
BE4: The B Extensible Eclipse
Editing Environment ?

Jens Bendisposto and Michael Leuschel

Heinrich-Heine Universität Düsseldorf
{bendisposto,leuschel}@cs.uni-duesseldorf.de

1 Introduction

The open-source Eclipse platform1 has become hugely popular as an integrated
development environment for Java, and a considerable number of plug-ins have
been developed for other programming languages (e.g., C++,PHP, Eiffel, Python,
Fortran, etc.). In this paper we present a new plug-in for Eclipse, supporting the
B-method and B’s abstract machine notation (AMN) [?]. In addition to provid-
ing editing and syntax highlighting, the plug-in displays syntax and structural
errors in the B source code, as well as suggesting fixes for those errors.

2 Building a document object model from B

The centerpiece of a semantic-aware editor for programming languages is a parser
that generates a model from source-code. In Eclipse, a parser can be integrated
by creating a plug-in that extends org.eclipse.core.resources.builders. Because we
want to allow later contributions to the parser from other plug-ins, we decided
to build a multi-phase parsing framework for B projects (Fig. 1).

Phase Objective

I Create and modify the syntax tree

II Run file based build tools

III Analyze all resources

IV Run tools to decorate the models
Table 1. Parser phases

For each phase it is guaranteed, that all tools from a previous phase have
finished their work. Since Phases I and II work on a file basis, it is possible that
the builder2 for file1 is in Phase II and for file2 in Phase I.

Phase I generates an abstract syntax tree (AST) from a B file. This is
done by applying a modified version of Tatibouet’s jbtools [?] Parser. If the

? This research is being carried out as part of the EU funded research projects: IST
511599 RODIN (Rigorous Open Development Environment for Complex Systems).

1 http://www.eclipse.org/
2 A builder is a tool that runs every time a project is being rebuilt.



AST-Generator completes its work without error, then other plug-ins can be
called. For example, one of our extensions to Phase I checks if the name of the
component matches the filename and if the type of the component matches the
file extension. Any plug-in that modifies the syntax tree should be run in this
phase, that means that in the second phase the syntax tree is stable.

Phase II contains file based builders that must not modify the syntax tree,
but can create abstractions of the syntax tree or other artifacts. For instance,
our standard builder creates a simplified syntax tree that is easier to handle for
some of the editor views (like the outline view). Tools in Phase II run if and only
if the AST-Generator completed its work without an error.

Phase III runs on all resources even when some AST generation failed.
This phase can be used to perform a “global analysis”. Currently, our standard
builder uses this phase to check if all dependencies (SEES, INCLUDES, etc.) are
being satisfied. In future, we also plan to check the structuring guidelines from
[?].

Phase IV must not modify the model in any way, it contains plug-ins that
only read from the model and update other parts of the plug-ins. For exam-
ple, our builder uses the final phase to update some properties of the so called
markers3.

In Phase I - III it is also possible to give dependencies for a tool. For exam-
ple, if a tool C relies on the output of tool A and B it is possible to specify this
dependency in the extension configuration. If the dependencies do not contain
cycles, the building framework will automatically generate an order via topolog-
ical sorting.

Our architecture was designed for extensibility by new, as of yet unknown,
plug-ins (without this requirement, a simple dependency graph of the various
tools would have been sufficient).

Fig. 1. Phases of the building framework

3
http://www.eclipse.org/articles/Article-Mark My Words/mark-my-words.html



3 Using the model for editing B

The model created by the parser can be used for several tasks; so far we have
implemented the following features:

– Context based completion: Since the editor knows if the user types within
an operation or the machine’s head, it can choose different proposals to
complete the word the user types4. In addition, we support templates that
contain parts to be filled by the user.

– Hover information: The Editor is aware of the token the mouse points
to and can display information about that token. For instance, if the mouse
points to the token \/, the editor displays the information “S \/ T: union
of sets S and T” as a hover text.

– Error Displaying and Correction: (Syntax) Errors are caught and dis-
played directly in the source code window (line 1 and 18 in Fig. 2) and
additionally in a special “Problems view”. As shown in the screenshot, the
editor supports auto-correction.5 Based on the error it determines a set of
actions called quick-fixes that might be applied to correct the error.

– Outline view: The editor produces an outline view of the machine, e.g.,
the variables used, the operations defined, etc. If the user clicks on any item
in the outline, the editor jumps to the line, where the item is being defined.

4 Related and Future work

The BZ testing tool (BZTT) [?] as well as ProB [?] provide simple editing
and highlighting, but lack the features of a dedicated editing/development tool.
The EmacsPri6 and the more recent Click’N’Prove [?] by Dominique Cansell
and J.-R. Abrial provide syntax highlighting and an interface to AtelierB within
Emacs. Bruno Tatibouet’s jbtools package [?] also contains a B plug-in for the
Java-based Editor jEdit, with syntax-highlighting, type checking and a shortcut
pane for the mathematical symbols.

Finally, the Rodin EventB (BSharp) Toolkit7 is also developed within Eclipse,
but has moved away from an ASCII AMN encoding to an internal storage in
an XML database of the components of B machines, which can be manipu-
lated directly by various graphical editors. It is actually our goal to combine
these two Eclipse plug-ins, so as to also allow editing of EventB components
in AMN as well as linking ProB directly to the Rodin EventB core and the
associated provers. We are also working on integration of refactorings into the
editor, as well as more semantic checks and quick-fixes. Our tool is available
from http://www.stups.uni-duesseldorf.de/ProB/be4.

4 As in Java mode, the autocompletion can be invoked typing CTRL+SPACE
5 CTRL+1 invokes the auto-correction
6 http://www.atelierb.societe.com/emacspri/emacspri uk.html
7 http://sourceforge.net/projects/rodin-b-sharp/



Fig. 2. B-Editor screenshot

References


