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Abstract

Meta-tracing JIT compilers can be applied to a variety of differ-
ent languages without explicitly encoding language semantics into
the compiler. So far, they lacked a way to give the language im-
plementor control over runtime feedback. This restricted their per-
formance. In this paper we describe the mechanisms in PyPy’s
meta-tracing JIT that can be used to control runtime feedback in
language-specific ways. These mechanisms are flexible enough to
express classical VM techniques such as maps and runtime type
feedback.

1. Introduction

One of the hardest parts of implementing an object-oriented dy-
namic language well is to optimize its object model. This is made
harder by the complexity of the core object semantics of many re-
cent languages such as Python, JavaScript or Ruby. For them, even
implementing just an interpreter is already a difficult task. Imple-
menting these languages efficiently with a just-in-time compiler
(JIT) is extremely challenging, because of their many corner-cases.

It has long been an objective of the partial evaluation commu-
nity to automatically produce compilers from interpreters. There
has been a renaissance of this idea around the approach of trac-
ing just-in-time compilers. A number of projects have attempted
this approach. SPUR [3] is a tracing JIT for .NET together with a
JavaScript implementation in C#. PyPy [18] contains a tracing JIT
for RPython [1] (a restricted subset of Python). This JIT is then
used to trace a number of languages implementations written in
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done, such as an interpreter for Lua in JavaScript, which is run on
and optimized with a tracing JIT for JavaScript [22].

These projects have in common that they work one meta-level
down, providing a tracing JIT for the language used to implement
the dynamic language, and not for the dynamic language itself. The
tracing JIT will then trace through the object model of the dynamic
language implementation. This makes the object model transparent
to the tracer and its optimizations. Therefore the semantics of the
dynamic language does not have to be replicated in a JIT. We
call this approach meta-tracing. Another commonality of these
approaches is that they allow some annotations (or hints) in the
dynamic language implementation to guide the meta-tracer. This
makes the process not completely automatic but can give good
speedups over bare meta-tracing.

In this paper we present two of these hints that are extensively
used in the PyPy project to improve the performance of its Python
interpreter, particularly of the object model.

Conceptually, the significant speed-ups that can be achieved
with dynamic compilation depend on feeding into compilation val-
ues observed at runtime and exploiting them. In particular, if there
are values which vary very slowly, it is possible to compile multi-
ple specialized versions of the same code, one for each actual value.
To exploit the runtime feedback, the implementation code and data
structures need to be structured so that many such slow-varying
values are at hand. The hints that we present precisely allow us to
implement such feedback and exploitation in a meta-tracing con-
text.

Together these hints can be used to express many classic imple-
mentation techniques used for object models of dynamic languages,
such runtime type feedback and maps.

The contributions of this paper are:

e A hint to turn arbitrary variables into constants in the trace by
feeding back runtime information into compilation.

e A way to annotate operations which the constant folding opti-
mization then recognizes and exploits.

¢ A worked-out example of a simple object model of a dynamic
language and how it can be improved using these hints.

e This example also exemplifies general techniques for refactor-
ing code to expose constant folding opportunities of likely run-
time constants.

The paper is structured as follows: Section 2 gives an introduc-
tion to the PyPy project and meta-tracing and presents an example



of a tiny dynamic language object model. Section 3 presents the
hints, what they do and how they are applied. Section 4 shows how
the hints are applied to the tiny object model and Section 5 presents
benchmarks.

2. Background
2.1 The PyPy Project

The PyPy project [18] strives to be an environment where complex
dynamic languages can be implemented efficiently. The approach
taken when implementing a language with PyPy is to write an
interpreter for the language in RPython. RPython is a restricted
subset of Python chosen in such a way that it is possible to perform
type inference on it. The interpreters in RPython can therefore be
translated to efficient C code.

A number of languages have been implemented with PyPy,
most importantly a full Python implementation, but also a Prolog
interpreter [6] and some less mature experiments.

The translation of the interpreter to C code adds a number of
implementation details into the final executable that are not present
in the interpreter implementation, such as a garbage collector. The
interpreter can therefore be kept free from low-level implementa-
tion details. Another aspect of the final VM that is added semi-
automatically to the generated VM is a tracing JIT compiler.

