kinds, which we discuss in Section 7.

Storage Strategies for Collections

5.5 Peak memory

The peak memory results are shown in Table 4. As the results
clearly show, storage strategies lead to a useful saving in peak
memory usage because, in essence, storage strategies cause
objects to be shorter-lived on average. As with execution
speed, pypy-all is not necessarily a simple composition of
a seemingly complete sub-set of interpreters, for the same
reasons given in Section 5.4.

One of the more surprising figures is for pypy-list, which
causes memory usage to increase. The main reason for
this is that some items that are unboxed inside a list are
later used outside and reboxed, potentially multiple times.
Without storage strategies, a single object is allocated once
on the heap, with multiple pointers to it from collections and
elsewhere. With storage strategies, the same element can be

2013/8/30

unboxed in the storage strategy, and then, when pulled out
of the list, reboxed to multiple distinct objects in the heap.
This is exacerbated by list storage strategies relative inability
to save memory relative to sets and dictionaries, as Table 4
shows. Fortunately, such objects are typically short lived.

5.6 Validating the hypotheses

In Section 3, we stated two hypotheses about real-world
programs, which led us to create storage strategies as they
are. We can also slightly narrow the scope of interest for
the hypotheses to ints, floats, and strings, as these are the
only cases which affect storage strategies. Usefully, storage
strategies themselves give us a simple way of validating the
hypotheses. We created a PyPy variant with two counters
for each storage strategy, recording the number of times a
transition from one storage strategy to another is taken, and
the size of the collection at that point, allowing us to trivially
calculate the average size of a collection’s elements at switch.
Figure 6 shows the resulting cumulative transition diagram
for the real-world benchmarks from Table 1.

Hypothesis H1 postulates that “it is uncommon for a
homogeneously typed collection storing objects of primitive
types to later have an element of a different type added to
it.” The basis for this hypothesis is our expectation that,
even in dynamically typed languages, programmers often
use collections in a type homogeneous fashion. Figure 6
clearly shows this. The transitions of interest are those where
elements are either created or reboxed (shown in bold), which
is where the hypothesis is violated. Consider StringlList-
Strategy, which is the biggest example. Around 21 million
lists are created with that storage strategy, but only a little
over 15% type dehomogenise. On average, across the whole
of Figure 6, a little under 10% of collections using optimised
storage strategies later type dehomogenise. Some benchmarks
(e.g. Feedparser and orm) type dehomogenise more than
double this amount of objects: both see little gain from
storage strategies. As this suggests, programs which violate
hypothesis H1 may perform worse with storage strategies
than without.

Hypothesis H2 postulates that “When a previously homo-
geneously typed collection type dehomogenises, the transi-
tion happens after only a small number of elements have
been added.” The basis for this hypothesis follows from H1,
and is our expectation that when a collection does type deho-
mogenise, it contains few elements. Therefore, we are really
interested in how often the ‘worst case’ scenario — extremely
large collections type dehomogenising — happens. A sensible
measure is thus the average number of elements a collection
contains when type dehomogenisation occurs. As Figure 6
shows, when collections using optimised storage strategies
type dehomogenise, they typically contain only a single ele-
ment. The costs of such a switch are, thus, minimal.

We consider the evidence for hypothesis H1 strong and
that for H2 conclusive. The validation of these hypotheses
also goes some way to explain why storage strategies are

Storage Strategies for Collections

effective: although the potential worst case is deeply unpleas-
ant, programmers do not write programs which run in a way
that triggers the worst case.

5.7 Threats to validity

For the speed benchmarks, the main threat to validity is
that we report performance in PyPy’s steady-state, largely
excluding start-up times. While this is representative of a
large class of programs — e.g. server programs, or those which
perform long calculations — it does not tend to represent
short-lived batch-like programs very well. Balancing these
two factors is a perennial problem when measuring the
performance of programs in JIT VMs, because the ‘best’
answer is highly dependent on how an individual user uses
the JIT. The virtue of using steady-state measurements for
this paper is that the numbers are more stable: measuring
numbers before the steady-state is reached can be highly
volatile, as the impact of the JIT can be significant.

