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Abstract. StAC is a business specification language that has been de-
veloped as part of a partnership program between IBM UK Labs. and
the University of Southampton. It is highly desirable for Business spec-
ification languages like StAC to have a way to explore the correctness
of specifications. We provide some details about how XTL can provide
model checking capabilities for StAC and why it proved to be more suc-
cessful than SPIN and STeP in that sense.

1 Introduction

Because of their complexity, business transactions are prone to failure in many
ways. For example, a request that normally is satisfied under certain conditions
can be unexpectedly rejected. That can be experienced in daily life when the
book we requested on the web is not anymore in stock, when our trip is cancelled,
or when an appointment we scheduled cannot be made effective.

However systems are normally built considering the normal and expected
pattern of behavior. A way to deal with this conflict is to supplement the usual
pattern of behavior with mechanisms which allow the system to react more ap-
propriately when an unexpected/undesired event occurs. One such mechanism
proposed in the literature is to associate a compensation action to each action,
which will repair or handle in an appropriate way abnormal situations. Offer-
ing alternatives and rescheduling can be ways to compensate previous actions.
Recently, IBM, Microsoft, and BEA have been developing a business process
language called BPEL [CGK™] which provides a compensation notion. Because
this language lacks a formal semantics we focus instead on StAC (see [BF00],
[CGV102], and [Fer03]), another business process modelling language which for-
mally handles compensation.

Previous attempts to allow automatic verification of StAC specifications in-
volved the exploration of well-known tools like SPIN [Hol97] and STteP [BBC*99].
The first option led us to consider a translation from the StAC specification
language to Promela, the input language for SPIN. For the second option we
considered instead a translation to SPL, the input language for STeP. We faced
several problems [AB02] preventing us from obtaining an easy to use verification
framework by using any of these tools. This paper gives details about a more



succesful experience by using XTL (see [LMO00] and [LMO02]) a model checker
that takes a more high level input language than SPIN and STeP and provides
model checking facilities for properties written in CTL [CESS86].

After an introduction to StAC (section 2) we provide some brief explanation
about why model checking StAC with SPIN and STeP (section 3). Then (sec-
tion 4) we introduce XTL and provide samples of properties that can be model
checked by using XTL. The conclusions (section 5) will summarize some of the
lessons learnt during all the three attempts to verify StAC specifications.

2 StAC

StAC (Structured Activity Compensation) is a language that, in addition to
CSP-like operators [Hoa85], offers a set of operators to handle the notion of
compensation. In StAC it is possible to associate to an action a set of compen-
sation actions providing a way to repair an undesired situation. Compensations
are expressed as pairs with the form P+ (@, meaning that () is the compensation
planned in case that the effect of P needs to be compensated at a later stage.
As the system evolves, compensations are remembered. If all the activities are
successfully accomplished then the operator accept, M , releases the compensa-
tions. If any activity fails then the operator reverse, X , orders the system to
apply all the recorded compensations for the current scope. In some contexts the
failure to accomplish an activity can be so critical that demands the abortion of
a process, that is the role of the early termination operator. Both compensation
and termination operators are bounded to a scope of application.

DEFINITION 1 Let A represent an activity, b a boolean condition, P and @ two
generic processes,  a variable and X a set of values. Then, we can define as
follows the set of well formed formulas in StAC:

Process ::= A (activity label)

0 skip) b— P (condition)

rec(P) (recursion) P;Q (sequence)

P||Q (parallel) ||z € X.P, (generalised parallel)
Jz € X.

©) early termination) | {P} termination scoping)

compensation scoping)
accept) A

| ( \
| ( \
| ( \ Py (
| P[lQ (choice) \ P, (generalised choice)
| ( \ (
| P+ Q@ (compensation pair) | [P (
| X (reverse) | M (

In the examples below, processes written in boldface are intended to be basic
activities. Each StAC specification is coupled with a B machine [Abr96] describ-
ing the state of the system and its basic activities. Basically a B machine is
composed by a declaration of sets, variables, invariants, initialisation and op-
erations over those structures. Each StAC activity in a specification will have
associated an operation in the corresponding B machine explaining how that ac-
tivity is implemented in logical terms. We address the reader who want a more
in-detail account of StAC to [CGVT02] and [BF00].