The advantage of this approach is that writing an interpreter is
much easier and less error prone than manually writing a JIT com-
piler. Similarly, writing in a high level language such as RPython is
easier than writing in C.

We call the code that runs on top of a VM implemented with
PyPy the user code or user program.

2.2 PyPy’s Meta-Tracing JIT Compilers

A recently popular approach to JIT compilers is that of tracing JITs.
Tracing JITs were popularized by the Dynamo project, which used
the technique for dynamic machine code optimization [2]. Later
they were used to implement a lightweight JIT for Java [12] and
for dynamic languages such as JavaScript [10].

A tracing JIT works by recording traces of concrete execution
paths through the program. Those traces are linear lists of opera-
tions, which are optimized and then get turned into machine code.
This recording automatically inlines functions: when a function call
is encountered the operations of the called functions are simply put
into the trace of the caller too. The tracing JIT tries to produce
traces that correspond to loops in the traced program, but most trac-
ing JITs now also have support for tracing non-loops [11].

Because the traces always correspond to a concrete execution
they cannot contain any control flow splits. Therefore they encode
the control flow decisions needed to stay on the trace with the help
of guards. Those are operations that check that the assumptions are
still true when the compiled trace is later executed with different
values.

To be able to do this recording, VMs with a tracing JIT typically
contain an interpreter. After a user program is started the interpreter
is used; only the most frequently executed paths through the user
program are traced and turned into machine code. The interpreter
is also used when a guard fails to continue the execution from the
failing guard.

Since PyPy wants to be a general framework, we want to reuse
our tracer for different languages, which makes classical tracers
inapplicable, because they encode language semantics. Therefore
PyPy’s JIT is a meta-tracer [5]. It does not trace the execution of the
user program, but instead traces the execution of the interpreter that
is running the program. This means that the traces it produces do
not contain the bytecodes of the language in question, but RPython-
level operations that the interpreter did to execute the program.
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Figure 1. The levels involved in tracing

Tracing through the execution of an interpreter has many advan-
tages. It makes the tracer, its optimizers and backends reusable for
a variety of languages. The language semantics do not need to be
encoded into the JIT. Instead the tracer just picks them up from the
interpreter. This also means that the JIT by construction supports
the full language as correctly as the interpreter.

While the operations in a trace are those of the interpreter, the
loops that are traced by the tracer are the loops in the user program.
To achieve this the tracer stops tracing after one iteration of the
loop in the user function that is being considered; at this point, it
probably traced many iterations of the interpreter main loop.

Figure 1 shows a diagram of the process. On the left are the
levels of execution. The CPU executes the binary of PyPy’s Python
interpreter, which consists of RPython functions that have been
compiled first to C, then to machine code. The interpreter runs a
Python program written by a programmer (the user). If the tracer is
used, it traces operations on the level of the interpreter. However,
the extent of the trace is determined by the loops in the user
program.

2.3 Optimizing Traces

Before sending the trace to the backend to produce actual machine
code, it is optimized. The optimizer applies a number of techniques
to remove or simplify the operations in the trace. Most of these are
well known compiler optimization techniques, with the difference
that it is easier to apply them in a tracing JIT because it only
has to deal with linear traces. Among the techniques are constant
folding, common subexpression elimination, allocation removal
[4], store/load propagation, loop invariant code motion.

In some places it turns out that if the interpreter author rewrites
some parts of the interpreter with these optimizations in mind the
traces that are produced by the optimizer can be vastly improved.

2.4 Running Example

As the running example of this paper we will use a very simple and
bare-bones object model that just supports classes and instances,
without any inheritance or other advanced features. In the model
classes contain methods. Instances have a class. Instances have
their own attributes (or fields). When looking up an attribute of an
instance, the instance’s attributes are searched. If the attribute is not
found there, the class’ methods are searched.

