
Proof Assisted Model Checking for B�

Jens Bendisposto and Michael Leuschel

Institut für Informatik, Heinrich-Heine Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{bendisposto,leuschel}@cs.uni-duesseldorf.de

Abstract. With the aid of the ProB Plugin, the Rodin Platform pro-
vides an integrated environment for editing, proving, animating and
model checking Event-B models. This is of considerable benefit to the
modeler, as it allows him to switch between the various tools to validate,
debug and improve his or her models. The crucial idea of this paper is
that the integrated platform also provides benefits to the tool developer,
i.e., it allows easy access to information from other tools. Indeed, there
has been considerable interest in combining model checking, proving and
testing. In previous work we have already shown how a model checker
can be used to complement the Event-B proving environment, by acting
as a disprover. In this paper we show how the prover can help improve
the efficiency of the animator and model checker.

Keywords: Model Checking, B-Method, Theorem Proving, Experiment,
Tool Integration.

1 Introduction

There has been considerable interest in combining model checking, proving and
testing (e.g., [22,23,25,11,28,4,12,15,13,14,32,29,24,5]). The Rodin platform for
the formal Event-B notation provides an ideal framework for integrating these
techniques. Indeed, Rodin is based on the extensible Eclipse platform and as
such it is easy for provers, model checkers and other arbitrary tools to interact.
In this paper we make use of this feature of Rodin to improve the ProB [18,19]
model checking algorithm by using information provided by the various Rodin
provers.

More concretely, in this paper we show how we can optimize the consistency
checking of Event-B and B models, i.e., checking whether the invariants of the
model hold in all reachable states. The key insight is that from the proof in-
formation we can deduce that certain events are guaranteed to preserve the
correctness of specific parts of the invariant. By keeping track of which events
lead to which states, we can avoid having to check a (sometimes considerable)
amount of invariants.
� This research is being carried out as part of the DFG funded research project

GEPAVAS and the EU funded FP7 research project 214158: DEPLOY (Indus-
trial deployment of advanced system engineering methods for high productivity and
dependability).

K. Breitman and A. Cavalcanti (Eds.): ICFEM 2009, LNCS 5885, pp. 504–520, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Proof Assisted Model Checking for B 505

The paper is structured as follows. In Section 2 we introduce the Event-B
formal method and the Rodin platform, while in Section 3 we provide background
about consistency checking and the ProB model checker, which itself already
employs a combination of model checking and constraint solving techniques. In
Section 4 we explain our approach to using proof information for optimizing
the process of checking invariants in the ProB model checker, and present an
improved model checking algorithm. Section 5 introduces a fully proven formal
model of our approach. In Section 6 we evaluate our approach on a series of case
studies, drawn from the Deploy project. The experiments show that there can be
considerable benefit from exploiting proof information during model checking.
In Section 7 we discuss how our method can be used in the context of classical
B without easy access to proof information. We conclude with related work and
discussions in Section 8.

2 Event-B and Rodin

Event-B is a formal method for state-based system modeling and analysis evolved
from the B-method [1]. The B-method itself is derived from Z and based upon
predicate logic combined with set theory and arithmetic, and provides several
sophisticated data structures (sets, sequences, relations, higher-order functions)
and operations on them (set union, intersection, relational composition, rela-
tional image, to name but a few).

An Event-B development consists of two types of artifacts: contexts and ma-
chines. The static properties are expressed in contexts, the dynamic properties
of a system are specified in machines. A context contains definitions of carrier
sets, constants as well as a set of axioms. A machine basically consists of finite
sets of variables v and a finite set of events. The variables form the state of
the machine, they are restricted and given a type by an invariant. The events
describe transitions from one state into another state. An event has the form:

event =̂ ANY t WHERE G(v, t) THEN S(v, t) END

It consists of a set of local variables t, a predicate G(v, t), called the guard and
a substitution S(v, t). The guard restricts possible values for t and v. If the
guard of an event is false, the event cannot occur and it is called disabled. The
substitution S modifies some of the variables in v, it can use the old values
of v and the local variables t. For instance, an event that chooses two natural
numbers a, b and adds their product ab to the state variable x ∈ v could be
written as

evt1 =̂ ANY a, b WHERE a ∈ N ∧ b ∈ N THEN x := x + ab END

The Rodin tool [2] was developed within the EU funded project RODIN [26] and
is an open platform for Event-B. The Rodin core puts emphasis on mathematical
proof of models, while other plug-ins allow, for instance, UML-like editing, ani-
mation or model checking. The platform interactively checks a model, generates

506 J. Bendisposto and M. Leuschel

and discharges proof obligations for Event-B. These proof obligations deal with
different aspects of the correctness of a model. In this paper we only deal with
proofs that are related to invariant preservation, i.e., if the invariant holds in a
state and we observe an event, the invariant still holds in the successor state:

I(v) ∧ G(v, t) ∧ SBA(v, t, v′) =⇒ I(v′)

By SBA(v, t, v′) we mean the substitution S expressed as a Before-After pred-
icate. The primed variables refer to the state after the event happened, the
unprimed variables to the state before the event happened. In our small exam-
ple, SBA(v, t, v′) is the predicate x′ = x + ab. If we want to express, that x is a
positive integer, i.e. x ∈ N1, we need to prove:

x ∈ N1 ∧ a ∈ N ∧ b ∈ N ∧ x′ = x + ab =⇒ x′ ∈ N1

This implication is obviously very easy to prove, in particular, it is possible to
automatically discharge this obligation using the Rodin tool.