For the memory benchmarks, a significant threat to validity
is that we manually chose the locations in the program to
measure peak memory usage. We may unwittingly have
chosen locations which favour storage strategies. However,
by using large number of benchmarks, we have reduced the
chances of this potential bias having a significant effect.

6. Relevance to other languages

The evaluation in Section 5 shows that enough real-world
Python programs’ collections contain elements of a single
primitive type to make storage strategies a substantial optimi-
sation. We now consider an important question: are storage
strategies only relevant to Python (the language) or PyPy (the
language implementation)?

Perhaps the most important results in the evaluation are
the statistic surrounding type dehomogenisation (Section 5.6)
which show that: collections of primitive types dehomogenise
in only 10% of cases; when type dehomogenisation occurs,
collections only contain a single element on average. These
two statistics go a considerable way to explain why storage
strategies are so effective. We believe that programs in most
dynamically typed languages will follow a similar pattern, for
the simple reason that this is the most predictable, safe way to
develop programs. We therefore expect that most dynamically
typed language implementations have the same underlying
potential for improvement that we have shown with PyPy.

Importantly, we do not believe that storage strategies only
make sense when used in the lowest-level VM: language
implementations running atop an existing VM can easily
use storage strategies. For example, an implementation such
as Jython (Python running on the JVM) could make use
of storage strategies. We do, however, note that JIT-based
implementations seem likely to see larger relative benefits
from storage strategies than non-JIT-based implementations
because of the ability of the JIT to more frequently unbox el-

2013/8/30

benchmark pypy-none pypy-all pypy-list pypy-set pypy-dict pypy-ints pypy-strings pypy-floats
disaster 2434 239.7 2429 241.3 235.0 257.6 208.0 216.6
Feedparser 69.9 72.6 70.6 69.2 69.2 74.2 71.9 73.0
invindex 454 40.8 45.1 422 424 42.7 40.6 42.7
multiwords 72.7 86.5 87.0 86.7 85.8 88.3 88.7 88.7
NetworkX 247.8 163.1 253.9 261.4 132.7 126.0 156.5 173.0
nltk-wordassoc 87.7 87.7 90.0 87.8 86.5 93.4 86.4 93.4
orm 136.6 1333 139.8 1339 127.5 137.2 128.7 1354
PyDbLite 101.9 101.2 106.9 101.9 101.2 120.7 102.6 122.5
PyExcelerator 308.9 295.6 310.0 309.2 295.0 325.8 294.6 3353
Scapy 67.1 68.7 66.5 67.5 65.3 67.4 64.6 68.8
slowsets 1812.8 1297.6 1812.8 1297.9 1557.0 1556.9 1297.5 1556.9
whoosh 72.8 71.2 72.1 72.9 70.6 71.6 71.3 72.3
Ratio 0.94 1.024 0.983 0.926 0.975 0.919 0.991

Table 4. Peak memory at points of interest during execution (MiB). The ratios are relative to pypy-none: lower values indicate

less memory usage.

ements. However, this should apply equally well to language
implementations running atop another JIT-based VM.

7. Related Work

Pointer tagging is the obvious ‘alternative’ to storage strate-
gies (see Section 2.1). There is currently no direct comparison
between pointer tagging and storage strategies. It is therefore
possible that pointer tagging could provide a more efficient
solution to storing easily tagged items such as integers or
floats. However, as Table 3 clearly shows, a significant part of
the speed-up of storage strategies comes from strings. On a
64-bit machine, 7 bytes in a tagged pointer could be used for
strings; strings longer than that would have to be allocated on
the heap. To get an idea of how often large strings are used,
we created a PyPy variant (included in our downloadable ex-
periment) to count the length of every string allocated in the
benchmark suite from Section 5. 64% of the strings created
by our benchmark suite from Section 5 are larger than 7 bytes
(85% are bigger than 3 bytes, the cut-off point for 32-bit ma-
chines). We caution against over-interpreting these numbers.
First, we can not easily separate out strings used internally
by PyPy’s interpreter. However such strings are, by design,
small, so the numbers we obtained are lower-bounds for the
real numbers of strings too large to be used with tagging. Sec-
ond, we suspect that the length of strings used by different
programs varies more than many other factors. Nevertheless,
these numbers indicate that storage strategies can outperform
pointer tagging.

