A Generic Flash-based
Animation Engine for ProB *

Jens Bendisposto and Michael Leuschel

Heinrich-Heine Universitat Diisseldorf
bendisposto,leuschel ;@cs.uni-duesseldorf.de
P

Abstract. Writing a formal specification for real-life, industrial prob-
lems is a difficult and error prone task, even for experts in formal meth-
ods. In the process of specifying a formal model for later refinement and
implementation it is crucial to get approval and feedback from domain
experts to avoid the costs of changing a specification at a late point of the
development. But understanding formal models written in a specification
language like B requires mathematical knowledge a domain expert might
not have. In this paper we present a new tool to visualize B Machines us-
ing the PROB animator and Macromedia Flash. Our tool offers an easy
way for specifiers to build a domain specific visualization that can be
used by domain experts to check whether a B specification corresponds
to their expectations.

Keywords: B-Method, Tool Support, Animation.

1 DMotivation

In [1] A. Hunt and D. Thomas describe a shortcoming on formal methods:

Most formal methods capture requirements using a combination of
diagrams and some supporting words. These pictures represent the de-
signers’ understanding of the requirements. However in many cases these
diagrams are meaningless to the end users, so the designers have to inter-
pret them. Therefore there is no real formal checking of the requirements
by the actual user of the system - everything is based on the designers’
explanations, just as in old-fashioned written requirements. We see some
benefit in capturing requirements this way, but we prefer, where possible,
to show the user a prototype and let him play with it.

In previous work [2] we presented the Prolog based PROB animator and model
checker for the B Method,

which addresses the problems mentioned by Hunt and Thomas. PROB can
help a specifier gain confidence that the model that is being specified, refined
and implemented, does meet the domain requirements. This is achieved by the
animation component of PROB, that allows to check the presence of desired
functionality and to inspect the behaviour of a specification.

* This research is being carried out as part of the EU funded research projects: IST
511599 RODIN (Rigorous Open Development Environment for Complex Systems).

For a domain expert with little knowledge about the mathematical notation
of B, however, it might still be too difficult to understand the meaning of a spe-
cific B state; in other words, understanding a model still relies on the designers’
explanations. We believe that a broad industrial acceptance of formal meth-
ods needs tools that can mediate between domain experts and formal method
experts.

In this work we present a generic Flash-based animation engine as a plug-in
for PROB which allows to easily develop visualizations for a given specification.
Our tool supports state-based animations, using simple pictures to represent a
specific state of a B specification, and transition-based animations consisting of
picture sequences. To avoid the creation of many different animations the tool
supports composing visualizations from individual subcomponents.

2 Flash Animation Server

The Flash animation server is a plug-in for the Eclipse version of PROB that
offers support for rapid creation of domain specific visualizations. Such an ani-
mation can be seen as a prototype for the software as mentioned by Hunt and
Thomas. A domain expert can get a feeling what a B operation does and he can
check whether his expectations are met, without having to know the mathemat-
ical notation or relying on the specifiers’ explanations.

Each state of a B machine can be represented by a set of graphical objects
such as text labels or pictures. In addition it is possible to attach a movie to a
state changing operation. We use Macromedia Flash which is the de facto in-
dustry standard for web animations. It is available on many platforms and, in
contrast to dynamic HTML, a Flash movie looks the same in different browsers.
Also it comes with many features and tools that help create professional anima-
tions.

Obviously one has to define the mapping between a state and its graphical
representation. This gluing code could be written using the Flash built-in pro-
gramming language ActionScript. Unfortunately, ActionScript is very limited
and error prone, therefore we developed an animation framework which frees
the user from having to use ActionScript. Our animation framework comprises
a generic Flash movie on the client side, i.e., it is not necessary to create differ-
ent Flash movies for different machines. The only thing one has to provide for
each client is the generic movie together with the required pictures. However,
it is also possible to use ActionScript, if desired, but for most applications the
generic movie is sufficient.

