Efficient and Flexible Access Control via Jones-Optimal
Logic Program Specialisation *

Steve Barker (steve.barker@kcl.ac.uk)
Department of Computer Science, King’s College, London, WC2R 2LS, UK

Michael Leuschel (leuschel@cs.uni-duesseldorf)
Institut fir Informatik, Heinrich-Heine-Universitit Diisseldorf, Universitdtsstr. 1,
D-40225 Diisseldorf '

Mauricio Varea (m.varea@ecs.soton.ac.uk)

School of Electronics and Computer Science, University of Southampton, Highfield,
8017 1BJ, UK

Abstract. We describe the use of a flexible meta-interpreter for performing access
control checks on deductive databases. The meta-program is implemented in Prolog
and takes as input a database and an access policy specification. For processing
access control requests we specialise the meta-program for a given access policy and
database by using the LOGEN partial evaluation system. The resulting specialised
control checking program is dependent solely upon dynamic information that can
only be known at the time of actual access request evaluation. In addition to describ-
ing our approach, we give a number of performance measures for our implementation
of an access control checker. In particular, we show that by using our approach we
get flexible access control with virtually no overhead, satisfying the Jones optimality
criterion. The paper also shows how to satisfy the Jones optimality criterion more
generally for interpreters written in the non-ground representation.

Keywords: Access Control, Deductive Databases, Partial Evaluation, Program
Transformation, Meta-Programming

1. Introduction

The issue of controlling a user’s ability to exercise access privileges
(e.g., read, write, execute privileges) on a system’s resources has long
been important in Computer Science. With the advent of the Web
and a move towards open, distributed systems, security has assumed
even greater importance. In a number of surveys, security issues have
been reported by enterprises as being of paramount concern when de-
ciding policies on the publication of Web data, and the availability of
Web resources (see, for example, [10]). Security issues, including access
control issues, will be of particular importance in the emerging Seman-

* Work partially supported by European Framework 5 Project ASAP (IST-
2001-38059). This paper is revised and extended version of [5], incorporating some
material from [26].

© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

pe-hosc_final.tex; 12/02/2007; 10:21; p.1

2 S. Barker, M. Leuschel, M. Varea

tic Web, and for e-commerce and distributed business-rule processing
applications (see, for example, [17]).

In recent years, a number of researchers have developed sophisti-
cated access control models in which access control requirements are
expressed by using rules that are employed in reasoning about autho-
rised forms of access to resources. In these approaches (see, for example,
[6], [8], and [19]), the requirements that must be satisfied in order
to access resources are represented by using rules expressed in (C)LP
languages. Expressing access control policies in (C)LP is natural, and
enables many implicit permissions, denials and authorisations to be
specified using declarative languages for which well defined semantics
and operational methods with attractive theoretical properties (e.g.,
termination) are known to exist.

An important practical issue that arises with the rule-based ap-
proach to access control is the problem of efficiently evaluating access
requests when access control requirements are implicitly specified. The
problem of efficiently evaluating access requests with respect to rule-
based specifications of access policies becomes increasingly important
as organisations use ever more complex forms of access control policies.
Goal evaluation with respect to complex forms of policy specifications
is potentially expensive.

For each of the approaches described in [6], [8], and [19], proposals
are made for attempting to ensure that access requests are evaluated
efficiently when access control requirements are specified implicitly. In
[8] and [19], view materialisation approaches (i.e., storing all of the
valid authorisations as facts) are described for attempting to optimise
access control checks. The motivation for view materialisation is to
make explicit the access control information that is implicitly defined
in rule form. Making explicit the implicitly specified access control in-
formation means that access requests can be evaluated by considering
explicitly recorded facts rather than having to derive these facts at
query evaluation time. Unfortunately, view materialisation is not neces-
sarily appropriate to use when large numbers of parametric derivation
rules [7] are used to express access control requirements and when
the specification of access control requirements changes dynamically.
Dynamic changes arise, for example, when user session information [6]
is used in the course of deciding whether an access request is authorised
or when access to resources depends on satisfying temporal constraints.

In contrast to previous work, we describe an approach, based on
partial evaluation, for addressing the problem of efficiently evaluating
access requests where large numbers of parametric derivation rules are
used to specify access policy requirements; where fine-grained access to
data items is required (e.g., access to atomic formulae); where the an-

pe-hosc_final.tex; 12/02/2007; 10:21; p.2

Efficient and Flexible Access Control via Logic Program Specialisation 3

swer to a user’s access request generates the information in a database
that the user is permitted to see;! and where the static access control
information is to be exploited for performance gains.

In overview, we describe an access control checker that is imple-
mented by using a meta-program that is written as a logic program.
The meta-program takes as input an access control program and a
database. The approach enables the meta-interpreter that we intro-
duce, and hence our access control checker, to be specialised in order
to reduce the amount of information that needs to be considered at run
time to satisfy a user’s access request. In effect, the approach ensures
that a minimal amount of information is considered at access request
evaluation time. Specifically, the user session information that applies
at the time of an access request is used with a form of access control
program that is specialised by using the relatively static information
that is specified as part of the access control program (e.g, in the
examples in this paper we assume that the user, role and hierarchy
information is static relative to the information about which users and
resources are active).

Although meta-interpreters have previously been developed for effi-
cient constraint checking on databases by Leuschel and De Schreye [29]
(using a prototype partial evaluator), to the best of our knowledge, no
approach has yet been proposed in the literature for generating spe-
cialised access requests via a meta-interpreter that manipulates access
requests, access control policies and databases as object level expres-
sions, and that pre-compiles access checking for certain access requests.
In this paper, we describe a technique to obtain a specialised access
control checker that is more efficient to use than using a database
and access control program directly because some of the propagation,
simplification and evaluation process is pre-compiled. To this end we
present a technique that makes it possible to obtain “Jones optimal”
specialisation [20, 21, 31] for a class of meta-interpreters.

In our approach, we consider the use, by security administrators, of
role-based access control (RBAC) policies [6] for specifying authorised
forms of access to database objects in a non-distributed environment.
In RBAC, the most fundamental notion is that of a role. A role is
defined in terms of a job function in an organisation (e.g., a doctor
role in a medical environment); users are assigned to roles. Moreover,
access privileges on objects (i.e., permissions) are assigned to roles (e.g.,
the permission to change a patient’s prescriptions may be assigned to
the role doctor). RBAC policies have a number of well documented

1 We restrict attention to retrievals of information in this paper. However, any
kind of operation on information can be accommodated by our approach.

pe-hosc_final.tex; 12/02/2007; 10:21; p.3

4 S. Barker, M. Leuschel, M. Varea

advantages [39], and are widely used in practice (see, for example,
[13, 40, 35]). Although we restrict our attention to RBAC policies in
this paper, it should be noted that RBAC' is a more general form of ac-
cess control model than the discretionary access control and mandatory
access control approaches that predate RBAC' [12], and the approach
that we describe can be used with more powerful access control methods
than RBAC (e.g., the access control model described in [4]). It follows
that our approach is widely applicable.

The rest of this paper is organised as follows. In Section 2, some
background information is provided on the partial evaluation of logic
programs, in general, and the LOGEN system, in particular. In Sec-
tion 3, we present an approach to successfully specialise a class of
meta-interpreters, for which we achieve Jones optimality, thereby laying
the foundation for optimising access control meta-interpreters. In Sec-
tion 4, we briefly describe an RBAC model, as well as the formulation
of RBAC policies by using logic programs. In Section 5, we develop
an access control meta-interpreter for the evaluation of access requests
on databases with respect to RBAC policies, and show how the meta-
interpreter can be specialised by using LOGEN. In Section 6, we present
and discuss performance measures of our approach. Finally, Section 7
concludes the work and suggests future work.

2. Partial Evaluation and the LOGEN System

Partial evaluation [21] is a source-to-source program transformation
technique that specialises programs by fixing part of the input of some
source program P and then pre-computing those parts of P that only
depend on the fixed part of the input. The so-obtained transformed
programs are less general than the original, but can be much more
efficient. The part of the input to P that is fixed is referred to as the
static input, while the remainder of the input is called the dynamic
input.

2.1. PARTIAL EVALUATION OF LOGIC PROGRAMS

We now describe the process of partial evaluation of logic programs.
For logic programs we follow the notational conventions of [30]. In
particular, in programs, we denote variables by strings starting with
an upper-case symbol, while the notations for constants, functions and
predicates begin with a lower-case character. More details about logic
programming can be found, e.g., in [30].

pe-hosc_final.tex; 12/02/2007; 10:21; p.4

Efficient and Flexible Access Control via Logic Program Specialisation 9

Formally, executing a logic program P for an atom A consists of
building a so-called SLD-tree for P U {« A}. Take for example the
well-known append program:

append([],L,L).
append ([H|X],Y,[HIZ]) :- append(X,Y,Z).

The SLD-tree for append([a,b], [c],R) is presented on the left
in Figure 1.2 The underlined atoms are called selected atoms and O
represents the empty goal. The edges are labelled with the most general
unifiers (mgus) between the selected atom and the head of a program
clause. A branch leading to the empty goal is called successful and
gives rise to a computed answer substitution obtained by composing
the mgus on the branch and restricting it to the variables in the top-
level goal. Here there is only one successful branch, and its computed
answer substitution isR = [a,b,c].

append([a,b],[c],R) append (X, [c],R)
- 7 ~
R=[a|R2] X=] X=[H|X2],

R=[c] R=[H|R2]
/ AN
append([b],[c],R2) [] append(X2,[c],R2)

R2:[bQ3]
append([1,[c]1,R3)

R3=[c]

[

Figure 1. Complete and Incomplete SLD-trees for the append program

Partial evaluation for logic programs builds upon this with two
important differences:

— At some step in building the SLD-tree, it is possible not to select an
atom, hence leaving a leaf with a non-empty goal. The motivation
is that lack of the full input may cause the SLD-tree to have extra
branches, in particular infinite ones. For example, in Figure 1 the
rightmost tree is an incomplete SLD-tree for append(X, [c],R),
whose full SLD-tree would be infinite. Building such a possibly
incomplete tree is called unfolding. An unfolding rule tells us which
atom to select at which point and when not to select an atom. Ob-
serve that incomplete branches do not produce computed answers;

2 In this case there is only a single SLD-tree for the particular goal.

pe-hosc_final.tex; 12/02/2007; 10:21; p.5

6 S. Barker, M. Leuschel, M. Varea

they produce conditional answers that can be expressed as program
clauses by taking the resultants of the branches as defined further
below.