The inspiration behind storage strategies is the map con-
cept, which originated in the Self project as a way to effi-
ciently represent prototype objects with varying sets of in-
stance field names [11]. This is done by splitting objects into
a (mostly constant) map and a (continually changing) storage
area. The map describes where within the storage area slot
names can be looked up. Maps have two benefits. When us-

Storage Strategies for Collections

ing an interpreter or a JIT, they lower memory consumption
(since maps are shared between objects, with only the storage
area being unique to each object). When the JIT is used, they
also significantly speed-up slot lookups because the constant
nature of maps allows JITs to fold away many computations
based upon them. Storage strategies similarly split apart a
collection and its data; some optimised storage strategies also
identify some data as being constant in a similar way to maps,
though not all strategies are able to do so.

The only other VM we are aware of which uses a mecha-
nism comparable to storage strategies is V8 [13, 14]. Arrays
are specialised with an ‘element kind’ which determines
the memory layout, in similar fashion to storage strategies.
Unlike PyPy, in V8 an array’s default storage strategy is
equivalent to what we might call IntegerArrayStrategy.
If a float is added to an array with IntegerArrayStrategy,
the storage strategy is changed to FloatArrayStrategy
and the storage area revised accordingly. Non-numeric
objects added to arrays with IntegerArrayStrategy or
FloatArrayStrategy cause a transition to ObjectArray-
Strategy, forcing existing elements to be reboxed. Empty-
ing a V8 array does not reset its element kind, which thus
moves monotonically towards ObjectArrayStrategy.

To avoid strategy changes, array creation sites in a program
can create arrays with different initial strategies. To do
this, arrays can track from which part of the program they
were created. When an array’s storage strategy changes,
the site which created it is informed. Subsequent arrays
created from that site are initialised with the revised storage
strategy (though existing arrays are left as-is), even if those
subsequent arrays will never change strategy. V8’s element
kinds thus aim to minimise type dehomogenisation, while
PyPy’s storage strategies attempt to optimise every possible
collection. To understand how these two schemes work
in practise, we created a PyPy variant (included in our

11 2013/8/30

312635
(avg#: 8.15)

1
avg#: 100.00)

RangelistStrategy

110024

(avg#: 8.45) IntegerListStrategy
17726436
(avg#: 11.64) StringListStrategy

28 440989

EmptyListStrategy

14584154

62
(avg#: 1.00)

2226
(avg#: 0.00)

1603103 EmptyDictStrategy

173064

Lists

1240586
avg#:1.01)

2422291
avg#: 1.00)

11195228 ObjectListStrategy

(avg#: 4.10

49975
avg#: 2.00)

(avg#: 2.19)

5975984
(avg#: 0.00)

9320

KwargsDictStrategy

(avg#: 0.00) —|, ModuleDictStrategy

76 359

(avg#: 16'99)4—|, ClassDictStrategy

1340442
(avg#: 2.17)

IntegerSetStrategy

102593

5227166

Sets

ObjectSetStrategy

EmptySetStrategy

StringSetStrategy

380368
(avg#:1.54

Figure 6. The number (upper figure on transitions), and average size (lower figure, left off for transitions involving empty
strategies), of collections when they switch storage strategies. Bold transitions indicate the most potentially expensive transitions,

when type dehomogenisation occurs.

Storage Strategies for Collections 12

2013/8/30

downloadable experiment) to see how often collections of
one specific creation site type dehomogenise. 98.8% of the
collection creation sites do not type dehomogenise at all. Of
those which do type dehomogenise, around one third always
create collections that a/l dehomogenise. The remaining two
thirds of sites create some collections which dehomogenise
and some which do not; the distribution has no clear pattern
and we are currently unable to determine the size of the
collections involved.