For each pair of invariant and event the Rodin Proof Obligation Generator,
generates a proof obligation (PO) that needs to be discharged in order to prove
correctness of a model as mentioned before. A reasonable number of these POs
are discharged fully automatically by the tool. If an obligation is discharged,
we know that if we observe an event and the invariant was valid before, then
it will be valid afterwards. Before generating proof obligations, Rodin statically
checks the model. Because this also includes type checking, the platform can
eliminate a number of proof obligations that deal with typing only. For instance
the invariant x ∈ Z does not give rise to any proof obligation, its correctness is
guaranteed by the type checker.

The propagation and exploitation of this kind of proof information to help
the model checker is the key concept of the combination of proving and model
checking presented in this paper.

3 Consistency Checking and ProB

ProB [18,19] is an animator for B and Event-B built in Prolog using constraint-
solving technology. It incorporates optimizations such as symmetry reduction
(see, e.g., [30]) and has been successfully applied to several industrial case studies
such as a cruise control system [18], parts of the Nokia Mobile Internet Technical
Architecture (MITA) and the most recent one: the application of ProB to verify
the properties of the San Juan Metro System deployment [20].

One core application of ProB is the consistency checking of a B model, i.e.,
checking whether the invariant of a B machine is satisfied in all initial states
and whether the invariant is preserved by the operations of the machine. ProB
achieves this by computing the state space of a B model, by

– computing all possible initializations of a model and
– by computing for every state all possible ways to enable events and comput-

ing the effects of these events (i.e., computing all possible successor states).

Proof Assisted Model Checking for B 507

root

State3

Initial
State2

Initial
State2 Event1

State4Event1

Event2

Event3

Event3

Event2

Fig. 1. A simple state space with four states

Graphically, the state space of a B model looks like in Figure 1. Note that the
initial states are represented as successor states of a special root node.

ProB then checks the invariant for every state in the state space. (Note that
ProB can also check assertions, deadlock absence and full LTL properties [21].)

Another interesting aspect is that ProB uses a mixture of depth-first and
breadth-first evaluation of the state space, which can lead to considerable per-
formance improvements in practice [17].

4 Proof-Supported Consistency Checking

The status of a proof obligation carries valuable information for other tools,
such as a model checker. As described, ProB does an exhaustive search, i.e.
it traverses the state space and verifies that the invariant is preserved in each
state. This section describes how we incorporate proof information from Rodin
into the ProB core.

Assuming we have a model, that contains the invariant [I1, I2, I3]1 and we
follow an event evt to a new state. If we would, for instance, know that evt
preserves I1 and I3, there would be no need to check these invariants. This
kind of knowledge, which is precisely what we get from a prover, can potentially
reduce the cost of invariant verification during the model checking.

The ProB plug-in translates a Rodin development, consisting of the model
itself, its abstractions and all necessary contexts into a representation used by
ProB. We evolved this translation process to also incorporate proof information,
i.e., our representation contains a list of tuples (Ei, Ij) of all discharged POs,
that is event Ei preserves invariant Ij .

Using all this information, we determine an individual invariant for each event
that is defined in the machine. Because we only remove proven conjuncts, this
specialized invariant is a subset of the model’s invariant. When encountering a
new state, we can evaluate the specialized invariant rather than the machine’s
full invariant.
1 Sometimes it is handier to use a list of predicates rather than a single predicate, we

use both notations equivalently. If we write [P1, P2, . . . , Pn], we mean the predicate
P1 ∧ P2 ∧ . . . ∧ Pn.

508 J. Bendisposto and M. Leuschel

As an example we can use the Event-B model shown in Figure 2. The full state
space of this model and the proof status delivered by the automatic provers of
the Rodin tool are shown in Figure 3.

VARIABLES
f, x

INVARIANTS
inv1 : f ∈ N �→ N

inv2 : x > 3
EVENTS
Initialisation
f := {1 �→ 100}||x := 10
Event a =̂
f := {1 �→ 100}||x := f(1)
Event b =̂
f := f ∪ {1 �→ 100}||x := 100

Fig. 2. Example for intersection of invariants

S1 S2

x = 100
f(1) = 100

x = 10
f(1) = 100

a

b

a,bInitialize

a / inv1

a / inv2

b / inv1

b / inv2

Fig. 3. State space of the model in figure 2

The proof status at the right shows, that Rodin is able to discharge the proof
obligations a/inv1 and b/inv2 but not a/inv2 and b/inv1. This means, if a
occurs, we can be sure that f ∈ N �→N holds in the successor state if it holds in
the predecessor state. Analogously, we know, that if b occurs, we are sure, that
x > 3 holds in the successor state if it holds in the predecessor state.