— Because of the atoms left in the leaves (which will appear in the
bodies of the resultants), we may have to build a series of SLD-
trees to ensure that every such atom is covered by some root of
some tree. The condition that every leaf is an instance of a root is
called the closedness (sometimes also coveredness) condition. In the
example of Figure 1, the leaf atom append (X2, [c],R2) is already
an instance of its root atom; hence, closedness holds and there is
no need to build more trees.

DEFINITION 1. Let P be a program, G = «— @Q a goal, D a finite
SLD-derivation of P U{G} ending in < B, and 6 the composition of
the mgus in the derivation steps. Then the formula QO «— B is called
the resultant of D.

For example, the resultants of the derivations in the right tree of
Figure 1 are:

append ([J, [c], [c]).
append ([H|X2], [c], [HIR2]) :- append(X2, [c],R2).

Partial evaluation starts from an initial set of atoms A provided
by the user that is chosen in such a way that all runtime queries of
interest are covered by A, meaning that all atoms occurring inside
runtime queries are an instance of some atom in A. As we have seen,
constructing a specialised program requires us to build an SLD-tree
for each atom in A. Moreover, one can easily imagine that ensuring
closedness may require revision of the set A, i.e., adding new atoms
to A or replacing existing atoms by a more general one. Hence, when
controlling partial evaluation, it is natural to separate the control into
two components (as already pointed out in [15, 34]):

— The local control guides the construction of the finite SLD-tree for
each atom in A and thus determines what the residual clauses for
the atoms in A are.

— The global control determines the content of A, it decides which
atoms are ultimately unfolded (taking care that A remains closed
for the initial atoms provided by the user).

In that context, one also talks about local termination, i.e., making
sure that all the SLD-trees are finite, and about global termination,

pe-hosc_final.tex; 12/02/2007; 10:21; p.6

Efficient and Flexible Access Control via Logic Program Specialisation 7

i.e., making sure that the construction of the set A terminates. More
details on partial evaluation for logic programs and how to control it
can be found, e.g., in [25].

2.2. OFFLINE PARTIAL EVALUATION

The control of partial evaluation can be broadly classified into online
and offline approaches. Online partial evaluators have a single special-
isation phase and take all their control decisions during specialisation.
Offline partial evaluation (see, e.g., [21]) is divided into two phases, as
depicted in Figure 2:

— First a binding-time analysis (BT A) is performed which, given a
program and an approximation of the input available for speciali-
sation, approximates all values within the program and generates
annotations that steer (or control) the specialisation process.

— A (simplified) specialisation phase, which is guided by the result
of the BT A.

Source

Program BTA | Source

Program
Approx. of
Static Input

Static | Partial
Input l Evaluator

Y

Dynamic | @ia@
hon) = ~(om)

Figure 2. Offline Partial Evaluation

Because of the preliminary BTA, the specialisation process itself can
be performed very efficiently and with predictable results.

pe-hosc_final.tex; 12/02/2007; 10:21; p.7

8 S. Barker, M. Leuschel, M. Varea

2.3. THE LOGEN SYSTEM

The LOGEN system [27] is an offline partial evaluator for Prolog. Also,
as we will show in Section 3, the LOGEN system is well suited to spe-
cialise interpreters, something that we will aim to exploit later in the
paper for efficient access control.

As noted above, an offline specialiser works on an annotated version

of the source program. LOGEN uses two kinds of annotations:

— Filter declarations, which declare which arguments to which pred-
icates are static and which ones are dynamic. This influences the
global control (only): dynamic arguments are always replaced by
a variable before adding an atom to A, while static arguments are
kept as they are.

— Clause annotations, which indicate for every call in the body how
that call should be treated during unfolding. This thus influences
the local control only, which is effectively hard-wired. For now, we
assume that a call is either annotated with memo — indicating
that it should not be unfolded — or with unfold — indicating that
it should be unfolded. We introduce more annotations later on.

There is, of course, an interplay between these two kinds of annota-

tions; we will return to this issue in the discussion below.

First, let us consider an example of an annotated version of the

unspecialised append program from the beginning of Section 2.1:

:- filter append(dynamic,static,dynamic).

append([],L,L).

append ([H|X1,Y, [HIZ]) :- append(X,Y,Z).
—_——

memo

In this example, the filter declarations annotate the second argument
to append as static while the others are marked dynamic and the clause
annotations annotate the recursive call in the second clause as memo.
Given such annotations and a specialisation query append (X, [c],Z),
the LOGEN system would unfold exactly as depicted in the right tree of
Figure 1 and would produce the resultants above.

The following is a general algorithm for offline partial evaluation
given filter declarations and clause annotations.

Algorithm 2.1 (offline partial evaluation)
Input: A program P and an atom A
A={A}
repeat
select an unmarked atom A in A and mark it

pe-hosc_final.tex; 12/02/2007; 10:21; p.8

Efficient and Flexible Access Control via Logic Program Specialisation 9

build an SLD-tree 74 for A using the clause annotations in the
annotated source program: A, as well as all literals marked as
unfold are unfolded; literals marked as memo are not unfolded
for every leaf atom S of 74 that was annotated as memo
do
generalise S into S’ by replacing all arguments declared as
dynamic by the filter declarations with a fresh variable
if no variant of S’ is in A then add it to A end if
end do
pretty print the resultants of 74
until all atoms in A are marked.

In practice, renaming transformations [16] are also involved: Every
atom in A is assigned a new predicate name, whose arity is the number
of arguments declared as dynamic (static arguments do not need to
be passed around; they have already been built into the specialised
code). For example, the resultants of the derivations in the right tree
of Figure 1 would get transformed into the following, where the static
argument has been removed:

append__0([], [c]).
append__O([H|X2], [HIR2]) :- append__0(X2,R2).

The full treatment in LOGEN is a lot more complicated as LOGEN
supports a more user-friendly syntax as well as various features, some
of which are introduced in the sections that follow.

3. Specialisation of Interpreters and Jones Optimality

Partial evaluation is especially useful when applied to interpreters. In
that setting, the static input is typically the object program being inter-
preted, while the actual call to the object program is dynamic. Partial
evaluation can then produce a more efficient, specialised version of the
interpreter, which is sometimes akin to a compiled version of the object
program [14]. Some successful applications in that area are, e.g., [9]
where Bondorf and Palsberg compile action semantic into competitive
(Scheme) code. More examples and references can be found, e.g., in
[21].

The ultimate goal when specialising interpreters is to achieve Jones
optimality [20, 21, 31], i.e., fully getting rid of a layer of interpretation
(called the “optimality criterion” in [21]). More precisely, suppose we
have a self-interpreter sint for a programming language L, i.e., an
interpreter for L written in that same language L, and then specialise

pe-hosc_final.tex; 12/02/2007; 10:21; p.9

10 S. Barker, M. Leuschel, M. Varea

sint for a particular object program p; what we would like to obtain is a
specialised interpreter p’ that is at least as efficient as p (see Figure 3).
One uses a self-interpreter, rather than an interpreter in general, to be
able to compare directly the running times of p and p’ (as they are
written in the same programming language L).

More formally, if D is the input domain of p and ¢,(1) is the running
time of the program p on the input i, we require that Vd € D : ty(d) <

to(d).

Source
Program

p
/ static Specialized

» Partial Evaluator +———p Interpreter

p

Self Interpreter

) at least as
sint

efficient as p

Figure 3. Jones Optimality

In this section, we will show how to achieve Jones-optimality for
the classical “vanilla” self-interpreter for logic programs [18, 1] . In the
following section, we will extend this interpreter into an interpreter
for access control; Jones optimality will ensure that we do not pay a
performance penalty if no access control is needed. First though, we
present a very simple interpreter and show how it can be specialised
using LOGEN.

3.1. PROPOSITIONAL LOGIC INTERPRETER

We first introduce a simple propositional logic interpreter to demon-
strate the basic annotations of LOGEN. The interpreter handles the
connectives and, or, true, false and propositional variables. The pred-
icate int/2 takes two arguments: the propositional formula and the
environment containing the list of all propositional variables that are
true. The predicate succeeds if the formula evaluates to true given the
environment.

int (true,_).
int(and(X,Y) ,Env) :- int(X,Env), int(Y,Env).

pe-hosc_final.tex; 12/02/2007; 10:21; p.10

Efficient and Flexible Access Control via Logic Program Specialisation 11

int(or(X,_Y) ,Env) :- int(X,Env).
int (or (_X,Y) ,Env) :- int(Y,Env).
int (var(X) ,Env) :- member(X,Env).

member (X, [X]_]1).
member (X, [_|T]) :- member(X,T).

As was indicated in Figure 2, the source program that serves as input
for LOGEN has to be annotated using filter declarations for the global
control and clause annotations for the local control. The filter decla-
rations describe the arguments of residual predicates to the specialiser.
Top level predicates that one intends to specialise must be declared
in this way, as well as any subsidiary predicate that cannot be fully
unfolded. For example, for the above program we could declare:

:- filter int(static, dynamic).
:- filter member(dynamic, dynamic).

In other words, we assume that the propositional formula (the first
argument of int/2) is known at specialisation time (static) while
the environment will only be known at run time (dynamic). As the
propositional formula is known at specialisation time (static) all calls
to int/2 can be unfolded in the clause annotations. As concerns the
variable lookups in the environment, these cannot be fully unfolded
and hence we have to mark the call to member as a memo:

int (var (X) ,Env) :- member(X,Env).
memo

Let us now specialise the interpreter for the logical formula:
((var(a) Awvar(b)) V false) A true. The output from specialisation is a
new version of the program, which just checks that var(a) and var(b)
are both true in the environment. Observe that member__1/2 is a spe-
cialised version of member/2; however, the specialised version is simply a
renaming of the original as all its arguments were declared as dynamic:

int__0(A) :- member__1(a,A), member__1(b,A).

member__1(A,[Al_1).
member__1(A,[_IB]) :- member__1(A,B).

pe-hosc_final.tex; 12/02/2007; 10:21; p.11

12 S. Barker, M. Leuschel, M. Varea
3.2. THE VANILLA SELF-INTERPRETER

The interpreter that we described above was very well suited to special-
isation because the propositional formula was ground (i.e., contained
no free variables). This “ground representation” enabled us to mark
arguments as static and to use LOGEN in straightforward way. However,
many interpreters in Prolog use a non-ground representation [1, 18], in
order to reuse the efficient Prolog unification mechanism for object
level expressions. The classical example is the vanilla self-interpreter
(see, e.g., [1, 18]). This interpreter is a self-interpreter because it can
handle the language in which it is written. The following is the vanilla
self-interpreter, along with an encoding of the double-append object
program (which concatenates three lists):

solve (empty) .
solve(and(A,B)) :- solve(A), solve(B).
solve(X) :- clause(X,Y), solve(Y).

clause(dapp(X,Y,Z,R) ,and(app(Y,Z,YZ) ,app(X,YZ,R))) .
clause(app([],L,L) ,empty).
clause(app([HIX],Y, [HIZ]) ,app(X,Y,Z)).