V8 has several mechanisms to mitigate the likelihood
of array creation sites unnecessarily being set to Object-
ArrayStrategy (which is particularly likely for e.g. factory
functions). Notably, when a function is compiled by the JIT
compiler, array call sites become fixed and any changes of
strategy to arrays created from those sites are ignored. A
deoptimisation has to occur before those call sites’ element
kinds can be reconsidered.

Overall, it is unclear what the performance implications
of V8 and PyPy’s approaches are: both have troubling worst-
case performance, but neither situation appears to happen
often in real programs. We suspect that each approach will
perform similarly due to the typical nature of dynamically
typed programs (see Section 5.6).

While storage strategies and V8’s kinds are fully dynamic,
Hackett and Guo show how a type inferencer for Java can
optimise many arrays [22]. The unsound type inferencer
is combined with dynamic type checks to make a reliable
system: type assumptions are adjusted as and when the
program violates them. Similarly to V8, array types are
referenced from each creation site. While, in Javascript, this
may well result in similar, or better, performance to V8’s
kinds, its relevance to Python is unclear. Python programs
frequently frustrate type inferencers [10], which may only
allow small improvements in collections performance.

There has been substantial work on memory optimisation
in the JVM, though most of it is orthogonal to storage strate-
gies, perhaps reflecting the work’s origins in optimising em-
bedded systems. [34] details various memory inefficiencies
found from a series of Java benchmarks, before describing
how previously published approaches (e.g. object sharing [2]
and data compression [1]) may be able to address them. Such
techniques can potentially be applied alongside storage strate-
gies, though it is unclear if the real-world benefits would
justify the effort involved in doing so.

8. Conclusions

Storage strategies are a simple technique for improving the
performance of real-world dynamically typed languages and
which we believe has wide applicability. We suspect that the
core storage strategies presented in this paper (particularly
lists and dictionaries, integers and strings) will be applica-
ble to virtually every dynamically typed language and its
implementations. However, different language’s semantics

Storage Strategies for Collections

and idioms of use may mean that different ‘exotic’ storage
strategies are needed relative to those in PyPy.

Storage strategies also make it feasible to experiment with
more exotic techniques such as data compression, and could
also allow user-level code to determine storage layout (in
similar spirit to CLOS). It may also be possible to reuse
parts of existing strategies when implementing new collection
types.

An important avenue for future research will be to reduce
storage strategies’ worst case behaviour (when type deho-
mogenising collections using specialised storage strategies).
It is possible that a hybrid of V8’s kinds (which take into
account a collection’s creation site) and storage strategies
may allow a scheme to be created which avoids the worst
case performance of each.

Acknowledgments

We thank: Michael Leuschel, David Schneider, Samuele Pe-
droni, Sven Hager, and Michael Perscheid for insightful com-
ments on various drafts of the paper; and Daniel Clifford,
Vyacheslav Egorov, and Michael Stanton for providing in-
sight on V8’s mechanism. This research was partly funded
by the EPSRC Cooler grant EP/K01790X/1.

References

[1] C. S. Ananian and M. Rinard. Data size optimizations for Java
programs. In Proc. LCTES, pages 59-68, 2003.

[2] A. W. Appel and M. J. Gongalves. Hash-consing garbage col-
lection. Technical Report CS-TR-412-93, Princeton University,
Dept. of Computer Science, 1993.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transpar-
ent dynamic optimization system. In Proc. PLDI, pages 1-12,
2000.

[4] M. Bayer. Orm2010, 2012. URL http://techspot.zzzeek.
org. [Online; accessed 26-March-2013].

[5] S. Bird, E. Klein, and E. Loper. Natural Language Processing
with Python. O’Reilly Media, July 2009.

[6] C. F. Bolz and L. Tratt. The impact of meta-tracing on VM
design and implementation. To appear; Science of Computer
Programming, 2013.

[7] C. FE. Bolz, A. Cuni, M. Fijatkowski, and A. Rigo. Tracing the
meta-level: PyPy’s tracing JIT compiler. In Proc. ICOOOLPS,
pages 18-25, 2009.