Consider a situation, where we already verified that all invariants hold for
S1 and we are about to check S2 is consistent. We discovered two incoming
transitions corresponding to the events a and b. From a, we can deduct that
f ∈ N �→ N holds. From b, we know that x > 3 holds. To verify S2, we need to
check the intersection of unproven invariants, i.e., {f ∈ N �→ N} ∩ {x > 3} = ∅,
thus we already know that all invariants hold for S2.

This is of course only a tiny example but it demonstrates, that using proof
information we are able to reduce the number of invariants for each event sig-
nificantly, and sometimes by combining proof information from different events,

Proof Assisted Model Checking for B 509

we are able to get rid of the whole invariant. We actually have evidence that this
is not only a theoretical possibility, but happens in real world specifications (see
Section 6).

Algorithm 4.1 [Proof-Supported Consistency Checking]

Input: An Event-B model with invariant I = inv1 ∧ . . . ∧ invn

Queue := {root} ; Visited := {}; Graph := {}
for all events evt do Unproven(evt) := {invi | invi not proven for evt}; end do

while Queue is not empty do
if random(1) < α then
state := pop from front(Queue); /* depth-first */

else
state := pop from end(Queue); /* breadth-first */

end if
if ∃invi ∈ Inv(state) s.t. invi is false then

return counter-example trace in Graph
from root to state

else
for all succ,evt such that state →evt succ do
Graph := Graph ∪ {state →evt succ}
if succ �∈ Visited then

push to front(succ, Queue);
Visited := Visited ∪ {succ}
Inv(succ) := Unproven(evt)

else
Inv(succ) := Inv(succ) ∩ Unproven(evt)

end if
end if

end for
od
return ok

Algorithm 4.1 describes ProB’s consistency checking algorithm, we will justify
it formally in section 5. The algorithm employs a standard queue data structure
to store the unexplored nodes. The key operations are:

– Computing the successor states, i.e., “state →evt succ”.
– Verification of the invariant “∃invi ∈ Inv(state) s .t . invi is false”
– Determining whether “succ 	∈ Visited”

The algorithm terminates when there are no further queued states to explore or
when an error state is discovered. The underlined parts highlight the important
differences with the algorithm in [19].

In contrast to the algorithm, the actual implementation does the calculation
of the intersection (Inv(succ) := Inv(succ) ∩ Unproven(op)) in a lazy manner,
i.e., for each state 	∈ V isited, we store the event names as a list. As soon as
we evaluate the invariant of a state, we calculate and evaluate the intersection
on the fly. The reason is, that storing the invariant’s predicate for each state is
typically more expensive than storing the event names.

510 J. Bendisposto and M. Leuschel

5 Verification

To show, that our approach is indeed correct, we developed a formal model
of an abstraction of algorithm 4.1. We omitted few technical details, such as
the way the state space is traversed by the actual implementation and also
we omitted the fact, that our implementation always uses all available infor-
mation. Instead, we have proven correctness for any traversal and any sub-
set of the available information. Our model was developed using Event-B and
fully proven in Rodin. The model is available as a Rodin 1.0 archive from
http://deploy-eprints.ecs.soton.ac.uk/152/. In this paper we present only
some parts of the model and some lemmas, without their proofs. All the proofs
can be found in the file, we thus refer the reader to the Rodin model.

We used three carrier sets STATES, INVARIANTS and EVENTS. We assume,
that these sets are finite. For invariants and events this is true by definition in
Event-B, but the state space can in general be unbounded. However, the as-
sumption of only dealing with finite state spaces is reasonable in the context of
our particular model, because we can interpret the STATES set as the subset of
all states that can be traversed by the model checker within some finite number
of steps.2 The following definitions are used to prove some properties of Event-B:

truth ⊆ STATES × INVARIANTS
trans ⊆ STATES × STATES
preserve = {s | {s} × INVARIANTS ⊆ truth}
violate = STATES \ preserve
label ⊆ trans× EVENTS
discharged ⊆ EVENTS × INVARIANTS

The model also contains a set truth: pair of a state s and an invariant i is in
truth if and only if i holds in s. The set preserve is defined as the set of states
where each invariant holds, the relations trans and label describe, how two states
are related, i.e. a triple (s �→ t) �→ e is in label (and therefore s �→ t ∈ trans) if
and only if t can be reached from s by executing e. The observation that is the
foundation of all theorems we proved and is the following assumption:

∀i, t · (∃s, e · s ∈ preserve ∧ (s �→ t) ∈ trans∧
(s �→ t) �→ e ∈ label ∧ (e �→ i) ∈ discharged)

⇒ (t �→ i) ∈ truth

The assumption is, that if we reach a state t from a state s where all invariants hold
by executing an event e and we know, that the invariant i is preservedby e, we an be
sure, that i holds in t. This statement is what we prove by discharging an invariant
proof obligation in Event-B, thus it is reasonable to assume that it holds.
2 Alternatively, we can remove this assumption from our Rodin models. This only

means that we are not be able to prove termination of our algorithm; all other
invariants and proofs remain unchanged.

