A Semantics-Aware Editing Environment
for Prolog in Eclipse

Jens Bendisposto, lan Endrijautzki, Michael Leuschel, and David Schneider

Softwaretechnik und Programmiersprachen
Institut fiir Informatik
Universitéat Diisseldorf
{bendisposto,leuschel}@cs.uni-duesseldorf.de

1 Introduction

The open-source Eclipse platform has become hugely popular as an integrated
development environment (IDE) for Java, mainly because of its editing features.
The Java IDE comes with code highlighting, hover information, code completion,
quick fixes and many more. It supports the development process by highlighting
problematic aspects of the code and providing a convenient and robust way to
improve it using refactorings. All those features have a common goal: let the
user stay focused on his task, writing code.

It would be very useful for the logic programming community to obtain an
IDE with similar features for the development of Prolog programs.

However, writing an industrial strength integrated development environment
like Eclipse for another language from scratch is a very difficult and complex
task. Fortunately, in previous work we have developed BE4 [3], a framework
for building semantic aware editors built on top of Eclipse and the Rigorous
Open Development Environment for Complex Systems (RODIN). BE4 contains
a reliable, multi phase build process that can be used for arbitrary languages. The
build process was designed with the purpose of integrating different tools, even
proprietary compilers into BE4. In particular, it is not restricted to Java. BE4
also contains a toolset to implement state-of-the-art editors, providing features
such as syntactic and semantic highlighting, code completion, outline view, hover
information, quick fixes and semantic checks. Finally BE4 already comes with
language plug-ins for classical B, CSP, Promela and SableCC, and a such its
applicability has already been tested on a variety of source languages.

In this paper we present a Prolog plugin for Eclipse based upon BE4, and pro-
viding many features such as semantic-aware syntax highlighting, outline view,
error marking, content assist, hover information, documentation generation, and
quick fixes. The plugin makes use of a Java parser for full Prolog with an inte-
grated Prolog engine, and can be extended with further semantic analyses, e.g.,
based on abstract interpretation.

2 Features

Beside the obligatory syntax highlighting, our tool ProClipse offers a wide variety
of features helping the user develop and adapt his or her Prolog programs. Our

features are based on a full syntactical and semantical analysis (i.e., they are
not derived on approximate solutions using regular expressions). Thus far, the
following features have been implemented:

Outline View: ProClipse creates an outline view which represents an overview
of the Prolog file or module, containing exported or non-exported predicates,
defined DCG predicates and import directives. Each item in the outline view
can be used to quickly access the respective lines of the Prolog code.

Error presentation: Syntax and semantic errors are highlighted in the editor
view. A wiggly line underlines the erroneous part of the source code and each
line containing an error is tagged with an error marker. The problems view lists
all errors of all Prolog files in an Eclipse Prolog project and can also be used to
directly recall an erroneous source code line.

Content Assist: To improve faster coding a content assist has been implemented
which offers content sensitive proposals to automatically complete the word the
developer types. As can be seen in Figure 1, content assist can also be used to
retrieve information about predicates, like their synopsis and usage, and present
an overview of the available predicates, modules, DCGs and more.

= Java - Prolog Project/:

File Edit MNavigate Search Project Run Window Help
R H-0-Q- BEHG- S04 THe e S [
[£ Package 23 T2 Hierarch |~ OJ||= BEitestmodule &% . = BEX: testdb = 85 outline &3 # =0
o | B % | & T ||BEt-Editorfor Prolog DB Prolog Database
42 Prolog Project = & tmports
it . W Modules
|®& content assist demo(X) :- print(X), a|. A Files
[Arguments: assert(:Clause) WS ~ 1l Predicates
, 1 tent_ t_d /1
Description: Asserts clause Clause with unique identifier Ref, @ abolish/2 & content st demn
@ abort | @ Dcos
@ absolutefile_name/2 2 new Operstors
& arg/3 |
@ assert/l
@ asserty2]
@ asserta/]
& asserta/2
@ assertz/1
@ assertz/2
@ ot end of line s
¢ '
Source
[Problems 52 @ Javadoc | [E; Declaration H[@wT =0
0 errors, 1 warning, 0 infos
Description Resource Path Location &
1= Warnings (1 item) =
s

Fig. 1. ProClipse Screenshot - Content Assist

Quick Fizes: Quick fixes offer the possibility to directly auto-correct erroneous
source code via a mouse click. Based on the type of error, a suitable set of fixes

is offered!. For instance, if the developer calls an unknown predicate (which is
presented as an error in the editor view), ProClipse will look for Prolog modules
and databases exporting this predicate and offer to import one of these. This is
illustrated in Figure 2.