[8] C. FE. Bolz, A. Cuni, M. Fijatkowski, M. Leuschel, S. Pedroni,
and A. Rigo. Allocation removal by partial evaluation in a
tracing JIT. Proc. PEPM, Jan. 2011.

[9] O. Callad, R. Robbes, E. Tanter, and D. Rothlisberger. How de-
velopers use the dynamic features of programming languages:
the case of smalltalk. In Proc. MSR, page 23-32, 2011.

[10] B. Cannon. Localized type inference of atomic types in Python.
Master thesis, California Polytechnic State University, 2005.

[11] C. Chambers, D. Ungar, and E. Lee. An efficient implemen-
tation of SELF a dynamically-typed object-oriented language
based on prototypes. In OOPSLA, volume 24, 1989.

2013/8/30

http://techspot.zzzeek.org
http://techspot.zzzeek.org

[12] C. Chambers, D. Ungar, and E. Lee. An efficient implemen-
tation of self a dynamically-typed object-oriented language
based on prototypes. SIGPLAN Not., 24:49-70, Sept. 1989.

[13] D. Clifford. URL http://v8-io12.appspot.com/. Talk at
1012 [Online; accessed 27-June-2013].

[14] D. Clifford, V. Egorov, and M. Stanton. Personal communica-
tion, July 2013.

[15] J. da Silva and G. Lopes. A local maxima method and a fair
dispersion normalization for extracting multi-word units from
corpora. In Meeting on Mathematics of Language, 1999.

[16] FeedParser Developers. Feedparser, 2012. URL http://
code.google.com/p/feedparser/. [Online; accessed 26-
March-2013].

[17] P. Fleming and J. Wallace. How not to lie with statistics: the
correct way to summarize benchmark results. Commun. ACM,
29(3):218-221, Mar. 1986.

[18] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Oren-
dorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita,
M. Chang, and M. Franz. Trace-based Just-In-Time type spe-
cialization for dynamic languages. In Proc. PLDI, 2009.

[19] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman, Amsterdam, Oct. 1994.

[20] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
rigorous Java performance evaluation. SIGPLAN Notices, 42
(10):57-76, 2007.

[21] D. Gudeman. Representing type information in Dynamically-
Typed languages. Technical Report TR93-27, University of
Arizona at Tucson, 1993.

[22] B. Hackett and S.-y. Guo. Fast and precise hybrid type
inference for JavaScript. In Proc. PLDI, pages 239-250, 2012.

[23] A. Holkner and J. Harland. Evaluating the dynamic behaviour
of python applications. In Proc. ACSC, pages 19-28, 2009.

Storage Strategies for Collections

[24] T. Kotzmann and H. Mdssenbock. Escape analysis in the con-
text of dynamic compilation and deoptimization. In Proc. VEE,
page 111-120, 2005.

[25] Logilab. Pylint, 2012. URL http://www.logilab.org/
project/pylint. [Online; accessed 26-March-2013].

[26] NetworkX Developers. Networkx, 2012. URL http://
networkx.lanl.gov. [Online; accessed 26-March-2013].

[27] pyExcelerator Developers. pyexcelerator, 2012. URL http:
//sourceforge.net/projects/pyexcelerator. [Online;
accessed 26-March-2013].

[28] PyPy Team. Pypy speed benchmarks, 2013. URL http:
//speed.pypy.org/. [Online; accessed 27-June-2013].

[29] P. Quentel. Pydblite, 2012. URL http://www.pydblite.
net/en/index.html. [Online; accessed 26-March-2013].

[30] A. Radziszewski and M. Piasecki.
Noun Phrase Chunker for Polish. In Proc. 10S,
pages 169-180. Springer, 2010. Chunker available at
http://nlp.pwr.wroc.pl/trac/private/disaster/.

[31] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of
the dynamic behavior of JavaScript programs. In Proc. PLDI,
pages 1-12, 2010.

[32] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine
construction. In Proc. DLS, 2006.

[33] Rosetta Code. Inverted index, 2012. URL http://
rosettacode.org/wiki/Inverted_index#Python. [On-
line; accessed 26-March-2013].