Proof Assisted Model Checking for B 511

We are now able to prove a lemma, that will capture the essence of our
proposal; it is enough to find for each invariant i one event that preserves this
invariant leading from a consistent state into a state t to prove, that all invariants
hold in t.

Lemma 1. ∀t · t ∈ STATES∧ (∀i · i ∈ INVARIANTS∧ (∃s, e · s ∈ preserve∧ e ∈
EVENTS ∧ (s �→ t) ∈ trans ∧ (s �→ t) �→ e ∈ label ∧ e �→ i ∈ discharged)) ⇒ t ∈
preserve

Proof. All proofs have been done using Rodin and can be found in the model
archive. �

We used five refinement steps to prove correctness of our algorithm. We will de-
scribe the first three steps, the last two steps are introduced to prove termination
of new events. The first refinement step mc0 contains two events check state ok
and check state broken. The events take a yet unprocessed state and move it
either into a set containing consistent or inconsistent states. Algorithm 5.1 shows
the check state ok event, check state broken is defined analogously, except that
it has the guard s 	∈ preserve and it puts the state into the set inv broken .

Algorithm 5.1 [Event check state ok from mc0]

event check state ok
any s
where

s ∈ open
s ∈ preserve

then
inv ok := inv ok ∪ {s}
open := open \ {s}

end

At this very abstract level this machine specifies that our algorithm separates
the states into two sets. If they belong to preserve, the states are moved into the
set inv ok . Otherwise, they are moved into inv broken. Lemma 2 guarantees,
that our model always generate correct results.

Lemma 2. mc0 satisfies the invariants

1. inv ok ∪ inv broken = STATES \ open
2. open = ∅ ⇒ inv ok = preserve ∧ inv broken = violate

The next refinement strengthens the guard and removes the explicit knowl-
edge of the sets preserve and violate, the resulting proof obligation leads to
lemma 3.

Lemma 3. For all s ∈ open

{s} × INVARIANTS \ discharged[label[inv ok � trans � {s}]]) ⊆ truth

⇔ s ∈ preserve

512 J. Bendisposto and M. Leuschel

The third refinement introduces the algorithm. We introduce a new relation
invs to verify in this refinement. The relation keeps track of those invariants,
that need to be checked, in the initialization, we set invs to verify := STATES×
INVARIANTS.

The algorithm has three different phases. It first selects a state that has
not been processed yet then it checks if the invariant holds and moves the
state into either inv ok or inv broken. Finally, it uses the information about
discharged proofs to remove some elements from invs to verify as shown in
algorithm 5.2.

Algorithm 5.2 [Event mark successor from mc2]

event mark successor
any p s e
where

p ∈ inv ok
s ∈ trans[{p}]
(p �→ s) �→ e ∈ label
(p �→ s) �→ e �∈ marked
ctrl = mark

then
invs to verify := invs to verify �− ({s} × (invs to verify [{s}] ∩ unproven[{e}]))
marked := marked ∪ {(p �→ s) �→ e}

end

We take some state s and event e, where we know that s is reachable via e from
a state p, where all invariants hold. Then we remove all invariants but those,
that are not proven to be preserved by e. This corresponds to the calculation of
the intersection in algorithm 4.1.

The main differences between the formal model and our implementation are,
that the model does not explicitly describe how the states are chosen and the
algorithm uses all available proof information while the formal model can use any
subset. In addition, the model does not stop if it detects an invariant violation.
We did not specify these details because it causes technical difficulties (e.g., we
need the transitive closure of the trans relation) but does not seem to provide
enough extra benefit.

Correctness of algorithm 4.1 is established by the fact that the outgoing edges
of a state are added to the Graph only after the invariants have been checked
for state. Hence, the removal of a preserved invariant only occurs after it has
been established that the invariant is true before applying the event. This cor-
responds to the guard p ∈ inv ok . However, the proven proof obligations for an
event only guarantee preservation of a particular invariant, not that this invari-
ant is established by the event. Hence, if the invariant is false before applying
the event, it could be false after the event, even if the corresponding proof obli-
gation is proven and true. If one is not careful, one could easily set up cyclic
dependencies and our algorithm would incorrectly infer that an incorrect model
is correct.