File Edit Navigate Search Project Run Window Help

Br-HE % -0 Q- BEG- MOF H-FT-vora- & ([flna)

¥ Packagebxp 2 Y Hierarchy| = 51|/ = BE4: testmodule 23‘\\5 BE4: testdb
4| B % | & | BEA-Editor for Prolog
i Prolog Project T

1
I:n.

(B2 outine 33 & © — O
HD Prolog Module
Imperts.

n

9 :- module(ggstmoduleX, [public predicate/1]). = & Modules

@ :- module(testmoduleX, [public_predicate/1]). = m arrays3
™ unknown

& :- use module(library(arrays3)). # Files

=

i~ mse_module (1ibraxry(unknown)) .

]

& Public Predicates

@ public_predicate/l
@ Non Public Predicates

@ no_public_predicate/1

& public predicate (X) :- unknewn predicate(¥,¥), 1s_list(¥). @ no_public_predicate2/1
ui
& no_public predicate (X) :- no_public_predicate2 (X). -
e o ot ! Select a fix
& no_public predicate2 (X) :- no_public predicate (X). Select the fix for "Predicate J
‘is_list/1" unknown". =3
Select afix:

[Import SICStus 4 module librar
Import SICStus 4 module library(lists3)

«

Source|
Holirce]

[E{ Problems 53 @ Javadoc | [i2, Declaration | @ = H)

3 errors, 6 warnings, 0 infos

Description Resource tl ocation
& Errors (3 items)
@ Module 'library(unknown)’ does not exist testmodule... Prolog Project line 5
@ Module 'testmoduleX' should have name of prolog file: testmodule testmodule... Prolog Project line 1
@ Modules may only be defined once testmodule... Prolog Project line 2
& Warnings (6 items)
& Module library(arrays3) not used testmodule... Prolog Project line 4
& Predicate 'is_list/1' unknown testmodule... Prolog Project line 10
& Predicate 'unknown_predicate/2' unknown testmodule... Prolog Project line 10
& Predicate no_public_predicate/1 is not used in any public predicate testmodule... Prolog Project line 13
& Predicate no_public_predicate2/1 is not used in any public predicate testmodule... Prolog Project line 15
& Singleton variable X' testmodule... Prolog Project line 10
o® Predicate 'is_list/L’ unknown

Fig. 2. ProClipse Screenshot - Error presentation and Quick Fix

PrologDoc: Inspired by the documentation generator JavaDoc from Sun Mi-
crosystems for Java, we created PrologDoc. To attach a documentation to a
predicate, a comment field containing PrologDoc entries? must be written above
the first appearance of a clause defining this predicate. Documentation can also
be attached to entire modules, in which case the PrologDoc comment field must
be written above the module definition. Our implementation can also extract
a PrologDoc summary for a complete project. This generated summary is pre-
sented in HTML format (see Figure 3), with the ability to directly navigate into

! Quick fixes can be invoked by right clicking the error in the problems view and
selecting the ”Quick Fix” entry

2 Default PrologDoc entries are: ’Author:’, ’Arguments:’, ’Description:’.

the summaries of imported Prolog modules or files. It shows an outline of all
defined predicates, including their synopsis.