To implement this object model, we use the RPython code in
Figure 2 as part of the interpreter source code. In this straightfor-



class Class(object):

1

def __init__(self, name): 2
self.name = name 3
self.methods = {} 4

def instantiate(self): 6
return Instance(self) 7

def find_method(self, name): 9
return self.methods.get(name, None) 10

def write_method(self, name, value): 12
self.methods[name] = value 13
class Instance(object): 16
def __init__(self, cls): 17
self.cls = cls 18
self.attributes = {} 19

def getfield(self, name): 2
return self.attributes.get(name, None) 2

def write_attribute(self, name, value): 24
self.attributes[name] = value 25

def getattr(self, name): 27
result = self.getfield(name) 28

if result is None: 29
result = self.cls.find_method(name) 30

if result is None: 3

raise AttributeError 3

return result 33

Figure 2. Original Version of a Simple Object Model

ward implementation the methods and attributes are just stored in
dictionaries (hash maps) on the classes and instances, respectively.
While this object model is very simple it already contains most hard
parts of Python’s object model. Both instances and classes can have
arbitrary fields, and they are changeable at any time. Moreover, in-
stances can change their class after they have been created.

When using this object model in an interpreter, a large amount
of time will be spent doing lookups in these dictionaries. Let us
assume we trace through code that sums three attributes, such as:

inst.getattr("a") + inst.getattr("b") + inst.getattr("c

The trace would look like in Figure 3. In this example, the at-
tribute a is found on the instance, but the attributes b and c are found
on the class. The line numbers in the trace correspond to the line
numbers in Figure 2 where the traced operations come from. The
trace is in SSA form. Note how all the guards in trace correspond
to a condition in the original code. The trace contains five calls to
dict.get, which is slow. To make the language efficient using a
tracing JIT, we need to find a way to get rid of these dictionary
lookups. How to achieve this will be the topic of Section 4.

3. Hints for Controlling Optimization

In this section we will describe two hints that allow the inter-
preter author to increase the optimization opportunities for constant
folding. If applied correctly these techniques can give really big
speedups by pre-computing parts of what happens at runtime. On
the other hand, if applied incorrectly they might lead to code bloat,

")

# insty.getattr("a") 27
attributes: = insty.attributes 2
resulty = dict.get(attributesy, "a") 2
guard(result; is not None) 29
# insty.getattr("b") 27
attributess = insti.attributes )
v1 = dict.get(attributess, "b", None) 2
guard(vi is None) 29
cls1 = inst1.cls 30
methods; = cls.methods 10
resulty = dict.get(methodsi, "b", None) 10

guard(results is not None) 31

ve = resulty + results q
# w1nsty.getattr("c") 27
attributess = insty.attributes »
vy = dict.get(attributess, "c", None) 2
guard(vs is None) 2
cls1 = inst1.cls 30
methodss = cls.methods 10
results = dict.get(methodss, "c", None) 10
guard(results is not None) 31

V4 = V2 + results a
return(vy) -1

Figure 3. Trace Through the Object Model

thus making the resulting program actually slower. Note that these
hints are never put into the user program, only into the interpreter.
For constant folding to work, two conditions need to be met:
the arguments of an operation actually need to all be constant, i.e.
statically known by the optimizer and the operation needs to be
constant-foldable, i.e. always yield the same result given the same
arguments. There is one kind of hint for both of these conditions.

3.1 Where Do All the Constants Come From?

It is worth clarifying what a “constant” is in this context. A variable
of the trace is said to be constant if its value is statically known by
the optimizer. The simplest example of constants are literal values,
such as 1. However, the optimizer can statically know the value of
a variable even if it is not a constant in the original source code. For
example, consider the following fragment of RPython code on the
left. If the fragment is traced with x being 4, the trace on the right
is produced:

if x == 4:
y =y + X

guard(x; == 4)
Y2 = Y1 + 21

A guard is a runtime check. The above trace will run to com-
pletion when x1 == 4. If the check fails, execution of the trace is
stopped and the interpreter continues to run. Therefore, the value
of x; is statically known to be 4 after the guard.

There are cases in which it is useful to turn an arbitrary variable
into a constant value. This process is called promotion and it is
an old idea in partial evaluation (it’s called “The Trick” [16] there).
The technique is substantially more powerful in a JIT compiler than
in the static setting of classic partial evaluation.

Promotion is essentially a tool for trace specialization. There are
places in the interpreter where it would open a lot of optimization
opportunities if a variable were constant, even though it could have
different values in practice. In such a place, promotion can be used.



The typical reason to do that is if there is a lot of computation
depending on the value of one variable.