Proof Assisted Model Checking for B 513

6 Experimental Results

To verify that the combination of proving and model checking results in a consid-
erable reduction of model checking effort, we prepared an experiment consisting
of specifications we got from academia and industry. In addition we prepared a
constructed example as one case, where the prover has a very high impact on
the performance of the model checker. The rest of this section describes how
we carried out the measurement. We will also briefly introduce the models and
discuss the result for each of them. The experiment contains models where we
expected to have a reasonable reduction and models where we expected to have
only a minor or no impact.

6.1 Measurement

The latest development versions of ProB can do consistency checking of a re-
finement chain. Previous versions of ProB checked a specific refinement level
only and removed all gluing invariants. We carried out both, single refinement
level and multiple refinement level checks. The results have been gathered using
a Mac Book Pro, 2.4 GHz Intel Core 2 Duo Computer with 4 GB RAM running
Mac OS X 10.5. For the single level animation, we collected 40 samples for each
model and calculated the average and standard deviation of the times measured
in milliseconds. For the multi level animation, we collected 5 samples for each
model. The result of the experiment is shown in tables 1, 2 and 3. The absolute
values of tables 1 and 2 are very difficult to compare, because we used different
versions of ProB.

Except for the case of the Siemens specification, we removed all interactive
proofs from the models and used only those proof information, that Rodin was
able to automatically generate using default settings. In the case of the Siemens
model, we used both, a version with automatic proofs only and a development
version with few additional interactive proofs; the development version was not
fully proven.

6.2 Mondex

The mechanical verification of the Mondex Electronic Purse was proposed for the
repository of the verification grand challenge in 2006. We use an Event-B model
developed at the University of Southampton [8]. We have chosen two refinements
from the model, m2 and m3. The refinement m2 is a rather big development step
while the second refinement m3 was used to prove convergence of some events
introduced in m2, in particular, m3 only contains gluing invariants.

In case of single refinement level checking, it is obvious that it is not possible
to further simplify the invariant of m3 but we noticed, that we do not even lose
performance caused by the additional specialization of the invariants. This is
important because it is evidence, that our implementation’s performance is in
the order of the standard deviation in our measurement. For the case of m2,
where we have machine invariants, we measured a reduction of about 12%.

514 J. Bendisposto and M. Leuschel

In case of multiple refinement level checking, we have the only case, where we
lost a bit of performance for m2. However, the absolute value is in the order of
the standard deviation. For m3 we also did not get significant improvements of
performance, most likely because the gluing invariant is very simple, actually it
only contains simple equalities.

6.3 Siemens Deploy Mini Pilot

The Siemens Mini Pilot was developed within the Deploy Project. It is a speci-
fication of a fault-tolerant automatic train protection system, that ensures that
only one train is allowed on a part of a track at a time. The Siemens model shows
a very good reduction, as the invariants are rather complex. This model does
contain a single machine, thus multi level refinement checking does not affect
the speedup.

6.4 Scheduler

This model is an Event-B translation of the scheduler from [16]. The model de-
scribes a typical scheduler that allows a number of processes to enter a critical
section. The experiment has shown, that the improvement using proof informa-
tion is rather small, which was no surprise. The model has a state space that
grows exponential when increasing the number of processes. It is rather cheap
to check the invariant

ready∩waiting = ∅∧active∩(ready∪waiting) = ∅∧active = ∅ ⇒ ready = ∅

because the number of processes is small compared to the number of states. But
nevertheless, we save a small amount of time in each state and these savings can
sum up to a reasonable speedup. The scheduler also contains a single level of
refinement.

6.5 Earley Parser

The model of the Earley parsing algorithm was developed and proven by Abrial.
Like in the mondex example, we used two refinement steps that have different
purposes. The second refinement step m2 contains a lot of invariants, while the
m3 contains only very few of them. This is reflected in the savings we gained from
using the proof information in the case of single refinement level checking. While
m3 showed practically no improvement, in the m2 model the savings sum up to a
reasonable amount of time. In the case of multiple refinement level checking the
result are very different, while m2 is not affected, the m3 model benefits a lot.
The reason is, that it contains several automatically proven gluing invariants.

6.6 SAP Deploy Mini Pilot

Like the Siemens model this is a Deploy pilot project. It is a model of system
that coordinates transactions between seller and buyer agents. In the case of

Proof Assisted Model Checking for B 515

single refinement level case, we gain a very good speedup from using proof infor-
mation, i.e., model checking takes less than half of the time. Like in the Siemens
example, the model contains rather complicated invariants. In case of the multi
refinement level checking the speedup is still good, but not as impressive as in
single refinement level checking.

6.7 SSF Deploy Mini Pilot

The Space Systems Finland example is a model of a subsystem used for the
ESA BepiColombo mission. The BepiColombo spacecraft will start in 2013 on
its journey to Mercury. The model is a specification of parts of the BepiColombo
On-Board software, that contains a core software and two subsystems used for
tele command and telemetry of the scientific experiments, the Solar Intensity
X-ray and particle Spectrometer (SIXS) and the Mercury Imaging X-ray Spec-
trometer (MIXS). The time for model checking could be reduced by 7% for a
single refinement level and by 16% for multiple refinement checking.