The clause/2 facts describe the object program to be interpreted,
while solve/1 is the self-interpreter executing the object program.
In practice, solve will often be instrumented so as to provide extra
functionality for, for instance, debugging, analysis (e.g., using abstract
unifications instead of concrete unification) or transformation. We will
actually use an instrumented form of solve/1 later in this paper to
implement our access control strategies. However, even without these
extensions the vanilla interpreter provides enough challenges for par-
tial evaluation. Indeed, we would like to achieve Jones optimality, i.e.,
specialise the interpreter so as to obtain a residual program that is at
least as efficient as the object program being interpreted. For exam-
ple, one would like to specialise our vanilla interpreter for the query
solve(dapp(X,Y,Z,R)) and obtain a specialised interpreter that is at
least as efficient as:

dapp(X,Y,Z,R) :- app(Y,Z,YZ), app(X,YZ,R).
app([1,L,L).
app([HIX],Y,[HIZ]) :- app(X,Y,Z).

Online partial evaluators such as ECCE [28] or MIXTUS [38] come
close to achieving Jones-optimality for many object programs (and are
fully automatic, requiring no annotation). However, they will not do

pe-hosc_final.tex; 12/02/2007; 10:21; p.12

Efficient and Flexible Access Control via Logic Program Specialisation 13

so for all object programs. We refer the reader to [33] (discussing the
parsing problem) and the more recent [41] and [24] for more details. In
[41], Vanhoof and Martens present a particular specialisation technique
that can achieve Jones-optimality for the vanilla interpreter, but the
technique is very specific to that interpreter and, as far as we under-
stand, does not scale to extensions of it (such as our access control
interpreter, which we will present later in the paper).

In the rest of this section, we show how LOGEN can achieve Jones-
optimality for the vanilla interpreter.

3.3. THE NONVAR BINDING-TIME ANNOTATION

First, we have to present a new feature of LOGEN, which is essential
when specialising interpreters that use the non-ground representation.
In addition to marking arguments to predicates as static or dynamic,
LOGEN now also supports the annotation nonvar. This means that the
argument is not necessarily ground but has at least a top-level function
symbol at specialisation time. When generalising the call, LOGEN keeps
the top-level function symbol while replacing all its sub-arguments by
fresh variables. Finally, these subarguments become arguments in the
specialised version constructed by LOGEN.
A small example will help to illustrate this annotation:

:— filter p(nonvar).
pEX,X)) - p(gla)).
pgX)) :- p(X)).
pa(a)).

ph(X)) :- p(£(X,X)).

Marking every call as memo (hence no unfolding), we obtain the
following specialised program for the call p(£(Z,Z)). The commented
lines indicate the renamings that LOGEN has performed.

/* p(£(A,B)) :- p__0(A,B). p(g(A)):-p__1(4). =*/
/* p(h(A)):-p__2(A). */

p__0(A,A) - p__1(a).
p__1(4) :- p__2(A).
p__2(a).

p__2(A) :- p__0C(A,A).

If we mark the last call in the original source program as memo
and all others as unfold, we obtain:

/* p(£(A,B)) :- p__O0(A,B). */
p__0(A,4).
p__O(A,A) T p__O(a,a)_

pe-hosc_final.tex; 12/02/2007; 10:21; p.13

14 S. Barker, M. Leuschel, M. Varea
3.4. JONES-OPTIMALITY FOR VANILLA

The vanilla interpreter, as shown earlier, is actually a badly written
program as it mixes the control structures and and empty with the
actual calls to predicates of the object program. This means that the
vanilla interpreter will not behave correctly if the object program con-
tains predicates and/2 or empty/0. This fact also poses problems typing
the program. Even more importantly for us, it also prevents one from
annotating the program effectively for LOGEN. Indeed, statically there
is no way to know whether any of the three recursive calls to solve/1
has a control structure or a user call as its argument. For LOGEN, this
means that we can only mark the call clause (X,Y) as unfold. Marking
any of the solve/1 calls as unfold may lead to non-termination of
the specialisation process. This also means that we cannot mark the
argument to solve/1 as nonvar, as it may actually become a variable.
Indeed, take the call solve(and(p,q)); this call will be generalised
into solve(and(X,Y)) and after unfolding with the second clause we
get the calls solve(X) and solve(Y). Hence, we obtain very little
specialisation and Jones-optimality is not achieved.

Two ways to solve this problem are as follows:

— Assume that the control structures are used in a principled, pre-
dictable way that will allow us to produce a better annotation.

— Rewrite the interpreter so that it is clearly typed, allowing us to
produce an effective annotation as well as solving the problem with
the name clashes between object program and control structures.

We will pursue these solutions in the remainder of this section.

3.4.1. Structuring conjunctions.

The first solution is to enforce a standard way of writing down con-
junctions within clause/2 facts by requesting that every conjunction
is either empty or is an and whose left part is an atom and whose right
part is a conjunction. For the example above, this means that we have
to rewrite the clause/2 facts as follows:

clause(dapp(X,Y,Z,R),

and (app(Y,Z,YZ) ,and (app(X,YZ,R) ,empty))) .
clause(app([],L,L),empty) .
clause(app([HIX],Y, [H|Z]), and(app(X,Y,Z),empty)).

This allows us to predict the contents of a conjunction and thus to
annotate the interpreter more effectively, without risking non-termination:

:— filter solve(nonvar).
solve (empty) .

pe-hosc_final.tex; 12/02/2007; 10:21; p.14

Efficient and Flexible Access Control via Logic Program Specialisation 15

solve(and(A,B)) :- solve(A), solve(B).

memo un fold
solve(X) :- clause(X,Y), solve(Y).
un}rold un fold

Given our assumption about the structure of conjunctions, the above
annotation will ensure termination of specialisation:

— Local termination: The call to clause(X,Y) can be unfolded as
before as clause/2 is defined by facts. The calls solve(B) and
solve(Y) can be unfolded as we know that B and Y are conjunc-
tions. LOGEN will deconstruct the and/2 and empty/0 function
symbols. However, as solve(A) is marked memo, the possibly
recursive predicates of the object program are not unfolded.

— Global termination: At the point when we memo solve(A), the
variable A will be bound to a predicate call. As we have marked
the argument to solve/1 as nonvar, generalisation will just keep
the top-level predicate symbol. As there are only finitely many
predicate symbols in the object program, global termination is
ensured.

Specialising solve (dapp(X,Y,Z,R)) now gives a Jones-optimal output:

/* solve(dapp(A,B,C,D)) :- solve__0(A,B,C,D). */
/* solve(app(A,B,C)) :- solve__1(A,B,C). */

solve__0(B,C,D,E) :- solve__1(C,D,F), solve__1(B,F,E).
solve__1([1,B,B).
solve__1([BI|C],D,[BIE]) :- solve__1(C,D,E).

LOGEN will, in general, produce a specialised program that is slightly
better than the original program in the sense that it will generate code
only for those predicates that are reachable in the predicate dependency
graph [22] from the initial call. For example, for solve(app(X,Y,R))
only two clauses for app/3 will be produced, but no clause for dapp/4.

It is relatively easy to see that Jones optimality will be achieved for
any properly encoded object program and any call to the object pro-
gram. Indeed, any call of the form solve(p(t1,...,t,)) will be gener-
alised into solve(p(_,...,_)) keeping information about the predicate
being called; unfolding this will only match the clauses of p as the
call clause(X,Y) is marked unfold and all of the parsing structure
(and/2 and empty/0) will then be removed by further unfolding, leaving
only predicate calls to be memoised. These are then generalised and
specialised in the same manner.

pe-hosc_final.tex; 12/02/2007; 10:21; p.15

16 S. Barker, M. Leuschel, M. Varea

3.4.2. Rewriting Vanilla.

The more principled solution is to rewrite the vanilla interpreter, so that
the control structures and the object level atoms are clearly separated.
The attentive reader may have noticed that above we have actually
enforced that conjunctions are stored as lists, with empty/0 playing the
role of nil/0 and and/2 playing the role of ./2. The following vanilla
interpreter makes this explicit and thus properly enforces this encoding.
It is also more efficient, as it no longer attempts to find definitions of
empty and and within the clause facts.

1_solve([]).
1_solve([H|T]) :- solve_atom(H), 1_solve(T).
solve_atom(H) :- clause(H,Bdy), l_solve(Bdy).

clause(dapp(X,Y,Z,R), [app(Y,Z,YZ), app(X,YZ,R)]1).
clause(app([],R,R), [1).
clause(app([HIX],Y, [HIZ]), [app(X,Y,Z)]).

We can now annotate all calls to 1_solve as unfold, knowing that
this will only deconstruct the conjunction represented as a list. How-
ever, the call to solve_atom cannot be unfolded, as this would lead to
infinite unfolding for a recursive object program. LOGEN now produces
the following specialised program for the solve_atom(dapp(X,Y,Z,R))
query, having marked the argument to solve_atom calls as nonvar?.
solve_atom__0(B,C,D,E) :- solve_atom__1(C,D,F),

solve_atom__1(B,F,E).
solve_atom__1([],B,B).
solve_atom__1([B|C],D,[BIE]) :- solve_atom__1(C,D,E).

We have again achieved Jones optimality, which holds for any object
program and any object-level query.

3.4.3. Reflections.
We now summarise the key features that enabled us to achieve Jones
optimality:

— First, the offline approach allows us to precisely steer the spe-
cialisation process in a predictable manner: we know exactly how
the interpreter will be specialised independently of the complexity
of the object program. A problem with online techniques is that
they may work well for some object programs, but can then be

3 The predicate 1_solve does not have to be given a filter declaration as it is only
unfolded and never residualised.

pe-hosc_final.tex; 12/02/2007; 10:21; p.16

Efficient and Flexible Access Control via Logic Program Specialisation 17

“fooled” by other (more or less contrived) object programs (see
[24] and [41]). On the other hand, online techniques are capable of
removing several layers of self-interpretation in one go. An offline
approach will typically only be able to remove one layer at a time.