Let us make this more concrete. If we trace a call to the function
(written in RPython) on the left, we get the trace on the right:

V1 = X1 * 2

def fl(x, y): z1 =v1 +1

z=Xxx*x2+1 v2 = 21 + Y1
return z + y return(vs)

Observe how the first two operations could be constant-folded
if the value of 1 were known. Let us assume that the value of x in
the RPython code can vary, but does so rarely, i.e. only takes a few
different values at runtime. If this is the case, we can add a hint to
promote X, like this:

guard(z; == 4)

def fl(x, y): V1 = X1 * 2
promote(x) z1=v1 +1
zZ=Xxx2+1 V2 = 21 + Y1

return z + y return(vsz)

The hint indicates that x is likely a runtime constant and the JIT
should try to perform runtime specialization on it in the code that
follows. When just running the code, the promote function has no
effect. When tracing, some extra work is done. Let us assume that
this changed function is traced with the arguments 4 and 8. The
trace will be the same, except for one operation at the beginning.

The promotion is turned into a guard operation in the trace.
The guard captures the runtime value of x as it was during tracing,
which can then be exploited by the compiler. The introduced guard
specializes the trace, because it only works if the value of z; is 4.
From the point of view of the optimizer, this guard is not different
frome the one produced by the if statement in the first example.
After the guard, it can be assumed that x; is equal to 4, meaning
that the optimizer will turn this trace into:

guard(x; == 4)
v2 =9 + Y1
return(vs)

Notice how the first two arithmetic operations were constant
folded. The hope is that the guard is executed quicker than the
multiplication and the addition that was now optimized away.

If this trace is executed with values of 1 other than 4, the guard
will fail, and execution will continue in the interpreter. If the guard
fails often enough, a new trace will be started from the guard. This
other trace will capture a different value of ;. If it is e.g. 2, then
the optimized trace looks like this:

guard(xz; == 2)
v2 =5+ 1
return(vs)

This new trace will be attached to the guard instruction of
the first trace. If 1 takes on even more values, a new trace will
eventually be made for all of them, linking them into a chain. This
is clearly not desirable, so we should promote only variables that
do not vary much. However, adding a promotion hint will never
produce wrong results. It might just lead to too much machine code
being generated.

Promoting integers, as in the examples above, is not used that
often. However, the internals of dynamic language interpreters of-
ten have values that are variable but vary little in the context of
parts of a user program. An example would be the types of vari-
ables in a user function, which rarely change in a dynamic lan-
guage in practice (even though they could). In the interpreter, these
user-level types are values. Thus promoting them will lead to type-

specialization on the level of the user program. Section 4 will
present a complete example of how this works.

3.2 Declaring New Foldable Operations

In the previous section we saw a way to turn arbitrary variables
into constants. All foldable operations on these constants can be
constant-folded. This works well for constant folding of primitive
types, e.g. integers. Unfortunately, in the context of an interpreter
for a dynamic language, most operations actually manipulate ob-
jects, not primitive types. The operations on objects are often not
foldable and might even have side-effects. If one reads a field out of
a constant reference to an object this cannot necessarily be folded
away because the object can be mutated. Therefore, another hint is
needed.

This hint can be used to mark functions as trace-elidable. A
function is termed trace-elidable if, during the execution of the pro-
gram, successive calls to the function with identical arguments al-
ways return the same result. In addition the function needs to have
no side effects or idempotent side effects'. From this definition fol-
lows that a call to a trace-elidable function with constant arguments
in a trace can be replaced with the result of the call seen during trac-
ing.

As an example, take the class on the left. Tracing the call
a.f(10) of some instance of A yields the trace on the right (note
how the call to c is inlined):

class A(object): r1 = ai.x
def __init__(self, x, y): V1= X1 * 2
self.x = x vo = v + 1
self.y =y v3 = vy + valy
a1.y = v3

def f(self, val):
self.y = self.c() + val

def c(self):
return self.x * 2 + 1

In this case, adding a promote of self in the f method to get
rid of the computation of the first few operations does not help.
Even if a; is a constant reference to an object, reading the x field
does not necessarily always yield the same value. To solve this
problem, there is another annotation, which lets the interpreter
author communicate invariants to the optimizer. In this case, she
could decide that the x field of instances of A is immutable, and
therefore c is a trace-elidable function. To communicate this, there
is an @elidable decorator. If the code in ¢ should be constant-
folded away, we would change the class as follows:

class A(object): guard(a; ==
def __init__(self, x, y): 0xb73984a8)
self.x = x v1 = A.c(ar)
self.y =y V2 = v + valy
aip.y = vz

def f(self, val):
promote(self)
self.y = self.c() + val

@elidable
def c(self):
return self.x * 2 + 1

! This property is less strict than that of a pure function, because it is only
about actual calls during execution. All pure functions are trace-elidable
though.