ExAaMPLE 1 First we consider the specification of an order fulfillment scenario
presented in [CGV102]. The whole process can be described throughout the fol-
lowing steps: a) an order is accepted from a customer; b) the warehouse prepares
the order for shipment, including booking a courier for delivery; c) simultane-
ously with step (b) there is a credit check to verify if the customer can pay the
order; d) if the check is successful the order completes, otherwise it is stopped and
the compensation mechanism is started. This can, for example, send a request
for unpacking the ordered items. In this case we consider three items.

abc = (acceptOrder -+ restockOrder);
fulfillOrder;
((okFulfillOrder — M) [[(notokFulfillOrder — X ))

fulfillOrder = {wareHousePackaging ||
(creditCheck ;
((notokCreditCheck— ©)[| (0kCreditCheck — 0))) }

wareHousePackaging = (bookCourier = cancelCourier) || packOrder
packOrder = || i€I .(packItem(i)+ unpackltem(i)) A

EXAMPLE 2 Lets consider the specification of an E-Bookstore, presented in
[BF00]. Here we consider a finite set C' of registered customers. Arrive cre-
ates and initialises the client information, that includes setting the appropriate
budget. chooseBooks represents the selection of books by the customer. Next,
the customer is offered either to quit the transaction or to proceed by buying
the chosen items. In the first option the information is cleared just after the com-
pensation is applied (returning the books to the shelf), and in the second case it
will be cleared after accepting the operation. The recursive process chooseBooks,
allows the customer to choose as many books as s/he wants. For each book the
customer chooses, it is checked if that lead to exceed her/his budget. If so, then
the reverse operator causes the book to be returned to the shelf. Pay has the
same effect in case checking the credit card is not successful.

Bookstore = || ceC . client(c)

client(c) = arrive(c); chooseBooks(c);
((quit(c) ; ® ) [ (pay(c); M)); exit(c)

chooseBooks(c) = checkout(c) [] (chooseBook(c); chooseBooks(c))

chooseBook(c) = [[b€B . [(addBook(c,b) + returnBook(c,b)) ;
overBudget(c) — X ]

pay(c) = processCard(c) ; accepted(c) — X A



3 Previous Attempts

We provide here a brief account of the different problems we faced in our previous
attempts to provide verification facilities for StAC. The reader can see all the
details in [AB02].

3.1 Translating StAC to SPIN

Model checking can be used to check whether the specification of a system is
consistent with a logical property. A particularly successful implementation of
this approach is SPIN, [Hol97] that has been widely accepted as a tool for ver-
ification of software and hardware specifications. SPIN offers the possibility to
perform simulations and verifications. Through these two modalities the verifier
can detect absence of deadlocks and unexecutable code, to check correctness of
system invariants, to find non-progress executions cycles and to verify correctness
properties expressed in propositional linear temporal logic formulae. Promela is
the specification language of SPIN. It is a C-like language enriched with a set of
primitives allowing the creation and synchronization of processes, including the
possibility to use both synchronous and asynchronous communication channels.

We refer the reader to the extensive literature about the subject as well
as the documentation of the system at Bell Labs web site for more details:
http://netlib.bell-labs.com/netlib/spin/whatispin.html We assume
some degree of familiarity with this framework from now on.

Translating StAC specifications to Promela proved to be a non-trivial matter
and, when possible, demanded much more complex data and control structures
to recreate StAC distinctive features.

Coordinating Nested Procedures in Promela to mimic StAC procedure-like
structure is one of the problems that can be solved but at the cost of introducing
some coordinating mechanisms that will cause computational extra cost. For
example, sequential calls to non-primitive processes in StAC behave as calls
to procedures in programming languages. For example, a sequence of calls to
non-primitive processes in the StAC specification must be executed without
interleaving between them, while proctypes in Promela will allow interleaving.
For example, “run P; run Q” will start P first and then will start Q without
waiting for P to terminate. Q can be started at any time after P has been. The
; operator in this case does not have the usual semantics for procedures in high
level programming languages as it is the case for StAC. Synchronization can
be achieved as expected in StAC through a fork & join mechanism forcing all
subprocesses to be finished before the process that created them is considered
finished. But, that is achieved at the price of adding channels and hence enlarging
the search space at the time of real specifications. Other StAC operators like
generalised parallel and generalised choice pose similar coordination problems
with the addition that they are not provided as primitives in Promela, forcing
to high level simulations.

The use of generalised parallel and generalised choice demands the enumera-
tion of values for the parameters involved. While these parameters can be strictly



numeric users using StAC for real applications will be interested in using realistic
labels for naming people, books, or hotels as in the examples shown in section
2 without being concerned by on mappings from names to numbers or other
levels of indirection. Here we have another clash between the different levels of
abstraction provided by Promela and StAC. The limitations to use enumerates
in Promela are evident and altough it is possible to implement a more general
use of enumerates, it demands an involved procedure which again obscures the
initial specification and add more computational complexity at model checking
time.