— Second, it was also important to have sufficiently refined annota-
tions at our disposal. Without the nonvar annotation, we would
not have been able to specialise the original vanilla self-interpreter:
we cannot mark the argument to solve as static, and marking it
as dynamic means that no specialisation will occur. Hence, con-
siderable rewriting of the interpreter would have been required if
we just had static and dynamic at our disposal.

— Third, it is important that the self-interpreter is written in such a
way that the specialiser can distinguish between conjunctions and
object level calls and can treat them differently.

It turns out that our approach bears similarity to the approach
presented by Lakhotia and Sterling in [23]. Indeed, in [23] the authors
present a very simple partial evaluator guided by user annotations,
along with the annotations required to successfully specialise simple
interpreters. However, the scheme presented in [23] only deals with the
local control of partial evaluation (completely ignoring the problem of
global control, which was at the time less well understood) and also
cannot deal with side-effects or other Prolog built-ins (such as if-then-
else).

3.5. ADDING NEGATION AND BUILT-INS

Previously, we have shown how to extend the Jones-optimality result
above to more sophisticated interpreters, e.g., to a debugging inter-
preter where speedups exceeded factors of 25 [26]. It was also shown
that LOGEN produced a Jones-optimal result for every object program
P and call C, provided that none of the predicates reachable from C' are
debugged. In other words, we pay no performance penalty if we do not
use the debugging feature of the interpreter. If we do debug predicates,
however, then we obtain an efficient version of the interpreter, where
the debugging has been woven into the object program.

In this paper, we will elaborate on another extension of the above
interpreter, where we add support for negations and built-ins. This will
pave the way for a more challenging extension of the interpreter: imple-
menting sophisticated access control strategies. For this we add clauses
to handle negation and the built-in predicates respectively, resulting in
the following extended interpreter (for simplicity we have only handled
two built-ins; the extension to more built-ins is obvious):

pe-hosc_final.tex; 12/02/2007; 10:21; p.17

18 S. Barker, M. Leuschel, M. Varea

1_solve([]).
1_solve([H|T]) :- solve_literal(H), 1l_solve(T).

solve_literal(not(H)) :- \+ solve_literal(H).
solve_literal(H) :- (user_predicate(H)->solve_atom(H);fail).
solve_literal(C) :- built_in(C).

solve_atom(H) :- my_clause(H,Bdy), 1l_solve(Bdy).

built_in(C’\="(X,Y)) :- X\=Y.

built_in(is(X,Y)) :- X is Y.

user_predicate(Call) :-
my_clause(H,_) ,functor (H,F,N),functor(Call,F,N).

We can now obtain Jones-optimal specialisation by annotating all
calls to solve_literal/1 and my_clause/2 as unfold and the call to
solve_atom/1 as memo. To be able to deal with built-ins, we need to
use the annotations call and rescall from LOGEN whose meaning is as
follows: a call annotated as call is completely evaluated; while a call
annotated as rescall is added to the residual code without modification
(for built-ins that cannot be evaluated). In our case, the calls to \=/2
and is/2 have to be marked rescall, while the calls to functor/3 have
to be marked call. As before, we have the following filter declaration:

:— filter solve_literal (nonvar).

If we now add the fact,
my_clause (not_abc (X), [not (app(_, [X]_],[a,b,c]))]),

we can specialise, e.g., solve_atom(not_abc(A)), thereby producing
the following Jones-optimal result:

/* solve_atom(not_abc(A)) :- solve_atom__1(A). */
solve_atom__0(A) :-
\+solve_atom__1([a,b,c],[Al_T,_).

/* solve_atom(app(A,B,C)) :- solve_atom__1(C,B,A). %/
solve_atom__1(A,A,[]).
solve_atom__1([B|C],A,[BID]) :- solve_atom__1(C,A,D).

Later in the paper, we will further expand this interpreter, basically
by integrating access control checks into user_predicate.

pe-hosc_final.tex; 12/02/2007; 10:21; p.18

Efficient and Flexible Access Control via Logic Program Specialisation 19

4. RBAC Policies as Logic Programs

We now move to the task of specialising access control policies. For this,
we begin by describing some key notions in logic programming that
are important in our approach. We then show how our RBAC policies
may be represented as logic programs. In Section 5, we describe how
access requests may be efficiently evaluated, with respect to our RBAC
policies.

4.1. PRELIMINARIES

We define an RBAC model and RBAC policies in the language of
(function-free) normal clause form logic [2] (i.e., the language of Datalog
with negation), with certain predicates in the alphabet ¥ of the lan-
guage having a fixed intended interpretation. As we only admit function-
free clauses, the only terms of relevance to ¥ will be constants and
variables. As stated earlier, we denote variables that appear in clauses
by using symbols that appear in upper case (at least the first character);
constants will be denoted by lower case symbols.
A normal clause is a formula of the form:*

C<—A1,...,Am,—|Bl,...,—\Bn (mZO,nZO)

The head, C, of the normal clause above is a single atom. The body of
the clause (i.e., Ai,..., Amn, 7B1,...,7By,) is a conjunction of literals.
Each A; literal (1 <4 < m) is a positive literal; each —B; literal (1 <
Jj < n) is a negative literal. In the case of a negative literal, the relevant
type of negation is negation as failure [11]. A clause with an empty
body is an assertion or a fact. A clause with a non-empty head and
a non-empty body is a rule. A relational database is a (finite) set of
facts; a normal deductive database is a (finite) set of normal clauses; a
normal deductive database that includes no negative literal is a definite
database. The set of facts in a deductive database A is referred to as
the extensional part of A (or the EDB of A) and the set of rules in A
is referred to as the intensional part of A (or the IDB of A).

The access control programs that we consider are always locally
stratified (a realistic assumption for most practical policies) and hence
have a unique perfect model [36], which can be computed in PTIME.
Having a 2-valued model theoretic semantics is important for ensuring
that authorised forms of access are unambiguously specified.

4 Observe that we assume associativity and commutativity of conjunction.

pe-hosc_final.tex; 12/02/2007; 10:21; p.19

20 S. Barker, M. Leuschel, M. Varea
4.2. RBAC PoLICIES AS LoGIC PROGRAMS

In this section, we describe a simple type of RBAC policy that could be
used by a security administrator to protect the information in deductive
databases. More specifically, the type of policy that we describe is based
on the RBACY, , model that is formally defined in [6] and which we
describe in more detail below. We only consider one type of access con-
trol policy in this paper because our principal concern is to describe the
generalities of using a meta-programming approach for access request
checking and access policy optimisation by partial evaluation. It should
be noted, however, that any of the policies from [6] may be represented
by using our meta-programming approach with minor modifications.

In RBAC in general, a user may be assigned to any number of roles;
permissions are assigned to a role r to permit those users that are
assigned to 7 to exercise the privileges on objects that are assigned to
the same r. The capability of assigning users to roles and permissions
to roles are primitive requirements of all RBAC models. The most
basic category of RBAC model, RBACE or flat RBAC [6], requires
that these types of assignment are supported. The RBAC};2 4 model
extends RBACTF to include the notion of an RBAC role hierarchy (see
below) in addition to user-role and permission-role assignments. Note
that the H in RBAC’};2 4 denotes that role hierarchies are permitted,
the 2A denotes that the RBAC’II;2 4 model is at the “second level”
in the family of RBAC models [6] and permits RBAC hierarchies of
arbitrary complexity,® and the P in RBAC§2 4 denotes that permission
assignments are admitted, but not denial assignments.

Formally, an RBAC'};2 4 program is a finite set of normal clauses
(see Section 4.1) specified with respect to a domain of discourse that
includes:

— A set U of users.

— A set O of objects.

— A set A of access privileges.
— A set R of roles.

An RBACE, , program includes a set ® of logical axioms, a set
of normal clauses that define the axioms that must be included in
every RBAC’II;2 4 program. A security administrator adds a set of ad-
ditional non-logical axioms ¥ to ® to represent application-specific
requirements. The normal clauses in ¥ U ® are described below.

5 In contrast, the RBAC,5 models only allow restricted forms of role hierarchy
to be defined.

pe-hosc_final.tex; 12/02/2007; 10:21; p.20

Efficient and Flexible Access Control via Logic Program Specialisation 21

In an RBAC’I]:,2 4 Program, a user is specified as being assigned to a
role by using definitions of a ura/2 predicate (where ura is short for
“user role assignment”). The assignment of an access privilege on an
object to a role is expressed by using definitions of a pra/3 predicate in
the RB AC’II;2 4 brogram (where pra is short for “permission role assign-
ment”). The semantics of these predicates in an arbitrary RBACY, ,
program II, where II is the pair (®, V), may be expressed thus:

— II = wra(u,r) if and only if user u € U is assigned to role r € R;

— II = pra(a,o,r) if and only if the access privilege a € A on object
o € O is assigned to the role r € R.

By separating the assignment of users to roles from the assignment
of permissions to roles it is possible for user-role and permission-role
assignments to be changed independently of each other in implementa-
tions of RBAC’};2 4 Policies. Thus, access policy maintenance is simpli-
fied relative to the discretionary access control policies that were, until
recently, used as a matter of course to help to protect the information
in databases.

In the RBACY, , model, an RBACE, , role hierarchy is defined as
a (partially) ordered (and finite) set of roles. The ordering relation is a
role seniority relation. In an RB AC'I]:,2 4 program II, a 2-place predicate
senior_to(r;,r;) is used to define the seniority ordering between pairs
of roles i.e., the role r; € R is a more senior role (or more powerful
role) than role r; € R. If r; is senior to r; then any user assigned to the
role r; has at least the permissions that users assigned to role r; have.
Role hierarchies are important for implicitly specifying the inheritance
of access to resources.

The semantics of the senior_to relation may be expressed thus:

— II = senior_to(r;, r;j) if and only if the role r; € R is senior to the
role r; € R in an RBAC§2 4 role hierarchy.