[34] J. B. Sartor, M. Hirzel, and K. S. McKinley. No bit left behind:

the limits of heap data compression. In Proc. ISSM, pages
111-120. ACM, 2008.

[35] L. Tratt. Dynamically typed languages. Advances in Comput-
ers, 77:149-184, July 2009.
[36] Whoosh Developers. Whoosh, 2012. URL https://

bitbucket.org/mchaput/whoosh. [Online; accessed 26-
March-2013].

A preliminary

2013/8/30

http://v8-io12.appspot.com/
http://code.google.com/p/feedparser/
http://code.google.com/p/feedparser/
http://www.logilab.org/project/pylint
http://www.logilab.org/project/pylint
http://networkx.lanl.gov
http://networkx.lanl.gov
http://sourceforge.net/projects/pyexcelerator
http://sourceforge.net/projects/pyexcelerator
http://speed.pypy.org/
http://speed.pypy.org/
http://www.pydblite.net/en/index.html
http://www.pydblite.net/en/index.html
http://rosettacode.org/wiki/Inverted_index#Python
http://rosettacode.org/wiki/Inverted_index#Python
https://bitbucket.org/mchaput/whoosh
https://bitbucket.org/mchaput/whoosh

Appendix

A.

0000 F 7000 0000 F 7000 0000 F 7000 0000 F 7000 0000 F 7000 0000 F 7000 0000 F 7000 0000 F 7000 souwreu pajsiml
9000 F [0 8000 F 6€0°0 9000 F 6€0°0 8000 F 6€0°0 £000 F €400 L000 F 1400 000 F 6€0°0 9000 F GH()'(0) 00]9)
8000 F 9/ 8°(0) 8710 F 6€8°0) 020 F $88°() 8000 F 618°0 o F 898°() ¥IT0 F £ 88°() W F G180 8170 F 7/8°0) Srer3oyur Adwks
1000 F $10°0 1000 F $710°0 1000 F $10°0 1000 F $10°0 1000 F 4100 1000 F $10°0 1000 F $10°0 1000 F $10°0 éo:-ﬁmboomm
9100 F €80)°() 00 F 7800 9100 F 780°0 €00 F 780°0 00 F 9800 900 F €80°0 w0 F 180°0 00 F ¢80°0 sokequieds
£100 F $87°() 0200 F 0670 200 F G/7°0 8000 F 1/7°0 000 F ()L2°0 6000 F /77°0 000 F 0G0 Y00 F GLT0 ohcu_mmﬁo_m
0000 F 4,000 1000 F 000 0000 F $00°0 0000 F $,00°0 0000 F 000 0000 F $00°0 0000 F $00°0 0000 F $,00"0 SpIeyoLr
000 F G700 7000 F $70°0 7000 F $70°0 000 F G700 000 F 970'0 000 F G700 9000 F $70°0 1000 F $70°0 ordwis-aoenAex
8000 F 1Q€°() €100 F /€70 000 F 8G€°() 8100 F 16€°0 L100 F 88¢°() 6000 F 1€€°(0) 8000 F $7€°() 8000 F [Q€°() Hw&-ouw.mxm
0000 F €€0°0 0000 F €€0°0 0000 F €€0°0 0000 F €€0°0 W0 F €€0°0 0000 F €00 0000 F GE0'0 0000 F G€0"0 payipowrApoqu
2000 F $01°0 w000 F GHT1°0 2000 F 0010 1000 + GGT°0 1000 F /1 60°0 000 F 9GT°0 w000 F 660°0 w00 F $G1°0 1S91U0I-I0dWL
8800 F 4G 100 F GO'C 600 F o1 T 9500 F 80G'T 500 F 789°C 00 F 997 w00 F Q7T 8500 F 9797 qrsruny