Here, 0xb73984a8 is the address of the instance of A that was
used during tracing. The call to A.c is not inlined, so that the
optimizer has a chance to see it. Since the A.c method is marked
as trace-elidable, and its argument is a constant reference, the call
will be removed by the optimizer. The final trace looks like this
(assuming that the x field’s value is 4):

guard(a; == 0xb73984a8)
v2 = 9 + wvaly
ai.y = v2

On the one hand, the @elidable annotation is very powerful. It
can be used to constant-fold arbitrary parts of the computation in
the interpreter. However, the annotation also gives the interpreter
author ample opportunity to introduce bugs. If a function is anno-
tated to be trace-elidable, but is not really, the optimizer can pro-
duce subtly wrong code. Therefore, a lot of care has to be taken
when using this annotation’. We hope to introduce a debugging
mode which would (slowly) check whether the annotation is ap-
plied incorrectly to mitigate this problem.

4. Putting It All Together

In this section we describe how the simple object model from
Section 2.4 can be made efficient using the hints described in the
previous section. The object model there is typical for many current
dynamic languages (such as Python, Ruby and JavaScript) as it
relies heavily on hash-maps to implement its objects.

4.1 Making Instance Attributes Faster Using Maps

The first step in making getattr faster in our object model is to
optimize away the dictionary lookups on the instances. The hints
of the previous section do not seem to help with the current object
model. There is no trace-elidable function to be seen, and the
instance is not a candidate for promotion, because there tend to
be many instances.

This is a common problem when trying to apply hints. Often,
the interpreter needs a small rewrite to expose the trace-elidable
functions and nearly-constant objects that are implicitly there. In
the case of instance fields this rewrite is not entirely obvious. The
basic idea is as follows. In theory instances can have arbitrary
fields. In practice however many instances share their layout (i.e.
their set of keys) with many other instances.

Therefore it makes sense to factor the layout information out
of the instance implementation into a shared object, called the
map. Maps are a well-known technique to efficiently implement
instances and come from the SELF project [7]. They are also used
by many JavaScript implementations such as V8. The rewritten
Instance class using maps can be seen in Figure 4.

In this implementation instances no longer use dictionaries to
store their fields. Instead, they have a reference to a map, which
maps field names to indexes into a storage list. The storage list
contains the actual field values. Maps are shared between different
instances, therefore they have to be immutable, which means that
their getindex method is a trace-elidable function. When a new
attribute is added to an instance, a new map needs to be chosen,
which is done with the add_attribute method on the previous
map. This function is also trace-elidable, because it caches all
new instances of Map that it creates, to make sure that objects
with the same layout have the same map, which makes its side
effects idempotent. Now that we have introduced maps, it is safe to
promote the map everywhere, because we assume that the number
of different instance layouts is small.

2The most common use case of the @elidable annotation is indeed to
declare the immutability of fields. Because it is so common, we have special
syntactic sugar for it.

class Map(object):
def __init__(self):
self.indexes = {}
self.other_maps = {}

@elidable
def getindex(self, name):
return self.indexes.get(name, -1)

@elidable
def add_attribute(self, name):
if name not in self.other_maps:
newmap = Map()
newmap.indexes.update(self.indexes)
newmap.indexes[name] = len(self.indexes)
self.other_maps[name] = newmap
return self.other_maps[name]

EMPTY_MAP = Map()

class Instance(object):
def __init__(self, cls):
self.cls = cls
self.map = EMPTY_MAP
self.storage = []

def getfield(self, name):
map = self.map

promote(map)
index = map.getindex(name)
if index != -1:

return self.storage[index]
return None

def write_attribute(self, name, value):

map = self.map

promote(map)

index = map.getindex(name)

if index != -1:
self.storage[index] = value
return

self.map = map.add_attribute(name)

self.storage.append(value)

def getattr(self, name):
. # as before

Figure 4. Simple Object Model With Maps

With this adapted instance implementation, the trace we saw
in Section 2.4 changes to that of Figure 5. There 0xb74af4a8 is
the memory address of the Map instance that has been promoted.
Operations that can be optimized away are grayed out, their results
will be replaced with fixed values by the constant folding.