The senior_to relation may be defined as the transitive and reflex-
ive closure of an irreflexive binary relation ds (where ds is short for
“directly senior to”). The semantics of ds may be expressed, in terms
of an RBACEQA program II, thus:

— II = ds(ry,r;) iff the role 7; € R (r; # r;) is senior to the role
rj € R in an RBAC’}:,2 4 role hierarchy defined in II and there
is no role r, € R such that [ds(r;, ;) A ds(ry,r;)] holds where

ry # 1 and 1y, # ;.

pe-hosc_final.tex; 12/02/2007; 10:21; p.21

22 S. Barker, M. Leuschel, M. Varea

In RBAC’II:,2 4 brograms, an RBAC{}Q 4 Trole hierarchy is defined by
the following set of clauses (in which ‘.’ is an anonymous variable):

senior_to(R1, R1) « ds(R1,_).

senior to(R1, R1) «— ds(_, R1).

senior_to(R1, R2) < ds(R1, R2).

senior_to(R1, R2) « ds(R1, R3), senior_to(R3, R2).

The definition of senior_to assumes that the following property
holds:

Vr; € R 3rj € R [(ds(rs,ry) V ds(rj,rm)) A (1 #rj)l.

That is, there is no role r; € R in an RBAC§2 4 role hierarchy
such that r; is not related under ds to another role r; (r; # ;) i.e.,
there are no “isolated” roles in an RBAC'I?2 4 role hierarchy, and a
single role is not a RBAC]{'}2 4 role hierarchy. Although it is possible to
define multiple RBAC'II:,2 4 role hierarchies in an RBAC’I]:,2 4 brogram,
the RBAC’}{'}2 4 programs that we consider in this paper are restricted
to defining a single RBAC’[I;2 4 Tole hierarchy.

In RBAC, users activate and deactivate roles in the course of session
management. The assignment of a user u; € U to a role r; € R in a
session may be represented by using a set of active(u;, rj) facts. A user
u; appends an active/2 fact to an RBACEQA program to activate the
role r; and retracts an active(u;,r;) fact when u; no longer wishes to
be active in 7.

User-role and permission-role assignments are related via the notion
of an authorisation. An authorisation is a triple (u, a,0) that expresses
that the user u has the a access privilege on the object o. In RBACI];2 A
programs, an authorisations clause may be used to specify that a user
u; € U has the ay € A access privilege on object o; € O. In the case of
RBAC§2 4 programs, the authorisations clause is defined thus:

permitted(U, A,O) «— ura(U, R1),
active(U, R1),
senior_to(R1, R2),
pra(A, O, R2).

The rule that defines permitted is used to express that a user U
may exercise the A access privilege on object O: if U is assigned to the
role R1, U is active in R1, R1 is senior to a role R2 in an RBACfIQA
role hierarchy, and R2 has been assigned the A access privilege on O.

It follows from the discussion above that in an RBAC’II_DI2 4 brogram
II = (®,¥) the set of logical axioms ¢ includes the definitions of

pe-hosc_final.tex; 12/02/2007; 10:21; p.22

Efficient and Flexible Access Control via Logic Program Specialisation 23

senior_to and permitted whereas the set of non-logical axioms ¥ is
expressed in terms of the predicates in the set {ura,pra,ds,active}.

In the context of specialising an RBAC};Z 4 program II, we note
that the definitions of ura, pra, ds and active are part of the object
level information that is used to protect the object level database in
our approach. Moreover, the sets of clauses defining the extensions of
the ura, pra, and ds relations are static relative to the set of active
atoms in II. That is, the set of active facts will change dynamically
as users activate and deactivate roles. The aim of our approach is to
specialise RBAC’}:}2 4 programs to enable efficient access control checks
to be performed by only considering user session information expressed
via the set of active facts that is current at the time of a user’s access
control request.

5. The Access Control Meta-interpreter

5.1. THE INTERPRETER

In this section, we describe the meta-interpreter that we propose for
efficient access request evaluation on deductive databases that are pro-
tected by RBAC’I]_DI2 A programs.® It extends the meta-interpreter from
Section 3.5. The following Prolog code is part of this meta-interpreter
for RBACgQA programs. Note that solve_literal has been renamed
to holds_read and 1_solve to 1_holds read.

holds_read(User,not(Object)) :-
\+(holds_read(User,0Object)) .
holds_read(_User,Object) :- built_in(Object).

holds_read(User,Object) :-
permitted(User,read,Object),
fact(Object), call(Object).

holds_read(User,Object) :-
permitted(User,read,Object),
rule(Object,Body) ,
1_holds_read(User,Body) .

1_holds_read(_U,[]).
1_holds_read (U, [HIT]) :- holds_read(U,H),
1_holds_read(U,T).

6 Recall that we restrict our attention to a consideration of read access.

pe-hosc_final.tex; 12/02/2007; 10:21; p.23

24 S. Barker, M. Leuschel, M. Varea

built_in(’=’(X,X)).
built_in(’is’ (X,Y)) :- X is Y.

holds(U,0) :- holds_read(U,0).

Note that fact/1 and rule/2 describe the protected database: fact
simply describes all predicates that the EDB provides, while rule/2 is
an encoding of all rules (views) of the IDB. More precisely, a normal
clause of the form C' «— Aq,..., Ay, —B1,...,~ B, is represented as:

rule(C, [A1, ..., Am,not(B1),...,not(By)]).

We use the following definition of permitted, as described in Sec-
tion 4.

permitted(User,0p,0bj) :- ura(User,Role),
active(User,Role),
senior_to(Role,R2),
pra(R2,0p,0bj) .

5.2. PARTIAL EVALUATION OF THE INTERPRETER

To be able to successfully specialise this interpreter using LOGEN, we
used one additional improvement to the LOGEN system. Indeed, due
to the presence of negated calls, the nonvar annotation on its own is
no longer precise enough to capture the second argument of memoised
calls to holds_read. For example, if a call such as holds_read(ul,
not(q(a,b))) gets memoised then LOGEN would be instructed to treat
the argument to not/1 as dynamic and to thus specialise holds_read (ul,
not (X)). In other words, essential information is thrown away and we
would no longer be able to achieve Jones optimality. One solution lies
in disjunctive binding types.” More precisely, LOGEN is now capable
of handling disjunctions within the filter annotations — essentially by
searching for the first matching binding type at specialisation time.
One can also use more expressive type definitions referring to the ba-
sic argument annotations (static, dynamic, and nonvar); these are
called binding-types (rather than binding-times). In our case, we can
now provide the following filter declarations for our interpreter:

:-= type literal = (not(type(literal)) ; nonvar).
:- filter holds_read(static, type(literal)).

7 Another solution would have been to rewrite the interpreter and make sure that
holds_read was never marked as memo. This would have led to very similar results.

pe-hosc_final.tex; 12/02/2007; 10:21; p.24

Efficient and Flexible Access Control via Logic Program Specialisation 25

This means that if LOGEN has to memoise holds_read(ul,not(q(a,b)))
then the first binding-type not (type(literal)) will match the argu-
ment not (q(a,b)) and it will generalise the call into holds_read(ul,
not(q(X,Y))) rather than into holds read(ul,not(X)).

We now memoise the calls to holds_read in the first clause of
holds_read itself as well as in the second clause of 1_holds_read. All
other user predicates are marked as unfold and all calls to built-ins are
marked as rescall. The full annotation can be found in Appendix C.

As an example of our approach, consider an RBAC’I{'}2 4 program II
with the following sets of facts:

DS = {ds(rl,r2)}.
ACTIVE = {active(ul,rl), active(u2,r2)}.
URA = {ura(ul,rl),ura(ul,r2),ura(u2,r2)}.

PRA = {pra(rl,read,s(.)),pra(r2,read,p(-)),
pra(r2,read, q(-,-)),pra(rl,read, (-, -))}.

Moreover, suppose that 11 is used to protect the following database
A in which p and s are EDB predicates and q and r are IDB predicates:

fact(p(X)).

fact(s(X)).

rule(q(X,Y), [p(X),p(Y)]).
rule(r(X,Y), [a(X,Y), s(X)]).

The access request holds_read(ul,q(A,B)) issued by user ul, to
read all instances of q from A, can now be specialised by LOGEN into:

holds_read(ul,q(A,B)) :- holds_read__0(A,B).

permitted__1(B,C) :- active(ul,rl).
permitted__1(D,E) :- active(ul,r2).

permitted__4(B) :- active(ul,rl).
permitted__4(C) :- active(ul,r2).

holds_read__3(B) :- permitted__4(B), p(B).
holds_read__0(B,C) :- permitted__1(B,C),

holds_read__3(B),
holds_read__3(C).

pe-hosc_final.tex; 12/02/2007; 10:21; p.25

26 S. Barker, M. Leuschel, M. Varea

By inspection, it is possible to see that the effect of such a specialisa-
tion is to reduce a predicate like permitted, which is defined in terms
of the relatively static predicates ura, pra, ds and senior_to, to tests
on the run-time information that is generated in the course of session
management, i.e., active/2 facts.

It can also be seen that, if the specialiser were given access to the
active facts, one could obtain a specialised program that is struc-
turally almost® identical to the object database, hence achieving Jones
optimality:

holds_read(ul,q(A,B)) :- holds_read__0(A,B).

holds_read__3(B) :- p(B).

holds_read__0(B,C) :- holds_read__3(B),
holds_read__3(C).

6. Performance Measures

In this section, we give some performance measures for the meta-
programming approach that we propose for evaluating access requests
on deductive databases that are protected by using RBAC’}:,2 A Dpro-
grams. Our testing involved comparing the evaluation of access requests
on (i) non-specialised, and (ii) LOGEN specialised RBACY, , meta-
programs. We also repeated our (retrieval) access requests using direct
unprotected calls to the databases, i.e., without any access control. This
enabled us to evaluate the overhead incurred by access control.

The RBACE2 4 brograms that we use in our tests have included a
definition of the senior_to relation that represents an RBAC’I];2 4 Tole
hierarchy with 53 roles arranged as a complete lattice, and with each
node/role of outdegree 3 or indegree 3. The senior_to relation has
been materialised into a set of 312 pairs of ground binary assertions.
That is, we assume the use of a partial materialisation approach such
that only the role hierarchy is materialised (but not the authorisa-
tions). In practice, senior_to will not change frequently; as such, we
envisage senior_to being materialised to avoid the run-time costs of
recomputing senior_to each time an access request is evaluated.