6.8 Cooperative Crosslayer Congestion Control CXCC

CXCC [27] is a cross-layer approach to prevent congestion in wireless networks.
The key concept is that, for each end-to-end connection, an intermediate node
may only forward a packet towards the destination after its successor along the
route has forwarded the previous one. The information that the successor node
has successfully retrieved a package is gained by active listening. The model is
described in [6]. The invariants used in the model are rather complex and thus
we get a good improvement by using the proof information in both cases.

6.9 Constructed Example

The constructed example is mainly to show a case, where we get a huge saving
from using the proofs. It basically contains an event, that increments a number x
and an invariant ∀a, b, c �a ∈ N∧ b ∈ N∧ c ∈ N ⇒ (a = a∧ b = b∧ c = c∧x = x).
Because the invariant contains the variable modified by the event, we cannot
simply remove it. But Rodin can automatically prove that the event preserves
the invariant, thus our tool is able to remove the whole invariant. Without proof
information, ProB needs to enumerate all possible values for a,b and c which
results in an expensive calculation.

7 Proof-Assisted Consistency Checking for Classical-B

In the setting of Event-B and the Rodin platform, ProB can rely on the other
tools for providing type inference and as we have seen the proof information.

In the context of classical B, we are working on a tighter integration with
Atelier B [31]. However, at the moment ProB does not have access to the proof
information of classical B models.

ProB does perform some additional analyses of the model and annotates the
AST (Abstract Syntax Tree) with additional information. For instance for each

516 J. Bendisposto and M. Leuschel

Table 1. Experimental results (single refinement level check)

w/o proof using proof
information [ms] information [ms] Speedup-Factor

Mondex m3 1454 ± 5 1453 ± 5 1.00
Earley Parser m3 2803 ± 8 2776 ± 7 1.01
Earley Parser m2 140310 ± 93 131045 ± 86 1.07
SSF 31242 ± 64 29304 ± 44 1.07
Scheduler 9039 ± 15 8341 ± 14 1.08
Mondex m2 1863 ± 7 1665 ± 6 1.12
Siemens (auto proof) 54153 ± 50 25243 ± 22 2.15
Siemens 56541 ± 57 26230 ± 28 2.16
SAP 18126 ± 18 8280 ± 14 2.19
CXCC 18198 ± 21 6874 ± 12 2.65
Constructed Example 18396 ± 26 923 ± 8 19.93

Table 2. Experimental results (multiple refinement level check)

w/o proof using proof
information [ms] information [ms] Speedup-Factor

Mondex m2 1747 ± 21 1767 ± 38 0.99
Mondex m3 1910 ± 20 1893 ± 6 1.01
Earley Parser m2 309810 ± 938 292093 ± 1076 1.06
Scheduler 9387 ± 124 8167 ± 45 1.15
SSF 35447 ± 285 30590 ± 110 1.16
SAP 50783 ± 232 34927 ± 114 1.45
Earley Parser m3 7713 ± 40 5047 ± 15 1.53
Siemens (auto proof) 51560 ± 254 24127 ± 93 2.14
Siemens 51533 ± 297 23677 ± 117 2.18
CXCC 18470 ± 151 6700 ± 36 2.76
Constructed Example 18963 ± 31 967 ± 6 19.61

event we calculate a set of variables that are possibly modified. For instance if
we analyze the operation3

Operation1 = BEGIN x := z || y := y ∧ {x �→ z} END

the analysis will discover that the set of variables that could potentially influence
the truth value of the invariant is {x, y}.

This analysis was originally used to verify the correct usage of SEES in the
classical B-Method. The SEES construct was used in the predecessor of Event-B,
so-called classical B, to structure different models. In classical B a machine can
see another machine, i.e., it is allowed to call operations that do not modify
the state of the other machine. To support this behavior, it was necessary to
know if an operation has effect on state variables, that is the set of modified

3 Operations are the equivalent of events in classical B.

Proof Assisted Model Checking for B 517

Table 3. Number of invariants evaluated (single refinement level check)

w/o Proof [#] w Proof [#] Savings [%]

Earley Parser m2 − − -
Mondex m3 440 440 0
Earley Parser m3 540 271 50
Constructed Example 42 22 50
SAP 48672 16392 66
Scheduler 20924 5231 75
Mondex m2 6600 1560 76
SSF 24985 5009 80
CXCC 88480 15368 83
Siemens 280000 10000 96
Siemens (auto proof) 280000 10000 96

variables is the empty set. It turned out, that the information is more valuable
than originally thought, as it is equivalent to some proof obligation:

If u and v are disjoint sets of state variables, and the substitution of an oper-
ation is SBA(v, t, v′) we know that u = u′ and thus a simplified proof obligation
for the preservation of an invariant I(u) over the variables u is