1800 F 660°0 00 F 00T°0 1800 F 760°0 800 F 86070 800 F 860°0 8500 F G600 1800 F 7600 L£00 F 8600 03
2000 F 770°0 1000 F 67100 1000 F €700 1000 F 6700 2000 F $70°0 1000 F 770°0 1000 F 6700 w000 F 7700 1X9) TYSua3
1000 F QGT°0 1000 F 6/1°0 1000 F €410 1000 F 897°() 1000 F 12170 1000 F €410 0000 F 7410 1000 F Q4 1°() gonyuuej
0000 F $()°() 0000 F 9€0°0 0000 F $40°0 0000 F O$0°0 0000 F 1600 0000 F /4070 0000 F /€0°0 0000 F 1600 omcm.:u
w000 F $5()°0 w00 F $60°() w00 F €60°0 w00 F €60°0 w000 F $60°0) w00 F $60°0 w000 F $60°0 w000 F GG0'0 soeAd-oydA10
0000 F 1200 0000 F)Z0°0 0000 F 800°0 0000 F 910" 0000 F 910" 0000 F 800°0 0000 F 8000 1000 F (200 soeyd
v100 F 1€0°0 €100 F 1€0°0 €100 F 0€0°0 €100 F 0€0°0 ¥100 F 1€0°0 ¥100 F 1€0°0 €100 F 620°0 ¥100 F 0600 oyewrwq
0000 F 9100 0000 F 9100 0000 F /100 0000 F G100 0000 F 91()°0 0000 F /100 0000 F G100 0000 F /100 uodraweyd wq
£000 F 9G0°(0) €000 F /90°0 €000 F /00 £000 F ()90°0 €000 F $,60°0 £000 F G600 1000 F 840" €000 F $,90°0 e
00 F 10p° | v100 F Q/7°[100 F /Q€°T 0200 F 1671 100 F 94| ¥100 F CHE' T S100 F €1¢° | v100 F GEH' [gsooym
W00F [€Q°LE MOF GHTHE ICOF OGLLE 00T 699°RE W TF [QLPE VT [T06E SWOF LLLEE WOF €EERE S19SMO]S
9500 F 4/ 1°0 9200 F [H1°0 $00 F 0LT°0 900 F /€1°0 1500 F $07°0 0200 F 7070 9200 F 9€T°() 100 F 702°0 %&mow
SWOF LEOTT O00T [LGTT SWOTF €ETTI WO0F LTHIT MOTFTORLL SO0F LGLTI WOFTEE T #00 T 01T 101R19[IXHA]
1000 ¥ 767°0 1000 F 961°(0 1000 F €67°0 1000 F €61°0 1000 F)€Z°0 w000 F /770 £000 F 961°0 €000 F 122°0 A19aid
WTFTILYT TTO9YET STT GOTYT S0TT900VT M T [ESHT WTTTHSHT K61 TOLEPT L0 T 48CHT wio
S100 F OQT°T 7100 F 790 [€00F £/T°] 100 F 7411 vIOOF TLT°] 200 F 00T T vI00F /70T §100 F 09T J0ssepIom-yIu
6200 F GOQ' [L100 F 661" v100 F Q€€ T 0100 F QR [9100 F 6R4°C 6000 F /7T S100 F / Q€ 500 F €9€°7 XIOMIOIN
v00 F 1TE°T 900 F 6EC'T 100 F 6171 9100 F GRT'T €100 F 967 | §100 F €€7°T 9100 F Q€T T §100 F €671 spiomnnu
WOFTPYYT S00FQTYT LOOT LO9ET WOT 66IHT UIOFHLLET 00T LGLT BO0FGOST LT €490T Xopuraut
€70 F 86L°0 9520 F €08°0 920 F €08°0 LST0F /6170 120 F)08°0 €970 F 66L°0 970 F)08°0 8570 F 1080 howhmmﬁoom
WIOF CTEL W0 F IHTel BIOF OV El OROF epLEl SIOF O6FEl W00 F [COp] 0T LCEE] 00 F 61T Jo)sesip
syeoy-Ad&Ad sSurns-AdAd syur-AdAd Jo1p-AdAd jos-AdAd Is1[-AdAd [re-AdAd Quou-AdAd YADUYOUIG

Table 5. Execution speed for benchmarks (in seconds).