The early termination operator, ® (see example 1 for an illustration of its
use), can be applied to force a process to terminate. Brackets can be used to
delimitate the scope for the operator application. For example { P; ®; Q}; R spec-
ifies that after P is executed, () will be forced to terminate. This will not affect
R. If we apply ® to a parallel process then all the parallel processes within the
scope of the ® are also terminated. For example, in {(P; ®;Q)||R}||S process
R will also be terminated but S will not. We found that the implementation of
this characteristic is particularly problematic in Promela. In Promela there is
no direct way to encode this, the solution being again handling a parallel and
high-level scheduling in order to force SPIN to terminate some of the processes
involved.

Handling of compensations can be achieved by the use of a LIFO structure.
Stored codes can be recovered later, if necessary, to know what compensations
must be applied and in which order that must be done. Each possible compen-
sation activity is identified with a code. In some cases more information can be
stored, e.g., in example 2 we need to store a code to identify the operation of
giving back books, but also what books are involved in the operation. Both, the
complexity of the structure dictated by the kind of compensations we need for
some case studies, and the need of the generalised parallel to inspect the struc-
ture are serious drawbacks in terms of search complexity, an important issue
for finite-state verification. Then, we found that implementing the very basic
operations related to compensation handling was also a major issue in terms of
the computational complexity required.

3.2 Translating StAC to SPL

STeP ([BBC199]) is a verification system for reactive systems based in a deduc-
tive approach. It provides a collection of tools allowing verification by deduction,
sometimes with user interaction. Some of the basic features provided are: verifica-
tion rules, verification diagrams, and automated support for proving verification
conditions. Model checking is also available, and is a good complement to the
deductive system providing counter examples to false properties. A system can
be input to STeP as an SPL program or as a Fair Transition System [MP92].
Systems specified in either of these notations must be given to STeP as input
files.

The syntax of SPL programs follows that of traditional imperative languages
such as Pascal. In addition to the basic constructs found in these languages, SPL



supports nondeterminism by means of the selection statement ‘or’ and parallel
composition by means of the cooperation statement ||. Parallel processes can
interact through shared variables such as semaphores, as well as by synchronous
and asynchronous channels. Execution of parallel processes is assumed to proceed
by interleaving. For the sake of space we address the reader interested in speci-
fying systems using SPL syntax or Fair Transition System notation to [MtSg95],
chapter 2. The specification language for temporal properties to be checked is
Linear-Time Temporal Logic [MP92]. More documentation about the system,
including tutorials, demos for specific parts of the system and case studies can
be found in the web page for STeP ( http://www-step.stanford.edu/ ).

Some of the obstacles we came across while repeating our previous attempt
to achieve automatic translations for verification of StAC specifications are the
following.

Because SPL offers more high-level features than Promela, we found it easier
to map StAC to the first language than to the later. One remaining obstacle is the
lack of recursive processes as “the parser just plugs in the bodies of procedures
when it finds a procedure call” ([MtSg95], pp. 29). Then general recursion cannot
be directly implemented as used in StAC but instead we were able to use an
equivalent translation, e.g. a While-like loop. Naturally, with the limitation that
it can only be used with tail-recursion cases.

An advantage of SPL in comparison with Promela is that it provides gener-
alised parallel and generalised choice sentences. The bad news being that SPL
does not allow non-numeric enumerate values to be used in generalised choice
and parallel. Again we have to resort to encodings, mapping strings into num-
bers and using numbers as a metaphor of the real information with the same
negative consequences of the previous step.

SPL does not provide any constructor that can help to implement the early
termination operator so we face similar problems to model check StAC specifi-
cations using that operator.

There are also problems falling outside the scope of the input language. For
example, interpreting a counterexample given by the model checker is a very in-
volved process as the steps that caused the unexpected situation are described in
terms of internal variables acting as indirect references to the user’s structures.
There seems to be no syntax description in any of the publicly available docu-
mentation for the system. This force users to have a deep knowledge of all the
theoretical framework underlying the system in order to be able to understand
a counterexample.