We have experimented with variants of the RBAC’I]:,2 4 role hierarchy
by increasing the depth of the role lattice. The summation that follows

8 While holds_read__0 is structurally equivalent to q/2, we have an extra interface
clause for the fact p/1. It is possible to get full structural identity by slightly rewrit-
ing the interpreter and memoising on holds_read_rule rather than holds_read.
A determinate post-unfolding post-processing would also get rid of the additional
clauses for the facts.

pe-hosc_final.tex; 12/02/2007; 10:21; p.26

Efficient and Flexible Access Control via Logic Program Specialisation 27

describes the number of pairs of roles in the senior_to relation as
defined by the RBAC’E2 4 role hierarchy that we use in testing:

d—1/2
N+2 > 8+ (Ng*Psy)
=1

In the summation above, N is the total number of nodes in the role
lattice, d is the depth of the lattice, N; is the number of nodes at depth
d in the lattice, and P~ is the number of paths of length 2 or greater
from a node at depth d.

The unique junior-most role/bottom element in the RBAC’};2 4 Tole
hierarchies that we used in our initial set of tests is assigned the read
permission on all of the logical consequences of the databases that we
use in testing. Moreover, our initial set of tests is based on a single
user that is assigned to the most senior role/unique top element in the
RBACYE, , role hierarchies/complete lattices that are used in our test-
ing. Access requests are evaluated for this user. Our choice of user-role
assignment and permission-role assignments imply that our initial set
of tests are based on a worst-case scenario that involves the maximum
amount of inheritance of permissions, by the senior-most role from the
junior-most role, whenever an access request is evaluated.

The queries that we use in testing involve computing two binary
relations tcp and cycle, and a unary relation q. The tcp relation
is the transitive closure of a 2-place predicate p; the cycle relation
involves computing a transitive closure in order to determine elements
in the reflexive closure of p; the definition of q is a variant of the well-
known win program.” The tcp program was chosen for inclusion in
testing because of its practical significance; cycle was chosen because it
involves some expensive recursive processing; the q program was chosen
because it combines recursion and negation, and is a useful benchmark
test for performance studies.

The definitions of the tcp, cycle and q predicates are expressed in
our database thus:

tep(X,Y) «— p(X,Y).
tep(X,Y) — p(X,2),tep(Z,Y).

cycle(X,Y) «— p(X,Y).
cycle(X,Y) — cycle(X,Z),p(Z,Y).
 The win program describes a two-player game in which a player wins if his or

her opponent has no move to make. The formalisation of this two-person game may
be expressed by the clause: win(X) «— move(X,Y), ~win(Y).

pe-hosc_final.tex; 12/02/2007; 10:21; p.27

28 S. Barker, M. Leuschel, M. Varea

q(X) = p(X,Y),=q(Y).

The 2-place p predicate is defined by a set of 2495 facts. A total of
499 p facts are used to represent the chain:

plai, az),plaz, as), . .., p(ases, as99), p(aagy, asoo)-

An additional 1996 p facts are used to achieve a fan-out factor of 5.
That is, for each p fact with the first argument a;, where 1 < ¢ < 499,
there are four p facts with the second argument of p equal to the value
b;, where 1 < j < 4. For example, p(a1,b1), p(ai, b2), p(a1,b3), p(ai, bs).
For the cycle program, at the n'* call to cycle, a chain of (n — 1)
elements in the transitive closure of p is computed, and hence the goal
clause p(an,an—1) is evaluated. An additional fact p(asoo,a1) is added
to the 2495 p facts used with tcp to represent the end of the cycle.

The successful tcp(ai,asop) query that we use in our testing in-
volves computing a 500 element chain starting from the element ay
and ending with the element asgg. To evaluate the tcp query by us-
ing SLD-resolution,!? a search space comprising 499 SLD-trees with
root <« tep(an,asp), where 1 < n < 499, was generated. Each of
these 499 SLD-trees spawns 5 subtrees; 4 of which fail, and one that
succeeds. The four failing cases have a b; value (1 < j < 4) as the
second argument of a p fact; the succeeding subtree terminates with
an answer clause of the form p(as,a;) where t = s+ 1, 1 < s < 499
and 2 < t < 500. The evaluation of the cycle(a;,a;) query involves
computing every chain from a; to a, (2 < w < 500) in the transitive
closure of p, until p(aspo,a1) succeeds and hence p(aj,a;) succeeds.
The failing query in our suite of tests (tcp(ai,asp1)) is an attempt to
compute a 501 element chain that terminates at the element asg;. The
successful g(a;) query involves generating 499 failing SLDNF-trees for
the 499 evaluations of the —¢(c;,) subgoal, where 1 < m < 499. The
one successful SLDNF-derivation is generated from the ground clause:
q(a1) < r(a1, c500), ~q(cs00)-

The results of the testing of our example queries (with the 53 role
RBAC’II_JI2 4 hierarchy that is materialised as 312 senior_to facts) are
summarised in Table I (for the non-specialised case), and Tables II
and IIT (for the specialised case). The queries denoted by Q;, 1 < i < 4,
in these tables have the following meanings:

— @ is the successful tep(ar,aso0) query;

10 Our description here assumes the use of SLD-resolution, but naturally extends
to SLG-resolution as implemented in XSB.

pe-hosc_final.tex; 12/02/2007; 10:21; p.28

Efficient and Flexible Access Control via Logic Program Specialisation 29
— Q2 is the failed tep(ai, aso1) query;
— (@3 is the successful cycle(X,Y) query (all 145,850 solutions);
— @y is the successful ¢(X) query (all 1,170 solutions).

The query times are expressed in seconds, and all results are aver-
aged over 10 runs. The time LOGEN needed to generate a specialised
specialiser from the interpreter!! was 0.050s. The prior binding-time
analysis was performed (once and for all) by hand using LOGEN’s graph-
ical interface that allows easy annotation and provides colouring feed-
back on static and dynamic parts.'? Timings were obtained on a Power-
book G4 1 GHz, 1GB SDRAM, with SICStus Prolog 3.11.0 and Mac OS
X 10.3.2. Run times for XSB were obtained on the same machine using
XSB Prolog 2.6. In our experiments, we make use of XSB’s distinc-
tive feature: it terminates for both recursive and non-recursive Datalog
programs. This mechanism is known as tabling in XSB Prolog [37], and
allows XSB Prolog to be used as a deductive database. This allows,
for instance, the evaluation of query @3, whose evaluation does not
terminate otherwise.

Table I. Average retrieval times for the non-specialised
case.

Query With, Without Overhead
RBACY,4 | RBACY 4
Q1 (SICStus) 0.135 s 0.003 s 0.132 s
Q1 (XSB) 0.100 s 0.000 s 0.100 s
Q2 (SICStus) 1.372 s 0.004 s 1.368 s
Q2 (XSB) 0.100 s 0.000 s 0.100 s
Qs (XSB) 1.460 s 1.080 s 0.380 s
Q4 (SICStus) 9.64 s 0.060 s 9.580 s
Q4 (XSB) 0.109 s 0.010 s 0.099 s

Table I shows how much overhead is introduced by the access control

policy. For example, query @3, which takes 1.08 seconds to execute,

1 10GEN uses the cogen approach to specialisation and does not specialise anno-
tated programs directly: it first generates a specialised specialiser from the annotated
program (i.e., performing the second Futamura projection [14]). This has to be done
only once for the entire experimentation.

12 Tt is acceptable to perform the BTA by hand, as the annotation has to be
generated only once and it is independent of the database as well as the access
control policy.

pe-hosc_final.tex; 12/02/2007; 10:21; p.29

30 S. Barker, M. Leuschel, M. Varea

requires an extra 0.38 seconds when access control is performed. Ob-
serve that the entry 0.000s means that the run time was too small
to measure. There is no entry for SICStus for Q)3 as, due to the lack
of tabling, the query does not terminate. Our aim is to minimise the
overhead introduced by the RBAC’[I;2 4 policy. By specialisation of the
meta-interpreter, we considerably reduce this overhead, as illustrated
in Table II. It can be observed that, after applying the LOGEN tool, the
average retrieval time with access control (not counting specialisation
time) is improved by a factor of up to 42.88. In all cases, the retrieval
time after specialisation falls between the average times of the two
previous approaches, i.e., with and without access control.

Table II. Timings (with SICStus) for retrieval with access control
after normal and after aggressive specialisation.

Query | Specialisation Average Speedup | Owverhead
Time Retrieval Time | Factor | of RBAC
Q1 0.01 s 0.007 s 19.8 0.004 s
Q2 0.01 s 0.032 s 42.88 0.028 s
Q4 0.01 s 0.950 s 10.15 0.890 s
Q, 0.01 s 0.008 s 45 0.000 s
Q4 0.01 s 0.004 s 343 0.000 s
Q4 0.01 s 0.060 s 120.5 0.000 s

There is, of course, a penalty introduced by this approach: the
specialisation time, i.e., the time it takes logen to (re-)generate a spe-
cialised version of the meta-interpreter with an RBAC’E2 4 policy. This
is necessary whenever the policy changes or when other static data
used during the specialisation changes. However, Table II shows that
adding together the average run time and the specialisation time does
not exceed the original run times with RBAC§2 4- By adjusting the
annotations of the interpreter (i.e., marking more calls as unfoldable),
a more aggressive specialisation can be obtained. This is shown in the
lower half of Table II where @ is the same query as Q;, but involves
unfolding the call to the senior_to clause (which is likely to remain
unchanged for a long time). As can be seen, the overhead compared to
evaluation without access control has been reduced to zero.

Table IIT shows the results when using XSB Prolog with tabling. It
can be observed that, for the more aggressive criteria, the overhead is
again much reduced (even though not quite reaching zero as above).
For query @3, the specialised interpreter (see Appendix A) is almost

pe-hosc_final.tex; 12/02/2007; 10:21; p.30

Efficient and Flexible Access Control via Logic Program Specialisation 31

Table ITII. Timings (with XSB and tabling) for re-
trieval with access control after normal and after
aggressive specialisation.

Query | Specialisation Average Speedup
Time Run-Time
Q1 0.010 s 0.026 s 3.85
Q- 0.010 s 0.02} s 4.17
Q3 0.010 s 1.220 s 1.20
Q4 0.010 s 0.016 s 6.81
! 0.010 s 0.010 s 10
5 0.010 s 0.008 s 12.5
A 0.010 s 1.130 s 1.29
/ 0.010 s 0.013 s 8.38

identical to the database without access control;'? i.e., we have achieved
Jones optimality. The only drawback of the aggressive specialisation is
that each time senior_to changes there is an overhead of 10ms for
specialisation (as well as the time needed to load the new specialised
interpreter, which was around 10ms in our experiments). However, as
senior_to will not change very often in practice, we are not paying a
high price in terms of access control flexibility.