2013/8/30

15

Storage Strategies for Collections

Benchmark pypy-all pypy-list pypy-ints

* pypy-dict * pypy-strings

* pypy-set * pypy-floats
disaster 0.939 + o0n 0.945 1+ 0033 = 0.818 £ 008 <
Feedparser 0.999 + 0461 0991 + omn = 1.002 + 0785 =
invindex 0.136 + 0002 0.183 £ 0003 > 0.188 £ 0003 >
multiwords 0.958 + 0016 0.921 £ 0026 = 1.038 + 0066 =
NetworkX 0.582 + o015 0.621 £ o005 = 0.324 £ o01s <
nltk-wordassoc 0.928 + 0017 0.942 £ 008 = 0944 1 000 =
orm 0.990 + o115 0973 £ 0199 = 0.963 + 0203 =
PyDbLite 0.888 + 0017 0939 + 002 > 1.169 + 0025 >
PyExcelerator 0.986 + 0.005 0978 £ 0000 = 0.965 + 0008 <
Scapy 0.671 + 0164 0.680 + 0264 = 0.503 + 0220 =
slowsets 0.881 + 0022 0.931 £ 0050 = 0.868 + 003 =
whoosh 0.915 + o014 0.863 £ 003 < 0.840 £ 0020 <
ai 0.748 + o068 0.694 + 0000 = 0.686 + 00ss =
bm_chameleon 0.893 + 000 0.761 £ 000s < 0.838 £ 0007 <
bm_mako 0.956 + o615 1.097 £ 1201 = 1.087 + 120 =
chaos 0.403 + oon1 0.246 + 0012 < 0.430 + 0021 =
crypto_pyaes 0.985 + 0.0s0 0944 £ 0022 = 0.940 + 0083 =
django 0.721 + oonn 0.747 £ 007 = 0.541 + 001s <
fannkuch 0.956 + 0.005 1.266 + 0013 > 1.252 + 0012 >
genshi_text 0.871 + o086 0933 + 0157 = 0.933 +ouss =
go 0.940 + 0517 0.961 £oses = 0.959 £oss7 =
html5lib 0.924 + 0026 0.915 £ 0000 = 0.798 + 003 <
meteor-contest 0.645 + 0017 0.651 0022 = 0415 £ 007 <
nbody_modified 0.986 + 0.007 0.810 £ 0061 < 0.821 £ 0o <
pyﬂate—fast 0.850 + 0.027 0.906 + 002 = 0.856 + 002 =
raytrace-simple 0.990 -+ 0201 1.161 + 0552 = 1.050 + 0522 =
richards 0.882 + 0.066 0.815 £ 0103 = 0.834 + 0266 =
slowspitfire 0.908 + o014 0.797 + o0 < 0.938 + 0000 =
spambayes 0.956 =+ 0743 0.967 £ 1200 = 0924 1 1067 =
spectral-norm 0.993 + 0137 0993 o239 = 0.980 + 024 =
sympy_-integrate 0.935 + 0201 0987 + 060t = 0.981 + 0561 =
telco 0.858 + o.s5 0.741 £ 0212 = 0.672 £ 0233 =
twisted_names 0.921 + 0032 0.915 £ 0052 = 0.897 + 0052 =
Combined Ratios 0.816 + 0034 0.813 £o0ss = 0.783 £ o057 =

Table 6. Ratios of PyPy variants multiplied together (see Section 5.4). The symbols <, = or > indicate whether, after taking

the confidence intervals into account, the result is smaller than, equal to, or larger than pypy-all.

Storage Strategies for Collections

2013/8/30

	Introduction
	Background
	Memory usage in dynamically typed languages
	PyPy and tracing JITs

	Storage strategies
	Storage strategies in PyPy
	Basic design
	Implementation
	Exotic storage strategies
	Optimising collection creation and initialisation
	Optimising type-based operations
	Interaction with RPython's Tracing JIT

	Evaluation
	Benchmarks
	PyPy variants
	Methodology
	Execution speed
	Peak memory
	Validating the hypotheses
	Threats to validity

	Relevance to other languages
	Related Work
	Conclusions
	Appendix