1= 1212 - fie/Diuntime-Eclip:
File Edit Nevigate Search Project Run Window Help
Eij= H-0-Q- BEECG- MO H-H O S [l
" = BE4: testmodule [E BEd:testdb | {3 Di\runtime-EclipseApplicati lag Project cltestmodule.ntml 35 = -
Ex

E] & D:\runtime-EclipseAppli g Project\PrelogDoc html - oo

Prolog Module testmodule

Modules used:
SICStus 4 bbrary(lists).
Projects resource: example_module, example_module?, example_module3,

Predicate Description Arquments Author
prolog_doc_demo/1|This will print X x John Doe
prolog_doc_demo2/1|This will also print X X John Dee
prolog_doc_demo3/1 |This will print X, too X John Doe

T T e e T

_ .
| Predicate Description |Arguments ‘Author

| not_public/3 This predicate is not public |%,¥,2 ‘John Doe |

o e & e @

Fig. 3. ProClipse Screenshot - PrologDoc Summary

Text Hover: ProClipse offers two types of text hover which can deliver quick
information of a lexical token in our editor view. For instance, if a developer
wants to know how a certain predicate has been defined, he simply has to point
the mouse at the predicate. The text hover can also present the synopsis and
the arguments of a Prolog built-in, the exported predicates of imported Prolog
modules or files, and the definition of an user-defined operator. By addition-
ally pressing the shift key the PrologDoc hover is shown, which displays the
PrologDoc entries of a predicate or module.

3 Architecture and Implementation

3.1 BE4 Phases

Our development is based on BE4 [3], which contains a multi-phase parsing and
analysis framework. The architecture was designed for extensibility by new, as
of yet unknown, plug-ins.

As shown in Figure 4, our tool is decomposed into four phases.

— The first phase is the parsing phase which constructs an abstract syntax tree
(AST). To that end we have written a Parser and Engine for full Prolog in
Java (see Subsection 3.2 below).

— Phases II and III decorate this AST and then combine various ASTs from
multiple files to perform global analysis.

— The last phase (IV) generates the relevant information for the semantics
aware editor to work and decorates the source files, e.g., generating Eclipse
markers?.

decorate Phase

MainFile

MainFile.pl

Project
Model

UsedModule.pl

UsedModule
Model

Fig. 4. Phases of the building framework

3.2 Parser

The centerpiece of a semantic-aware editor for programming languages is a parser
that generates a model from source-code. In order to provide seamless integration
into Eclipse and BE4, we have written a Prolog parser in Java.

Our parser generates a fully typed* parse tree of the processed Prolog code.
Note that in order to parse full Prolog with directives and operator declarations,
a Prolog engine is required. We have hence also developed a simple Prolog engine
in Java, with support for a basic set of built-ins. Our parser and engine fully
support the dynamic operator definitions and the dynamic grammar associated
to them. Our Prolog parsing framework provides a mechanism to attach custom
post-processing steps to the results produced by the parser, so they can be used
in a flexible way in different contexts.

3 http://wuw.eclipse.org/articles/Article-Mark My Words/mark-my-words.html

4 Note that we do type the individual nodes in the abstract syntax tree, but we do
not try to infer Prolog types for arguments of predicates.

The Prolog parser is built of a set of different components which also represent
the different steps of the evaluation process. These are the lexical analysis, the
parser and a series of post-processing steps called engines.

Lexical analysis The lexer implemented for Prolog was created using JFLex
and is based on the definition of the language as provided in the SICStus Prolog
Users Manual [5]. Every token type is represented by an instance of a corre-
sponding Java class and holds information about the source text it matched and
where on the input stream it appeared.

Prolog tokens can have different meanings depending on their position in
the input stream and the state of the program (itself depending on operations
performed in previous steps). The lexer takes this information into account when
generating lexical tokens, performing a state aware token generation, so that the
same text can be represented by different tokens depending on the context. E.g.
the '+’ atom would be represented as an atom or an operator, depending of the
current operator definitions stored in the internal database.

Syntactic Analysis The parser processes the token stream on a sentence by
sentence basis. Every time the abstract syntax tree for a sentence is constructed,
it is dispatched to the post-processing steps for evaluation, before resuming the
parsing process. This way the parser can take into account possible modifications
to the environment done by the evaluation of the preceding sentence, such as an
operator definition.