The calls to Map.getindex can be optimized away, because
they are calls to a trace-elidable function and they have constant
arguments. That means that index, /23 are constant and the guards
on them can be removed. All but the first guard on the map will
be optimized away too, because the map cannot have changed in
between. This trace is already much better than the original one.
Now we are down from five dictionary lookups to just two.

The technique to make instance lookups faster is applicable in
more general cases. A more abstract view of maps is that of splitting
a data-structure into an immutable part (e.g., the map) and a part



# insty.getattr("a")

mapi = insty.map

guard(map; == 0xb74af4a8)

index; = Map.getindex(mapi, "a")
guard(index; !'= -1)

storage1 = insty.storage

result; = storagei[index:]

# insty.getattr("b")

mapz = insty.map

guard(mapz == 0xb74af4a8)

indexs = Map.getindex(map2, "b")
guard(indexs == -1)

cls1 = insty.cls

methods; = clsy.methods

results = dict.get(methods;, "b", None)
guard(results is not None)

ve = result; + results

# insty.getattr("c")

mapsz = insti.map

guard(maps == 0xb74af4a8)

indexs = Map.getindex(maps, "c")
guard(indexs == -1)

clsy = insti.cls

methodss = clss.methods
results = dict.get(methods2, "c", None)
guard(results is not None)

vy = V2 + results
return(vy)

Figure 5. Unoptimized Trace After the Introduction of Maps

that changes (e.g., the storage list). All the computation on the
immutable part is trace-elidable so that only the manipulation of
the quick-changing part remains in the trace after optimization.

4.2 Versioning of Classes

Above we assumed that the total number of different instance
layouts is small compared to the number of instances. For classes
we will make an even stronger assumption. We simply assume that
it is rare for classes to change at all. This is not always reasonable
(sometimes classes contain counters or similar things) but for this
simple example it is good enough.?

What we would really like that the Class. find_method method
is trace-elidable. But it cannot be, because it is always possible to
change the class itself. Every time the class changes, find_method
can potentially return a new value.

Therefore, we give every class a version object, which is
changed every time a class gets changed (i.e., the methods dictio-
nary changes). This means that the result of calls to methods.get ()
for a given (name, version) pair will always be the same, i.e. it
is a trace-elidable operation. To help the JIT to detect this case, we
factor it out in a helper method _find_method which is marked as
@elidable. The refactored Class can be seen in Figure 6

What is interesting here is that _find_method takes the version
argument but it does not use it at all. Its only purpose is to make the
call trace-elidable, because when the version object changes, the
result of the call might be different from the previous one.

3There is a more complex variant of the presented technique that can
accommodate quick-changing class fields a lot better.

class VersionTag(object):
pass

class Class(object):
def __init__(self, name):
self.name = name
self.methods = {}
self.version = VersionTag()

def find_method(self, name):
promote(self)
version = self.version
promote(version)
return self._find_method(name, version)

@elidable

def _find_method(self, name, version):
assert version is self.version
return self.methods.get(name, None)

def write_method(self, name, value):
self.methods[name] = value
self.version = VersionTag()

Figure 6. Versioning of Classes

# insty.getattr("a")

mapy = tnsty.map

guard(map1 == 0xb74af4a8)

indexr; = Map.getindex(mapi, "a")
guard(indexy !'= -1)

storage1 = insti.storage

result; = storagei[inder;]

# insty.getattr("b")

mapz = 1nsti.map

guard(mapz == 0xb74af4al8)

inders = Map.getindex(mapz, "b")
guard(indexs == -1)

cls1 = inst1.cls

guard(cls; == 0xb7aaaaf8)
versiony = clsi.version
guard(version; == 0xb7bbbb18)
resulto = Class._find_method(clsy, "b", wversioni)
guard(results is not None)

va = result: + results

# insty.getattr("c")

maps = tnsty.map

guard(maps == 0xb74af4a8)

indexs = Map.getindex(maps, "c")
guard(indexs == -1)

clsy = insty.cls

guard(clsy == 0xb7aaaaf8)
versions = clss.version
guard(versions == 0xb7bbbb18)
results = Class._find_method(clss,
guard(results is not None)