So far, the testing that we have described has been based on the
scenario where the unique senior-most user inherits all access privileges
on all objects (i.e., logical consequences) from the unique junior-most
role in the RBAC'II;2 4 role hierarchy. In this case, it is “easy” for LOGEN
to specialise with impressive speedups. In practice, however, access
request evaluation will often involve significantly less permission in-
heritance than the maximal inheritance scenario that we have hitherto
considered. We have therefore conducted tests for the case that is the
diametrical opposite of maximal inheritance: the case of a user with
zero inheritance of permissions i.e., a user assigned to and active in
the junior-most element of our example RBAC’E2 4 Trole hierarchy. The
results of our testing in the zero inheritance case are given in Table IV.

In the zero-inheritance scenario, far fewer computations need to be
pre-computed by the partial evaluator. The results in this case confirm
what we expected: both in SICStus and in XSB Prolog, the speedups
are less impressive than in the cases where multiple permission inheri-

13 We believe the fact that our specialised interpreter runs slightly slower is
probably due to caching issues.

pe-hosc_final.tex; 12/02/2007; 10:21; p.31

32 S. Barker, M. Leuschel, M. Varea

Table IV. Retrieval times for the zero inheritance case.

‘ Query ‘ Non-specialised | Specialised | Speedup
Q1 (SICStus) 0.060 s 0.010 s 6
Q1 (XSB) 0.012 s 0.010 s 1.2
Q2 (SICStus) 0.180 s 0.020 s 9
Q2 (XSB) 0.033 s 0.008 s 4.125
Qs (XSB) 2.36 s 0.000 s “o0”
Q4 (SICStus) 1.290 s 0.130 s 9.92
Qs (XSB) 0.190 s 0.110 s 1.72

tance applies. Again, query Q)3 could only be evaluated in XSB Prolog
due to termination issues.

We have also briefly considered an alternative Prolog system: Ciao
Prolog. Timings for Ciao Prolog were obtained using version 1.11 (patch
164) on a Powermac G5 Dual 2.5 GHz, 4.5GB of RAM (this machine
is faster than the one for SICStus and XSB; for example the query
(4 runs in 3.4 s rather than 9.64 s on the Powermac G5 Dual). The
results of our experiments in this case are summarised in Table V. It
can be noted that the speedups obtained exceed a factor of 500 for
aggressive specialisation. This is to be explained by the fact that the
current version of Ciao Prolog has a higher overhead for meta-calls
than SICStus or XSB, due to its tighter module system. That is, the
interpretation overhead is higher, thus allowing us to achieve higher
speedups.

Finally, we performed tests for an average-case scenario. For that,
we considered a user u,, assigned to and active in role ro5. That is, we
considered a user assigned to a role placed “half-way” up the 53 role
RBAC’II_DI2 4 hierarchy (where roles are in the range rq...7s3, and 7 is
the junior-most role and r53 is the senior-most role). This test involved
uy requesting the retrieval of a fact. In practice, access control might be
most frequently used to check permissions for simple fact queries on a
database. For the average-case scenario, we tested both specialised and
non-specialised versions of the RBAC};z 4 interpreter with the following

query Qs:

— @5 is the successful p(a499, as00) query (access to a single fact) run
10000 times.

Table VI shows the timing results for u,, requesting to know whether
p(aq99, asoo) is a logical consequence of the database. The query had to

pe-hosc_final.tex; 12/02/2007; 10:21; p.32

Efficient and Flexible Access Control via Logic Program Specialisation 33

Table V. Retrieval times (running in Ciao) for the non-specialised
and specialised cases.

Query With Without Overhead
RBACE,, | RBACE,,
Q1 (Ciao) 1.530 s 0.003 s 1.527 s
Q2 (Ciao) | 4490 s 0.013 s 4477 s
Query Specialisation | Average Specialised | Speedup
Time Run-Time
Q1 (Ciao) 0.010 s 0.040 s 38.25
Q2 (Ciao) 0.010 s 0.160 s 28.06
Q' (Ciao) 0.010 s 0.008 s 510
Qb (Ciao) 0.010 s 0.010 s 449

be run 10000 times due to the very low retrieval time when accessing
single facts, even in the non-specialised version.

Table VI. Retrieval times for the average case scenario.

‘ Query ‘ Non-specialised ‘ Specialised ‘ Speedup ‘
Qs (SICStus) 0.580 s 0.130 s 446
Qs (XSB) 0.121 s 0.031 s 3.9

7. Conclusions and Further Work

We have described a partial evaluation approach for specialising access
control checking on deductive databases. Our approach uses the LO-
GEN system to specialise]-BBAC'I];2 4 programs. To achieve our results
we have first shown how to achieve Jones optimality for the classical
vanilla self-interpreter, using the new binding type nonvar. The results
of our experiments, using the LOGEN system, have revealed that pro-
gram specialisation produces significant improvements in access request
evaluation times on deductive databases protected by RBAC’I?2 A Pro-
grams. Our approach makes it possible to efficiently incorporate access
control checks for deductive databases, incurring little overhead. In
fact, in some cases it was possible to evaluate access requests on de-

pe-hosc_final.tex; 12/02/2007; 10:21; p.33

34 S. Barker, M. Leuschel, M. Varea

ductive databases as efficiently as evaluating the same requests without
processing access control information.

There are a number of additional issues to investigate in future work.
As far as the specialisation technology is concerned, a challenging task
is to obtain the annotations for our meta-interpreter automatically by
an improved binding-time analysis. For the access control application,
we intend to investigate the possibility of extending our approach to
distributed environments where entities that request access to resources
may not be known to enterprises with resources to protect, decisions
on access may need to be delegated to third-parties (e.g., in the case
where the information about the identity or attributes of requesters
may be required), and the notion of a job function, which is central
in RBAC, may not apply (as requesters for access to an enterprise’s
resources may have no connection with the enterprise). We also intend
to extend our work to consider the processing of more general forms of
policy information (e.g., business-rule specifications) and to apply our
approach to emerging access control models for controlling access to
Web resources (see, for example, [4]).

Acknowledgements

The authors would like to thank Annie Liu and the anonymous referees
of PEPM’04 for their very helpful comments on a previous version of
this paper. We are also grateful to Julia Lawall, Peter Sestoft, and
the anonymous referees of Higher Order and Symbolic Computation,
for their careful feedback and useful suggestions, and to Stephen-John
Craig for helping out with the experiments in LOGEN.

References

1. K. R. Apt and F. Turini. Meta-logics and Logic Programming. MIT Press,
1995.

2. C. Baral and M. Gelfond. Logic programming and knowledge representation.
JLP, 19/20:73-148, 1994.

3. S. Barker. Protecting deductive databases from unauthorized retrieval and
update requests. Journal of Data and Knowledge Engineering, 23(3):231-285,
2002.

4. S. Barker. Web usage control in RSCLP. In Proc. 18th IFIP WG Conf. on
Database Security, 2004.

5. S. Barker, M. Leuschel, and M. Varea. Efficient and flexible access control via
logic program specialisation. In PEPM ’04: Proceedings of the 2004 ACM
SIGPLAN Symposium on Partial Fvaluation and Semantics-based Program
Manipulation, pages 190-199, New York, NY, USA, 2004. ACM Press.

pe-hosc_final.tex; 12/02/2007; 10:21; p.34

6.

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Efficient and Flexible Access Control via Logic Program Specialisation 35

S. Barker and P. Stuckey. Flexible access control policy specification with
constraint logic programming. ACM TISSEC, 6(4):501-546, 2003.

E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control model
supporting periodicity constraints and temporal reasoning. ACM TODS,
23(3):231-285, 1998.

E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A system to specify and
manage multipolicy access control models. In Proc. IEEE 3rd International
Workshop on Policies for Distributed Systems and Networks (POLICY 2002),
2002.

A. Bondorf and J. Palsberg. Generating action compilers by partial evaluation.
Journal of Functional Programming, 6(2), 1996.

A. Briney. Information security 2000. Information Security, pages 40—68, 2000.
K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293—-322. Plenum, 1978.

C. Date. An Introduction to Database Systems. Addison-Wesley, 2003.

D. Ferraiolo, J. Cugini, and R. Kuhn. Role-based access control (RBAC):
Features and motivations. In Proc. of the 11th Annual Computer Security
Applications Conf., pages 241-248, 1995.

Y. Futamura. Partial evaluation of computation process — an approach to a
compiler-compiler. Higher-Order and Symbolic Computation, 12(4):381-391,
1999. Reprinted from Systems - Computers - Controls 2(5), 1971, with a
foreword.

J. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88-98. ACM Press, 1993.

J. Gallagher and M. Bruynooghe. Some low-level transformations for logic
programs. In M. Bruynooghe, editor, Proceedings of Meta90 Workshop on
Meta Programming in Logic, pages 229-244, Leuven, Belgium, 1990.

B. Grosof and T. Poon. Representing agent contracts with exceptions using
XML rules, ontologies and process descriptions. In WWW 20083, pages 340-349,
2003.

P. Hill and J. Gallagher. Meta-programming in logic programming. In D. M.
Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Ar-
tificial Intelligence and Logic Programming, volume 5, pages 421-497. Oxford
Science Publications, Oxford University Press, 1998.

S. Jajodia, P. Samarati, M. Sapino, and V. Subrahmanian. Flexible support
for multiple access control policies. ACM TODS, 26(2):214-260, 2001.

N. D. Jones. Partial evaluation, self-application and types. In M. S. Paterson,
editor, Automata, Languages and Programming, LNCS 443, pages 639-659.
Springer-Verlag, 1990.

N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Fvaluation and Automatic
Program Generation. Prentice Hall, 1993.

K. Kunen. Signed data dependencies in logic programs. J. Log. Program.,
7(3):231-245, 1989.

A. Lakhotia and L. Sterling. How to control unfolding when specializing
interpreters. New Generation Computing, 8:61-70, 1990.

M. Leuschel. Homeomorphic embedding for online termination of symbolic
methods. In T. A. Mogensen, D. Schmidt, and I. H. Sudborough, editors, The
Essence of Computation - Essays dedicated to Neil Jones, LNCS 2756, pages
379-403. Springer-Verlag, 2002.

pe-hosc_final.tex; 12/02/2007; 10:21; p.35

36

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

S. Barker, M. Leuschel, M. Varea

M. Leuschel and M. Bruynooghe. Logic program specialisation through partial
deduction: Control issues. Theory and Practice of Logic Programming, 2(4 &
5):461-515, July & September 2002.