For the server side a piece of gluing code is needed, that defines the map-
ping between a state (or two states plus an operation) and a graphical repre-
sentation. This gluing code can be written in Java. In addition to the generic
movie, we have developed a set of Java objects that can be used inside the
gluing code as an abstraction for the Flash objects. These objects live inside
a container named canvas. For example, if we want to create a new image
named ”imagel” in the upper left corner and load the file ”old.jpg”, we call can-

vas.createNewFlashMovie(”imagel”,”old.jpg”,0,0) if we want to replace that im-
age with a new one called "new.jpg”, we could use canvas.get(”imagel”).setUrl(
"new.jpg”). The gluing code has also access to the machine’s current state, the
last operation executed and the machine’s state before executing this operation
using a Java object named machine. This gives the opportunity to write more
sophisticated gluing code.

When any operation is being executed the Flash animation server will be
notified by PROB. The animation server then calls the statechange method of
the gluing code for the particular machine. The gluing code will typically read
information from the machine object, do some updates on the canvas and finally
call the method canvas.commitChanges(). Our animation server then calculates
a XML message from the changed canvas and broadcasts it to all connected
clients whose generic movie will display the new representation.

3 Example of an Application

We applied our generic solution to several nontrivial B specifications. The wa-
terlock example (a detail view of an animation is shown in figure 1) is inspired
by a case study from [3]; the model describes a system of waterlocks that can
be operated separately. The artwork for the example has been rendered using
Bryce!. Setting up the scene in Bryce took about two days; excluding the time
to render the scene and the animations. Writing the gluing code took less than
one hour. This shows that the effort to create an animation is mainly determined
by the artwork. There is another example, downloadable on the tool’s website,
that has been developed during a workshop within three hours including writing
the gluing code and creating the artwork. This example shows that our plug-in
can be used for rapid visualization development.

4 Related and Future work

The company ClearSy is currently developing a commercial visualization tool
for B specifications, also based on Macromedia Flash technology called Brama.
Brama will be available as a plug-in to the RODIN platform? and it also uses a B
animator. In contrast to our generic solution, Brama does require programming
in Flash since it provides a library for Action Script instead of an abstraction
layer.

Several items can be pointed out for the most pressing future work:

1. Writing the gluing code is still a relatively cumbersome task, we are devel-
oping a graphical interface to setup the animation and an automatic code
generator to generate the code.

! http://bryce.daz3d.com
2 http://rodin-b-sharp.sourceforge.net/

State Centric View - FlashPlayer - ProB - Animator

J[=] B3
Fle Edit Navigate Search Project Run Window Help |
[I=¢ |a-|# |- ¢ * e o [state ce.. »

w Operations x. =0/ % schleusen.mch [

~ open
open(gatel)
open(gate3)

~ flood_lock_right
flood_lock_righttlock1)
flood_lock_righttlock2)

¥ BACKTRACK
BACKTRACK
[« ol
[State %

Constants

Name | value

Locks {lock1lock2 }

River {River3,River2,Riverl}
left_sect {(gatel Riverl).(gate2 lock1),(gate
right_se {(gatel lock1).(gate2 River2).(gate

Variables

Name | Value |
dstate {(gatel,closed),(gate2,closed),(ge
wlevel {(lock1,Riverl),(lock2 River2),(Rive

[2 Problems 52 Tasks T FlashServer % =a

0 errors, 0 warnings, 0 infos disconnected, E Clients connected

% v=n

o [Sep 7,2006 11:04:42 AM]
varntOK I & comettenamiccahost.
-«

0|

Fig. 1. Visualization of a waterlock system - animation stills

2. We will extend the abstraction layer for Flash components to enable two-
way-communication. Therefore we will support Flash Buttons, this will help
to generate prototype user interface from B machines.

In summary, we have presented a generic animation framework to visualize
B specifications using Flash technology and PROB. We hope that this new tool
will help make formal methods more appealing in an industrial setting, notably
by allowing domain experts to understand formal specifications. Our tool is
available on http://www.stups.uni-duesseldorf.de/ProB/eclipse.

References

1. Andrew Hunt and David Thomas. The Pragmatic Programmer - From Journeyman
to Master. Addison-Wesley, 2005.

2. Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro
Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
LNCS 2805, pages 855-874. Springer-Verlag, 2003.

3. Bram De Wachter. dSL, a Language and Environment for the Design of Distributed
Industrial Controllers. Dissertation, Université Libre de Bruxelles, December 2005.