I(u) ∧ G(u ∪ v, t) ∧ SBA(v, t, v′) ⇒ I(u)

which is obviously true. These kind of proof obligations are not generated by
any of the proving environments for B we are aware of. In particular Rodin does
not generate them. For a proving environment, this is a good idea as they do not
contain valuable information for the user and they can be filtered out by simple
syntax analysis. But for the model checker these proofs are very valuable; in most
cases they allow us to reduce the number of invariants we need to check. As this
type of proof information can be created from the syntax, we can use them even
if we do not get proof information from Rodin, i.e., when working on classical B
machines. As such, we were able to use Algorithm 4.1 also for classical B models
and also obtain improvements of the model checking performance (although less
impressive than for Event-B).

8 Conclusion and Future Work

First of all, we never found a model where using proof information significantly
reduced the performance, i.e., the additional costs for calculating individual in-
variants for each state are rather low. Using proof information is the new default
setting in ProB.

We got a number of models, in particular those coming from industry, where
using the proof information has a high impact on the model checking time. In
other cases, we gained only a bit or no improvement. This typically happens if
the invariant is rather cheap to evaluate compared to the costs of calculating the

518 J. Bendisposto and M. Leuschel

guards of the events. We used an out-of-the-box version of Rodin4 to produce our
experimental results. Obviously, it is possible to further improve them by adding
manual proof effort. In particular, it gives the user a chance to influence the speed
of the model checker by proving invariant preservation for those parts that are
difficult to evaluate, i.e., those predicates that need some kind of enumeration.

Related Work. A similar kind of integration of theorem proving into a model
checker was previously described in [25]. In their work Pnueli and Shahar intro-
duced a system to verfify CTL and LTL properties. This system works as a layer
on top of CMU SMV and was sucessfully applied to fragments of the Futurebus+
system [10]. SAL is a framework and tool to combine different symbolic analysis
[28], and can also be viewed as an integration of theorem proving and model
checking. Mocha [3] is another work where a model checker is complemented by
proof, mostly for assume-guarantee reasoning. Some more works using theorem
proving and model checking together are [11,4,12,15].

In the context of B, the idea of using a model checker to assist a prover has
already been exploited in practice. For example, in previous work [7] we have
already shown how a model checker can be used to complement the proving
environment, by acting as a disprover. In [7] it was also shown that sometimes
the model checker can be used as a prover, namely when the underlying sets
of the proof obligation are finite. This is for example the case for the vehicle
function mentioned in [18]. Another example is the Hamming encoder in [9],
where Dominique Cansell has used ProB to prove certain theorems which are
difficult to prove with a classical prover (due to the large number of cases).

Future Work. We have done but a first step towards exploiting the full poten-
tial for integrating proving and model checking. For instance, we may feed the
theorem prover with proof obligations generated by the model checker in order
to speed up the model checking. A reasonable amount of time is spent evaluating
the guards. If the model checker can use the theorem prover to prove that an
event e is guaranteed to be disabled after an event f occurs, we can reduce the
effort of checking guards. We may need to develop heuristics to find out when
the model checker should try to get help from the provers.

Also we might feed information from the model checker back into the proving
environment. If the state space is finite and we traverse all states, we can use this
as a proof for invariant preservation. ProB restricts all sets to finite sets [19]
to overcome the undecidability of B, so this needs to be handled with care. We
need to ensure, that we do not miss states because ProB restricted some sets.
Also we need to ensure that all states are reachable by the model checker, thus
we may need some additional analysis of the model.

We also think of integrating a prover for classical B, to exploit proof informa-
tion. The integration is most likely not as seamless as in Rodin and the costs of
getting proof information is higher.

4 For legal reasons, it is necessary to install the provers separately.

Proof Assisted Model Checking for B 519

Although the cost of calculating the intersections of the invariants for each
state is too low to measure it, the stored invariants take some memory. It might
be possible to find a more efficient way to represent the intersections of invariants.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R., Butler, M., Hallerstede, S.: An open extensible tool environment for

Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605.
Springer, Heidelberg (2006)

3. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.:
Mocha: Modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)

4. Arkoudas, K., Khurshid, S., Marinov, D., Rinard, M.C.: Integrating model checking
and theorem proving for relational reasoning. In: Berghammer, R., Möller, B.,
Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 21–33. Springer, Heidelberg
(2004)

5. Arons, T., Pnueli, A., Zuck, L.: Parameterized verification by probabilistic ab-
straction. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 87–102.
Springer, Heidelberg (2003)

6. Bendisposto, J., Jastram, M., Leuschel, M., Lochert, C., Scheuermann, B., Weigelt,
I.: Validating Wireless Congestion Control and Realiability Protocols using ProB
and Rodin. FMWS 2008: Workshop on Formal Methods for Wireless Systems
(August 2008)