The algorithm used in the parser follows the shift reduce parsing principle,
with one token lookahead [1]. Instead of using an approach based on DFA as
described in [2], this parser takes advantage of the simple structure of the Prolog
grammar, which makes it unnecessary to track multiple possible productions for
a given input at the same time. Our algorithm is based on the current token and
as necessary on the previous and next tokens on the input stream.

This approach allows to provide a fine-grained and fully typed AST, providing
as much information as possible about the language tokens in the context they
appeared.

Post-Processing, The Prolog Runtime After a sentence has been parsed,
the AST representing it is dispatched to the post-processor. The post-processor
is built of a chain of objects called engines. These engines are responsible of
performing different analysis and execution steps on the AST and to pass the
AST to next engine registered in the chain. There are different engines with
different responsibilities, such as executing the code, storing it in the internal
term database or providing an interactive read eval loop as a command line
interface. There is a special engine responsible for evaluation directives, every
time a directive passes this engine the directive is executed, so additional files
get loaded and modifications to internal settings are executed.

Error Recovery To provide as much information as possible in case of an error,
the parser supports a simple form error recovery by dropping tokens until it can
resume the parsing process normally. All errors are collected and made available
to the user, so that they can be used - for instance - to highlight the errors in
an IDE. This enables our plugin to detect multiple errors in a source file (and
not just the first error).

4 Related Work and Conclusion

Various Prolog systems come with some support for convenient editing and de-
velopment. For example, SICStus Prolog and Ciao Prolog are distributed with
an Emacs-mode for Prolog. SWI Prolog has an Emacs clone based on its XPCE
package as well as an editor for Windows. Visual Prolog and LPA Prolog both
have a custom editor for Windows.

Other related work is [4] which present a refactoring tool for Prolog based on
the editor VIM. In future we plan to add refactoring capabilities to our plugin.

While existing Prolog documentation tools such as PrologDoc® provide a
wide range of documentation options, our tool currently only provies a subset
of these options, but has the advantage of beeing fully integrated whith eclipse.
In future we plan to integrate PrologDoc with our documentation tools to allow
more detailed documentation.

On the Eclipse side we are aware of the following three plugins.

— Prolog Plugin® developed in 2003/2004. It is unclear whether this Plugin
is still maintained and it only seems to provide syntax highlighting and
consulting a Prolog interpreter.

— PDT 7 This plugin supports more features and links up with SWI Prolog.
Quick fixes, document generation and hover information do not seem to be
supported yet.

— ProDevTools® only supports SWI Prolog and does not yet seem to support
quick fixes and document generation.

All three plugins definitely have potential. One distinguishing aspect of our
plugin is the language-independent BE4 framework, which will be maintained in
the foreseeable future. Improvements made to BE4 for other languages, such as
B or CSP, will feed back into the Prolog plugin as well.

We also plan to keep our editor largely independent from any particular
Prolog system and plan to integrate more analysis information based on abstract
interpretation. While it is easy to create analysis tools written in java, in future
we will investigate ways of integrating analysis tools written in prolog without
having to dissmis the independence from any Prolog system.

We also plan to integrate termination analysis and partial evaluation tools
into our plugin.

® http://prologdoc.sourceforge.net/

5 http://eclipse.ime.usp.br/projetos/grad/plugin-prolog/index.html
" http://roots.iai.uni-bonn.de/research /pdt/

8 http://prodevtools.sourceforge.net /

References

1.

2.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers. Principles, Tech-
niques, and Tools (Second Edition). Addison Wesley, 2007.

A. W. Appel. Modern Compiler Implementation in Java. Cambridge University
Press, Cambridge, second ed. edition, 2002.

J. Bendisposto and M. Leuschel. BE4: The B extensible eclipse editing environment.
In Proceedings of the 7th International B Conference (B2007), LNCS 4355, pages
270273, Besancon, France, 2007. Springer Berlin / Heidelberg.

A. Serebrenik, T. Schrijvers, and B. Demoen. Improving prolog programs: Refac-
toring for Prolog. Theory and Practice of Logic Programming, 8:201-215, 2008.

. Swedish Institute of Computer Science, PO BOX 1263, SE-164 29 Kista, Sweden.

SICStus Prolog Users Manual, release 4.0.2 edition, November 2007.