M. Leuschel, S. Craig, M. Bruynooghe, and W. Vanhoof. Specializing inter-
preters using offline partial deduction. In M. Bruynooghe and K.-K. Lau,
editors, Program Development in Computational Logic, LNCS 3049, pages
341-376. Springer-Verlag, 2004.

M. Leuschel, J. Jgrgensen, W. VanHoof, and M. Bruynooghe. Offline speciali-
sation in Prolog using a hand-written compiler generator. TPLP, 4(1):139-191,
2004.

M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and
polyvariance in partial deduction of normal logic programs. ACM Transactions
on Programming Languages and Systems, 20(1):208-258, January 1998.

M. Leuschel and D. D. Schreye. Creating specialised integrity checks through
partial evaluation of meta-interpreters. JLP, 36(1):149-193, 1998.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

H. Makholm. On Jones-optimal specialization for strongly typed languages.
In W. Taha, editor, Semantics, Applications, and Implementation of Program
Generation, LNCS 1924, pages 129-148. Springer-Verlag, 2000.

K. Marriott and P. Stuckey. Programming with Constraints: an Introduction.
MIT Press, 1998.

B. Martens. On the Semantics of Meta-Programming and the Control of Partial
Deduction in Logic Programming. PhD thesis, K.U. Leuven, February 1994.
B. Martens and J. Gallagher. Ensuring global termination of partial deduc-
tion while allowing flexible polyvariance. In L. Sterling, editor, Proceedings
ICLP’95, pages 597-613, Kanagawa, Japan, June 1995. MIT Press.

NIST. The economic impact of role-based access control, 2002. NIST Planning
Report 02-01.

T. Przymusinski. On the declarative semantics of deductive databases and
logic programming. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 193-216. Morgan-Kaufmann, 1988.

K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database
engine. In Proceedings of the ACM SIGMOD International Conference on
the Management of Data, pages 442—-453, Minneapolis, Minnesota, May 1994.
ACM.

D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New
Generation Computing, 12(1):7-51, 1993.

R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access
control: Towards a unified standard. In Proc. 4th ACM Workshop on Role-
Based Access Control, pages 4761, 2000.

SETA. A marketing survey of civil federal government organizations to
determine the need for rbac security product, 1996. SETA Corporation.

W. Vanhoof and B. Martens. To parse or not to parse. In N. Fuchs, editor, Logic
Program Synthesis and Transformation. Proceedings of LOPSTR’97, LNCS
1463, pages 322-342, Leuven, Belgium, July 1997.

pe-hosc_final.tex; 12/02/2007; 10:21; p.36

Efficient and Flexible Access Control via Logic Program Specialisation 37

Appendix
A. Specialised interpreter for ()3

A series of tests are undertaken in Section 6, showing the efficiency of
RBAC§2 4 pbrograms after specialising our interpreter using LOGEN. In
this section, we provide the actual code obtained from the specialiser,
for both aggressive and non-aggressive specialisation. Annotating the
senior_to clause of permitted/3 as a rescall, i.e., adding it to the
residual code so that it is not evaluated in the specialisation process
leads to the non-aggressive approach shown below:

bench__0 :-
ensure_loaded(database_cycle),
abolish_all_tables, cputime(A),
b2__1,
cputime(B), C is B-A, print(C), nl.
b2__1 :-
seniorto(rl,r53),
holds_read_rule__2(_,_), fail.
b2__1.
/* holds_read_rule(steve,cycle(A,B)) :-
holds_read_rule__2(B,A). */
holds_read_rule__2(B,A) :-
seniorto(r1,r53),
p(A,B).
holds_read_rule__2(B,A) :-
seniorto(r1,r53),
holds_read_rule__2(C,A),
seniorto(ril,r53),
p(C,B).

By considering the senior_to clause as unfold, i.e., being computed
in the specialisation, the resulting program may be more efficient, at
the expense of having to re-specialise each time a parameter to this
clause changes. This slightly more aggressive result is shown as follows
(where bench__0 stays as before):

b2__1 :-
holds_read_rule__2(_,_), fail.
b2__1.

pe-hosc_final.tex; 12/02/2007; 10:21; p.37

38 S. Barker, M. Leuschel, M. Varea

holds_read_rule__2(B,A) :- p(A,B).
holds_read_rule__2(B,A) :-
holds_read_rule__2(C,A), p(C,B).

Observe that holds_read rule__2 is isomorphic to the cycle pred-
icate, hence Jones-optimality [20, 21, 31, 26] has been achieved.

B. The Full Interpreter

Below is the full code of the interpreter, including a predicate bench
used for benchmarking our query 3. The predicates for queries Q1,
@2, and Q4 are very similar. The code below is intended for XSB
Prolog, minor modifications were done for SICStus (e.g., replacing
cputime/1 by statistics/2).

ura(steve,rl).
active(steve,rl).

pra(r53,read,p(_,_)).
pra(r53,read,cycle(_,_)).
pra(r53,read,tcp(_,_)).
pra(r53,read,q(_)).

:— table holds_read/2.

holds_read(User,not(Object)) :-
\+(holds_read(User,Object)) .

holds_read(_User,Object) :- built_in(Object).

holds_read(User,Object) :-
permitted(User,read,Object), fact(Object),
call(Object).

holds_read(User,Object) :-
permitted(User,read,Object), derived(Object),
holds_read_rule(User,Object) .

holds_read_rule(User,Object) :- rule(Object,Body),
1_holds_read(User,Body) .

1_holds_read(_U,[]).

pe-hosc_final.tex; 12/02/2007; 10:21; p.38

Efficient and Flexible Access Control via Logic Program Specialisation 39

1_holds_read(U, [HIT]) :-
holds_read(U,H),
1_holds_read(U,T).

built_in(’=’(X,X)).
built_in(’is’ (X,Y)) :- X is Y.

holds(U,0) :- holds_read(U,0).

permitted(User,0Op,0bj) :-
ura(User,Role), active(User,Role),
seniorto(Role,R2), pra(R2,0p,0bj).

fact(p(_X,_Y)).
derived(cycle(_,_)).

derived(tcp(_,_)).
derived(q(L)).

rule(cycle(X1,X2), [p(X1,X2)]1).
rule(cycle(X1,X2), [cycle(X1,X3),p(X3,X2)]1).
rule(tcp(X1,X2), [p(X1,X2)]1).
rule(tcp(X1,X2), [p(X1,X3),tcp(X3,X2)]1).
rule(q(X), [p(X,Y),not(q(Y))]1).

% For benchmarking query Q3:
b2 :- holds_read(steve,cycle(_,_)),fail.

b2.

bench :- ensure_loaded(’database_cycle’),
abolish_all_tables, cputime(T1),
b2,

cputime(T2), R is T2-T1, print(R),nl.

C. The Annotated Interpreter

The annotation file, as used in the experiments (aggressive settings),
is presented here. The file is also provided as one of the ready-made
examples of LOGEN’s web interface, which also enables users to view
and edit this file in a friendly fashion.!

Note that the use of the nonvar annotation was essential to obtain
good specialisation results (see also [26]). Also observe that a custom

!4 See http://stups.cs.uni-duesseldorf.de/ pe/weblogen.

pe-hosc_final.tex; 12/02/2007; 10:21; p.39

40 S. Barker, M. Leuschel, M. Varea

type literal was added so as to avoid throwing away information
within a negated call.

logen(ura, ura(steve,rl)).
logen(active, active(steve,rl)).
logen(pra, pra(r53,read,p(_,_))).
logen(pra, pra(r53,read,cycle(_,_))).
logen(pra, pra(rb3,read,tcp(_,_))).
logen(pra, pra(r53,read,q(_))).
logen(holds_read, holds_read(A,not(B))) :-
resnot (logen (memo,holds_read(A,B))).
logen(holds_read, holds_read(_,A)) :-
logen(unfold, built_in(A)).
logen(holds_read, holds_read(A,B)) :-
logen(unfold, permitted(A,read,B)),
logen(unfold, fact(B)),
logen(rescall, call(B)).
logen(holds_read, holds_read(A,B)) :-
logen(unfold, permitted(A,read,B)),
logen(unfold, derived(B)),
logen(unfold, holds_read_rule(A,B)).
logen(holds_read_rule, holds_read_rule(A,B)) :-
logen(unfold, rule(B,C)),
logen(unfold, 1_holds_read(A,C)).
logen(1l_holds_read, 1_holds_read(_,[])).
logen(1l_holds_read, 1_holds_read(A,[B|C])) :-
logen(memo, holds_read(A,B)),
logen(unfold, 1_holds_read(A,C)).
logen(built_in, built_in(A=A)).
logen(built_in, built_in(A is B)) :-
logen(rescall, A is B).
logen(holds, holds(A,B)) :-
logen(unfold, holds_read(A,B)).
logen(permitted, permitted(A,B,C)) :-
logen(unfold, ura(A,D)),
logen(unfold, active(A,D)),
logen(unfold, seniorto(D,E)),
logen(unfold, pra(E,B,C)).
logen(fact, fact(p(_,_))).
logen(derived, derived(cycle(_,_))).
logen(derived, derived(tcp(_,_))).
logen(derived, derived(q(_))).

pe-hosc_final.tex; 12/02/2007; 10:21; p.40

Efficient and Flexible Access Control via Logic Program Specialisation 41

logen(rule, rule(cycle(A,B),[p(A,B)1)).
logen(rule, rule(cycle(A,B), [cycle(A,C),p(C,B)1)).
logen(rule, rule(tcp(A,B),[p(A,B)]1)).

logen(rule, rule(tcp(A,B),[p(A,C),tcp(C,B)1)).
logen(rule, rule(q(A), [p(A,B),not(q(B))1)).

logen(b2, b2) :-
logen(memo, holds_read(steve,cycle(_,_))),
logen(rescall, fail).
logen(b2, b2).
logen(bench, bench) :-
logen(rescall, ensure_loaded(database_cycle)),
logen(rescall, abolish_all_tables),
logen(rescall, cputime(A)),
logen(unfold, b2),
logen(rescall, cputime(B)),
logen(rescall, C is B-A),
logen(rescall, print(C)),
logen(rescall, nl).

:-= type literal = (not(type(literal)) ; nonvar).
:— filter holds_read(static, type(literal)).

pe-hosc_final.tex; 12/02/2007; 10:21; p.41

pe-hosc_final.tex; 12/02/2007; 10:21; p.42