4 XTL (eXtensible Temporal Logic model checker)

The XTL model checker allows the user to model check a wide range of sys-
tem specification, (see for example [LMO00] and [LMO02]) the only requirement
being that the specification is made by using high level Prolog predicates de-
scribing how the system makes transitions between its different states. In this
section we describe some basic aspects of XTL and exemplify how to use it to



model check StAC specifications. XTL has been implemented using XSB Pro-
log ( http://xsb.sourceforge.net/ ). It is still an ongoing research project but as
described in the articles cited above has been tested with several different type
of specifications with encouraging performance and expressiveness indicators. A
GUI including availability of several formula schemas and a translator from a
more natural language like notation to a Prolog oriented CTL notation is being
developed.

The input language for XTL is very simple and general allowing multiple sys-
tems to be “plugged” for model checking. There are two key predicates, trans/3
and prop/2 where:

trans(A,S1,S2): action A allows a transition from state S1 to state S2 and
prop(S,C): condition C holds in state S

EXAMPLE 3 Lets assume we have the following declaration:

trans(t,a,b). trans(t,b,a). trans(t,c,c).

prop(a,safe). prop(b,safe). prop(c,unsafe).

This lines specifies that there are transitions from a to b, viceversa, and from
c to itself. Also states a and b are labelled as safe while state c is labelled as
unsafe. A

Then the main task when trying to use XTL to model check specifications
written in a language L is to write a translator from L to a set of trans/3 and
prop/2 predicates that allows XTL to traverse the related Kripke structure, by
using trans/3 to create new possible worlds and prop/2 to state the truths on
each world.

We reproduce below some of the operational semantics rules and their cor-
responding encoding in Prolog as used by XTL. The reader may observe in the
following semantics rules the presence of indexes associated with compensation-
related operators, indexed compensation replaces the need for compensation
scoping [BF00].

Rules 10 and 11 are for compensation pairs. The first one states that an evo-
lution in the main process, P, does not affect the compensation task, ), while
the second adds the compensation process, @, to the compensation function, C,
when the primary task of a pair has completed. C' is a function that for each
task i returns the associated compensation process, C(i). ¢ is used to repre-
sent a state in the evolution of the system. In the Prolog rules given below is
represented by using the predicate conf/2. Prolog predicate push_comp in the
translation for Rule 11 is storing the compensation task, @, into the correspond-
ing compensation stack.

(P, C, o) 2 (P, C", o)

(P+iQ C o) 2 (P+Q,C, o)

(R10)



/* R10 as used in XTL */
stac_trans(conf (pair(P,Q,I),C), B, conf(pair(P1,Q,I),C1)) :-
stac_trans(conf(P,C), B, conf(P1,C1)).

(R11)

(null +; Q, C, 0) =5 (null, Cli == Q;C(i)], o)

/* R11 as used in XTL */
stac_trans(conf (pair(null,Q,I),C), pairT(I), conf(null,R)) :-
push_comp(C,I,Q,R).

Rule 12 is for the reverse operator, where compensation ¢ is executed. Prolog
predicate comp_seq is used in the Prolog encoding of Rule 12 to apply the com-
pensation. Prolog predicate clear_comp as mentioned in Rule 12 and Rule 13
release the compensations associated with .

(m12) -
(X;, C, o) — (C(3), Cli :=null], o)

/* R12 as used in XTL */
stac_trans (conf (compensate(I),C), compensate(I), conf(P1,Cl1)) :-
comp_seq(C,I,P1), clear_comp_1(C,I,C1).

Rule 13 is for the accept operator where the compensation task i is cleared:

(R13) 5
(4, C, o) —> (null, Cli :==null], o)

/* R13 as used in XTL */
stac_trans(conf (commit(I),C), commit(I), conf(null,Cl)) :-
clear_comp_1(C,I,C1).

Once the behavior of the system has been specified as a set of Prolog pred-
icates the tool allows the specification to be checked against properties written
using the formal language of temporal logic CTL (Computation Tree Logic),



introduced by Clarke and Emerson in [CES86]. CTL allows to specify properties
of specifications generally described as Kripke structures. The syntax for CTL
is given below as a reminder and we address the reader to [CES86] and [CGP99]
for more details about semantics and other subtle issues.

Given Prop, the set of propositions, the set of CTL formulae ¢ is inductively
defined by the following grammar (where p € Prop):

¢:= true [p|(p) [ ¢ |d6AP[VOP[IO¢|V(UP) | I(UP)

Since they are often used, the following abbreviations are defined

VOP =ge s V(trueld¢) i.e. for all paths, ¢ eventually holds,

30¢ =qe5 (trueldg) i.e. there exists a path where ¢ eventually holds,
J0¢ =4ef "VO(—¢) i.e. there exists a path where ¢ always holds,
VO¢ =ger ~3IO(—0) i.e. for all paths ¢ always holds.