, versions)

V4 = V2 + results
return(vy)

Figure 7. Unoptimized Trace After Introduction of Versioned
Classes



# insty.getattr("a")

mapi = insty.map
guard(map; == 0xb74af4a8)
storage1 = insty.storage
result; = storage;[0]

# insty.getattr("b")

cls1 = insty.cls

guard(cls; == 0xb7aaaaf8)
versiony = clsi.version
guard(version; == 0xb7bbbb18)
Ve = result; + 41

# itnsty.getattr("c")
vg4 = v2 + 17
return(vy)

Figure 8. Optimized Trace After Introduction of Versioned
Classes

The trace with this new class implementation can be seen in
Figure 7. The calls to Class._find_method can now be optimized
away, also the promotion of the class and the version, except for the
first one. The final optimized trace can be seen in Figure 8.

The index 0 that is used to read out of the storage list is the
result of the constant-folded getindex call. The constants 41 and
17 are the results of the folding of the _find_method calls. This
final trace is now very good. It no longer performs any dictionary
lookups. Instead it contains several guards. The first guard checks
that the map is still the same. This guard will fail if the same code
is executed with an instance that has another layout. The second
guard checks that the class of inst is still the same. It will fail if the
trace is executed with an instance of another class. The third guard
checks that the class did not change since the trace was produced. It
will fail if somebody calls the write_method method on the class.

4.3 Real-World Considerations

The techniques used above for the simple object model are used for
the object model of PyPy’s Python interpreter too. Since Python’s
object model is considerably more complex, some additional work
needs to be done.

The first problem that needs to be solved is that Python supports
(multiple) inheritance. Therefore looking up a method in a class
needs to consider all the classes in the whole method resolution
order. This makes the versioning of classes more complex. If a
class is changed its version changes. At the same time, the versions
of all the classes inheriting from it need to be changed as well,
recursively. This makes class changes expensive, but they should
be rare. On the other hand, a method lookup in a complex class
hierarchy is as optimized in the trace as in our simple object model
above.

Another optimization is that in practice the shape of an instance
is correlated with its class. In our code above, we allow both to vary
independently. In PyPy’s Python interpreter we store the class of an
instance on its map. This means that we get one fewer promotion
and thus one fewer guard in the trace, because the class doesn’t
need to be promoted after the map has been.

5. Evaluation

For space reasons we cannot perform a full evaluation here, but
still want to present some benchmark numbers. We chose to present
just some benchmarks: The templating engine of the Django web

CPython JIT baseline JIT full

django[ms] 988.67 + 0.49 405.62 + 4.80 149.31 + 1.37
6.62 X 2.72 X 1.00 x

go[ms] 947.43 + 1.30 525.53 +7.67 17432 +7.78
5.44 X 3.01 x 1.00 x

pyflate[ms] 3209.20 £3.65 | 2884.26 £21.11 | 1585.48 £5.22
2.02 X 1.82 x 1.00 x

richards[ms] 35779 £ 1.32 421.87 +0.48 17.89 + 1.15
20.00 x 23.58 x 1.00 x

telco[ms] 1209.67 £ 2.20 738.18 +3.29 153.48 4+ 1.86
7.88 X 4.81 x 1.00 x

Figure 9. Benchmark Results

framework*: a Monte-Carlo Go AI’; a BZ2 decoder; a port of the
classical Richards benchmark to Python; a Python version of the
Telco decimal benchmark®, using a pure Python decimal floating
point implementation. The results we see in these benchmarks seem
to repeat themselves in other benchmarks using object-oriented
code; for purely numerical algorithms the speedups introduced by
the techniques in this paper are much smaller because they are
already fast.

The benchmarks were run on an otherwise idle Intel Core2
Duo P8400 processor with 2.26 GHz and 3072 KB of cache on a
machine with 3GB RAM running Linux 2.6.35. We compared the
performance of two Python implementations on the benchmarks.
As a baseline, we used the standard Python implementation in
C, CPython 2.6.67, which uses a bytecode-based interpreter. We
compare it against two versions of PyPy’s Python interpreter, both
of them with JIT enabled. The PyPy baseline does not enable maps
or type version, the full JIT enables both.