7. Bendisposto, J., Leuschel, M., Ligot, O., Samia, M.: La validation de modèles
event-b avec le plug-in prob pour rodin. Technique et Science Informatiques 27(8),
1065–1084 (2008)

8. Butler, M., Yadav, D.: An incremental development of the Mondex system in
Event-B. Formal Aspects of Computing 20(1), 61–77 (2008)

9. Cansell, D., Hallerstede, S., Oliver, I.: UML-B specification and hardware imple-
mentation of a hamming coder/decoder. In: Mermet, J. (ed.) UML-B Specification
for Proven Embedded Systems Design, ch. 16, November 2004. Kluwer Academic
Publishers, Dordrecht (2004)

10. Clarke, E., Grumberg, O., Hiraishi, H., Jha, S.: Verification of the futurebus+ cache
coherence protocol. Formal Methods in System Design (January 1995)

11. Dams, D., Hutter, D., Sidorova, N.: Using the inka prover to automate safety
proofs in abstract interpretation - a case study. In: Bellegarde, F., Kouchnarenko,
O. (eds.) Workshop on Modelling and Verification, C.I.S., Besançon, France (1999);
Alternative title: Combining Theorem Proving and Model Checking - A Case Study

12. Dybjer, P., Haiyan, Q., Takeyama, M.: Verifying haskell programs by combining
testing, model checking and interactive theorem proving. Information & Software
Technology 46(15), 1011–1025 (2004)

13. Freitas, L.: Model Checking Circus. PhD thesis, University of York (2005)
14. Freitas, L., Woodcock, J., Cavalcanti, A.: State-rich model checking. Innovations

Syst. Softw. Eng. 2(1), 49–64 (2006)
15. Gunter, E.L., Peled, D.: Model checking, testing and verification working together.

Formal Asp. Comput. 17(2), 201–221 (2005)
16. Legeard, B., Peureux, F., Utting, M.: Automated boundary testing from Z and B.

In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 21–40.
Springer, Heidelberg (2002)

520 J. Bendisposto and M. Leuschel

17. Leuschel, M.: The high road to formal validation. In: Börger, E., Butler, M., Bowen,
J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 4–23. Springer, Heidelberg
(2008)

18. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

19. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

20. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification
for large scale b models. In: Cavalcanti, A., Dams, D. (eds.) Proceedings FM 2009.
LNCS, vol. 5850, pp. 708–723. Springer, Heidelberg (2009)

21. Leuschel, M., Plagge, D.: Seven at a stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. In: Ameur, Y.A., Boniol, F., Wiels, V.
(eds.) Proceedings Isola 2007, Cépaduès edn. Revue des Nouvelles Technologies de
l’Information, vol. RNTI-SM-1, pp. 73–84 (2007)

22. Müller, O., Nipkow, T.: Combining model checking and deduction for i/o-
automata. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria,
T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 1–16. Springer, Heidelberg (1995)

23. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining speci-
fication, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

24. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001)

25. Pnueli, A., Shahar, E.: A platform for combining deductive with algorithmic ver-
ification. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
184–195. Springer, Heidelberg (1996)

26. Romanovsky, A.: Rigorous Open Development Environment for Complex Systems
- RODIN. ERCIM News 65, 40–41 (2006)

27. Scheuermann, B., Lochert, C., Mauve, M.: Implicit hop-by-hop conges-
tion control in wireless multihop networks. In: Ad Hoc Networks (2007),
doi:10.1016/j.adhoc.2007.01.001

28. Shankar, N.: Combining theorem proving and model checking through symbolic
analysis. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 1–16.
Springer, Heidelberg (2000)

29. Sipma, H., Uribe, T., Manna, Z.: Deductive model checking. Formal Methods in
System Design 15(1), 49–74 (1999)

30. Spermann, C., Leuschel, M.: ProB gets nauty: Effective symmetry reduction for B
and Z models. In: Proceedings Symposium TASE 2008, Nanjing, China, pp. 15–22.
IEEE, Los Alamitos (2008)

31. Steria, F.: Aix-en-Provence. In: Atelier B, User and Reference Manuals (1996),
http://www.atelierb.societe.com

32. Uribe, T.: Combinations of model checking and theorem proving. In: Kirchner, H.,
Ringeissen, C. (eds.) Frocos 2000. LNCS (LNAI), vol. 1794, pp. 151–170. Springer,
Heidelberg (2000)

http://www.atelierb.societe.com

	Proof Assisted Model Checking for B
	Introduction
	Event-B and Rodin
	Consistency Checking and ProB
	Proof-Supported Consistency Checking
	Verification
	Experimental Results
	Measurement
	Mondex
	Siemens Deploy Mini Pilot
	Scheduler
	Earley Parser
	SAP Deploy Mini Pilot
	SSF Deploy Mini Pilot
	Cooperative Crosslayer Congestion Control CXCC
	Constructed Example

	Proof-Assisted Consistency Checking for Classical-B
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