As the sessions samples given below are pasted from an ASCII-based version
of the XTL model checker we provide below a mapping table between CTL
formal symbols and their ASCII version counterparts:

CTL : |- A v 3IvooQu
ASCIIXTL:‘not and or e a f g n u

EXAMPLE 4 A CTL formula 3 (V(¢p1U¢2)) becomes: ef (au(phil,phi2)) A
ExampPLE 5 A CTL formula:
30( ¢
A

)HQ (=(¢2) V ¢3)

will become: ef (and(phil, en(or(not(phi2),phi3)))) A
Some of the predicates available in XTL are:

sat/3, where sat (State,Formula,Trace) checks satisfiability of Formula
from an arbitrary State and gives a Trace.

check_enable/1, where check_enable(P) allows to check if a proposi-
tion is reachable. It does that by using the following definition:

check_enable(P) :-
start(X), sat(X,ef(e(act([P|_]1))),Trace), print(Trace), nl.

ce/2, where ce(List,Trace) searchs for compensations applicable to
the list of entities given in List. This predicate in StAC will check for
applicability of the operator “compensate” by using the following pred-
icate: sat([],ef (e(compensate(List))),Trace)



Following we offer some samples of queries to the specifications considered in
section 2. Those specifications can be entered in ASCII format and translated
to a set of Prolog equations that is used to feed the XTL model checker. We
can consider two kind of traces: verbose or simplified. The first one consider all
the details considered by the system while applying compensation operations,
including the handling of stacks to keep record of the compensations considered.
Below we provide traces in the simpler form, highlighting just basic activities
and the application of compensation operators.

4.1 Sample session for OrderFulfilment Case Study

Observe we make the specification provided in section 2 finite by assuming that
the generalized parallel operator used in the process packOrder considers a set
I ={ iteml, item2, item3 }.

“Is bookCourier reachable?” The following query shows that after the main
process, abc, is started the activity acceptOrder can take place and at that
state holds that bookCourier is enabled:

| ?- check_enable(bookCourier) .

[start(abc),act([acceptOrder]) ,holds(e(act([bookCourier])),
[e(act ([bookCourier]))])]

“Are there any compensations applicable?” The following query allows us to
obtain a more surprising and interesting result. After the first answer we ask
the system to find other possible situation where compensations can be applied
and reading the two witnesses offered by the system we can discover there are
at least two ways to activate the compensation mechanism:

| 7- ce(C,Trace).

c = [1]

Trace = [start(abc),act([acceptOrder]),act([packltem,il]),
act([packItem,i2]),act([bookCourier]),act([creditCheck]),
act([okCreditCheck]), act([notOkFulfillOrder]),

holds (e(compensate([1])), [e(compensate([1]1))]1)];

c = [1]

Trace = [start(abc),act([acceptOrder]),act([packItem,il]),
act([packItem,i2]),act([bookCourier]),act([creditCheck]),
act ([notOkCreditCheck]) ,exit (1) ,act([not0kFulfillOrder]),
holds(e(compensate([1])), [e(compensate([1]))])]

The system as modelled in the St AC specification provided in section 2 is not
supplemented with the B machines that will implement activities and their side
effects. Then compensations will be applied disregarding if the credit card check



fails or not because the test about correctness of FulfillOrder that otherwise
would be directly dependant on the credit card check is completely independent
in this model. We can check this in a more general way. Lets assume we want to
check that there are “No unmotivated courier cancellations” or, equally useful for
us, lets see if we can produce a witness that there could be a courier cancellation
despite the credit card was approved. A quick simplification, for example by
using the following shorter specification:

abc = (acceptOrder -+ restockOrder);
wareHousePackaging;

((okCreditCheck — M) [[(notokCreditCheck — X ))
wareHousePackaging = (bookCourier = cancelCourier) || packOrder

packOrder = || i€I .(packItem(i)+ unpackItem(i))

and running the query again will provide the expected answer, compensations
occurs only when the credit card check fails:

| 7- ce(C,Trace).