All benchmarks were run 50 times in the same process, to give
the JIT time to produce machine code. The arithmetic mean of the
times of the last 30 runs were used as the result. The errors were
computed using a confidence interval with a 95% confidence level
[13]. The results are reported in Figure 9, together with the same
numbers normalized to those of the full JIT.

The optimizations give a speedup between 80% and almost 20
times. The Richards benchmark is a particularly good case for the
optimizations as it makes heavy uses of object-oriented features.
Pyflate uses mostly imperative code, so does not benefit as much.
Together with the optimization, PyPy outperforms CPython in all
benchmarks, which is not surprising because CPython is a simple
bytecode-based interpreter.

6. Related Work

The very first meta-tracer is described by Sullivan et. al. [20]. They
used Dynamo RIO, the successor of Dynamo [2] to trace through a
small synthetic interpreter. As in Dynamo, tracing happens on the
machine code level. The system needs some hints to mark the main
interpreter loop and where the backward jumps in user programs
are. PyPy uses similar hints to achieve this [5]. Their approach
suffers mostly from the low abstraction level that machine code
provides.

Yermolovich et. al. [22] describe the use of the Tamarin JavaScript
tracing JIT as a meta-tracer for a Lua interpreter. They compile the
normal Lua interpreter in C to ActionScript bytecode. Again, the
interpreter is annotated with some hints that indicate the main inter-

4 http://www.djangoproject.com/

Shttp://shed-skin.blogspot.com/2009/07/
disco-elegant-python-go-player.html

6 http://speleotrove.com/decimal/telco.html
7 http://python.org



preter loop to the tracer. No further hints are described in the paper.
There is no comparison of their system to the original Lua VM in
C, which makes it hard to judge the effectiveness of the approach.

SPUR [3] is a tracing JIT for CIL bytecode, which is then used
to trace through a JavaScript implementation written in C#. The
JavaScript implementation compiles JavaScript to CIL bytecode to-
gether with an implementation of the JavaScript object model. The
object model uses maps and inline caches to speed up operations
on objects. The tracer traces through the compiled JavaScript func-
tions and the object model. SPUR contains two hints that can be
used to influence the tracer: one to prevent tracing of a C# function
and one to force unrolling of a loop (PyPy has equivalent hints, but
they were not described in this paper).

Partial evaluation [16] tries to automatically transform inter-
preters into compilers using the second futamura projection [9].
Given that classical partial evaluation works strictly ahead of time,
it inherently cannot support runtime feedback. Some partial eval-
uators work at runtime, such as DyC [14], which also supports a
concept similar to promotion (called dynamic-to-static promotion).

An early attempt at building a general environment for imple-
menting languages efficiently is described by Wolczko et. al. [21].
They implement Java and Smalltalk on top of the SELF VM by
compiling the languages to SELF. The SELF JIT is good enough to
optimize the compiled code very well. We believe the approach to
be restricted to languages that are similar enough to SELF as there
were no mechanisms to control the underlying compiler.

Somewhat relatedly, the proposed “invokedynamic™ bytecode
[19] that will be added to the JVM is supposed to make the im-
plementation of dynamic languages on top of JVMs easier. The
bytecode gives the user access to generalized inline caches. It re-
quires of course compilation to JVM bytecode instead of writing
an interpreter.

We already explored promotion in other contexts, such as ear-
lier versions of PyPy’s JIT. Promotion is also heavily used by Psyco
[17] (promotion is called "unlifting" in this paper) a method-based
JIT compiler for Python written by one of the authors. Promotion
is quite similar to runtime type feedback (and also inline caching)
techniques which were first used in Smalltalk [8] and SELF [15]
implementations. Promotion is more general because any informa-
tion can be fed back into compilation, not just types.

7. Conclusion

In this paper we presented two hints that can be used in the source
code of an interpreter written with PyPy. They give control over
runtime feedback and optimization to the language implementor.
They are expressive enough for building well-known virtual ma-
chine optimization techniques, such as maps and inline caches. We
believe that they are flexible enough to express a wide variety of
language semantics efficiently.
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