Cc = [1]

Trace = [start(abc),act([acceptOrder]),act([bookCourier]),
act([packItem,il]),act([packItem,i2]),act([packItem,i3]),
act ([notokCreditCheck]), holds(e(compensate([1])),

[e (compensate([1]1))1)];

Cc = [1]

Trace = [start(abc),act([acceptOrder]),act([bookCourier]),
act([packItem,il]),act([packItem,i2]),act([packItem,i3]),
act ([notokCreditCheck]) ,holds(e(compensate([1])),

[e (compensate([1]1))1)]1;

4.2 Sample session for EBookstore Case Study

In this case study the set C in the process Bookstore = || c€C . client(c) is
assumed to be instantiated with two customers: sofia and mel and the set B in
chooseBook(c) is assumed to have the following books: prolog, java, xml. It
must be observed the infinite loop in the specification of process chooseBooks (c)
can make the stack for compensations to grow indefinitely. To avoid that the ini-
tial specification has been limited to a maximum of three iterations by redefining
that process as follows:

chooseBooks(c) = checkout(c) [| (chooseBook(c); chooseBooksl(c))
chooseBooksl(c) = checkout(c) [] (chooseBook(c); chooseBooks2(c))
chooseBooks2(c) = checkout(c) [| (chooseBook(c); chooseBooks3(c))
chooseBooks3(c) = checkout(c)



“Is exit reachable?” is answered by the system with a witness showing that a
user can leave the system.

| ?- check_enable(exit).

[start (bookstore) ,act([arrive,sofial) ,act([arrive,mel]),
act ([checkout,mel]) ,act([quit,mel]),compensate([mell]),
holds(e(act([exit,mel])), [e(act([exit,mel]))])]

“Can be Sofia compensated?” is answered by the system showing a sequence of
operations where the customer buy a book but then finally cannot finish the
operation (when overBudget is activated) so the system returns the book to the
stock.

| ?7- ce([sofia],Trace).

Trace = [start(bookstore),act([arrive,sofia]l),act([arrive,mel]),

act ([checkout,mel]) ,act([quit,mel]),compensate([mel]),
act([exit,mel]),act([addBook,sofia,prologl),act([overBudget,sofial),
compensate([sofia]) ,act([returnBook,sofia,prolog]l),

act ([checkout,sofial),act([quit,sofial),
holds(e(compensate([sofial)), [e(compensate([sofial))])]

“Is each customer forced to do a transaction?” is answered negatively by the sys-
tem. Further exploration provide us with a possible scenario where a customer,
Sofia, leaves the system without purchasing books:

| 7- start(X), sat(X,ag(imp(e(act([arrive,sofial)),
(ef (e(act ([processCard,sofial)))))),T).
(no)

| 7- start(X), sat(X,ef(imp(e(act([arrive,sofial)),
(ef (and (not (e (act ([processCard,sofial))),e(act([exit,sofial))))))),T).

X=1[

T = [holds(imp(e(act([arrive,sofial)),

ef (and (not e(act([processCard,sofial)),e(act([exit,sofial))))),
[start (bookstore) ,act([arrive,sofial) ,act([arrive,mel]),

act ([checkout,mel]) ,act([quit,mel]),compensate([mell]),
act([exit,mel]),act([checkout,sofial),act([quit,sofial),
compensate([sofia]), holds(and(not e(act([processCard,sofial)),
e(act([exit,sofial))), [and([not e(act([processCard,sofial))],
[e(act([exit,sofial))1)1)1)]



5 Conclusions and Further Work

Business transactions can be very complex and ensuring correctness is a criti-
cal issue. We focused on the problem of providing automatic verification for a
business-related specification language, StAC, by using the XTL model checker.
Its high-level specification language allowed us to overcome previous difficulties
we faced in our previous attempts by using SPIN and STeP.

Many, but not all, of the problems we faced when using SPIN and STeP were
about mapping a high level language as StAC to the control and data structures
provided in Promela and SPL. In some cases the complexity of translation and
space exploration of the resulting model check process increases up to an unde-
sirable level and of course there is no possibility to tailor any of those tools to
particular needs. In this case XTL (eXtensible Temporal Logic model checker)
can be adapted to different input languages as illustrated in previous reports
about the tool in the literature. In particular it can be successfully applied to
StAC. It was far simpler (and possible) to map StAC to XTL than to either SPIN
or STeP. As explained in section 4, the mapping from StAC operational seman-
tics to XTL’s input language is quite natural and straightforward compared with
the involved procedure required to do the mapping to either Promela or STL.

Because of this flexibility in the input language, the encouraging performance
results and the well-known language used to specify the properties to be checked
(CTL) we believe XTL is a tool that colleagues working in different areas may
find worth to investigate more closely.
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