The Benefits of Rapid Modelling
for E-Business System Development

Juan C. Augusto, Carla Ferreira, Andy M. Gravell,
Michael A. Leuschel, Karen M. Y. NG

Department of Electronics and Computer Science
University of Southampton,
e-mail: {jca, cf, amg, mal, mynOOr}@ecs.soton.ac.uk

Abstract. There are considerable difficulties modelling new business
processes. One approach is to adapt existing models, but this leads to
the difficult problem of maintaining consistency between model and code.
This work reports an investigation into creating quick models that are
nonetheless useful in providing insight into proposed designs.

1 Introduction

There are considerable difficulties modelling new business processes. One ap-
proach is to adapt existing models, but this leads to the difficult problem of
maintaining consistency between model and code. In eXtreme Programming
[Beck 2000], for example, we are advised to “travel light” — questions are an-
swered by examining the code rather than trusting written designs which may
be out of date.

This work reports an investigation into creating quick “throw away” mod-
els that are nonetheless useful in providing insight into proposed designs. These
models are not merely pictures, but can be “executed” through
animation/simulation, and can be comprehensively checked, at least for spe-
cific configurations, by model checking. This answers the criticism that pictures
“can’t give concrete feedback” [Beck 2000]. Our models are in notations that
have defined semantics and tool support.

In sections 2 and 3 we first provide a brief description of two of the modelling
frameworks we considered, Promela/SPIN and CSP(LP)/CIA. Then in section 4
a case study that we used as the basis for our experiment is introduced. In
section 5 we give some details about the modelling approach we followed when
using Promela and CSP(LP) as modelling languages. Section 6 explains how tool
assisted development can provide the basis for rapid modelling with important
expected benefits and section 7 explains the extent to which we experienced those
advantages while using the above mentioned tools to our case study. Later, in
section 8 we consider a more specific modelling language, called StAC for business
modelling. An analysis of work in progress is given in section 9 while an account
of some lessons learnt and the final conclusions are provided in section 10.

2 Promela/SPIN

SPIN [Hol97] has been a particularly successful tool that has been widely adopted
to perform automatic verification of software specifications. SPIN offers the pos-
sibility to perform simulations and verifications. Through these two modalities
the verifier can detect absence of deadlocks and unexecutable code, to check
correctness of system invariants, to find non-progress executions cycles and to
verify correctness properties expressed in propositional linear temporal logic for-
mulae. Promela is the specification language of SPIN. It is a C-like language
enriched with a set of primitives allowing the creation and synchronization of
processes, including the possibility to use both synchronous and asynchronous
communication channels. We refer the reader to the extensive literature about
the subject as well as the documentation of the system at Bell Labs web site for
more details: http://netlib.bell-labs.com/netlib/spin/whatispin.html
We assume some degree of familiarity with this framework from now on.

3 CSP(LP)/CIA

The language CSP(LP) [Leu01] unifies CSP [Hoa85] with concurrent (constraint)
logic programming. Elementary CSP, without datatypes, functions, or other ad-
vanced operators, was extended in CSP-FDR [Ros99] to incorporate this fea-
tures, which we want for modelling business systems. Some of the remaining
limitations on pattern matching were overcome in CSP(LP) (see [Leu01] sec-
tion 2.2. for a more detailed account). A basic introduction to CSP(LP) syntax
[LM99] follows:

Operator Syntax Ascii Syntax
stop STOP STOP

skip SKIP SKIP

prefix a— P a->P
conditional prefix a’lr:x>1— P a?x:x>1->P
external choice rPOQ P[]Q
internal choice PMNQ P || Q
interleaving P|||Q PIlIlQ
parallel composition PlA[Q PILl AIlIQ
sequential composition P;Q P ->>Q
hiding P\ A P\\ &
renaming P[R) P [[R1]]
timeout PrQ P[>Q
interrupt PA;Q P/Q

if then else if t then P else @ if T then P else Q
let expressions letv=cin P let V=E in P
agent definition A=P A = P;

The CSP(LP) Interpreter and Animator, CIA, [LAB*01] can be used to
animate and detect deadlocks in a CSP(LP) specification.

4 The Travel Agency Case Study

As an example of an e-business system involving collaboration across organiza-
tions consider a travel agent [LR00]. A travel agent gets requests from the users
that log into the travel agency system by using a browser. After selecting an
operation (book or unbook) and a service (car or room), the operation is sub-
mitted to the travel agent. The travel agent will decide what service provider
(Car Rental or Hotel) to contact on the basis of previous requests made by the
user. The request is passed on to one of the service providers, which will decide
if the operation can be accomplished or not. For example, it could be that the
user requests to book a service that is not available or to unbook a service that
was not previously booked to her/him. The shop will contact the travel agent
to make explicit if the operation was or was not successful. The travel agent will
pass this information to the user. If the operation was successful, the shop and
the travel agent will keep records of that on their own databases. A sketch of a
typical session can be seen as an appendix in [AFGT03].

We have built a prototype of this system using J2EE technology to experi-
ment with the expected functionality and to uncover the basic operations and
communications demanded by such e-businesses systems. On the other hand we
built different models to experiment with different modelling languages, different
tools, and to compare the support they offer to a development team.

5 Modelling Approaches

Due to space constraints we cannot offer complete models but, we provide a
brief description of them as appendixes A and B to give the reader a flavor of
how they look like. The complete models fully documented can be seen in the
appendixes given in [AFG103]. Next we provide a sketch of the basic structures
we need and the functionality we expect from each major part of the system.
Communication between the user, the travel agent, and the shops in the
prototype is accomplished trough sessions and the underlying web connectivity
message system. In our models that was modelled via synchronous channels. We
considered a channel ch_ta to pass requests from the user to the travel agent. We
also need channels ch_car00, ch_car0O1, ch_hotell0, and ch_hotelll to pass
requests from the travel agent to each shop. We use channels ch_car00_2 ta,
ch_car01_2_ta, ch hotell0_2_ta, and ch_hotelll 2 ta to get feedback from
the shops about if the operation was or was not successful. Another important
aspect has to do with the side effects of the interaction in the system. For ex-
ample, as a result of a successful operation each shop will have to register a
change on its database to remember that a resource was taken or released so we
need in the models some structures (cars00, cars01l, rooms10, and rooms11)
to mimic the databases implemented in the prototype by using JDBC technol-
ogy. The travel agent has its own database, taDB, where all the operations are
recorded and its content has to be consistent with all the shops databases ex-
cept for the intermediate state where a record was made in a shop database but

still was not transferred to the travel agent database. But, because the commu-
nication is assumed to be synchronous that will eventually occur and because
decisions in the system are based only on the shop’s database contents this do
not cause any harm in the system. Of course, the travel agent will know that if
a request has not been answered then the information cannot be considered as
an up to date account of the system.

6 Checking Techniques

After running this experiment we were able to collect some interesting experi-
ences. On a higher level we can say that by building the models we were forced
to revise and double check the relationships between all the important parts of
the system.

This also suggests that a realistic expectation is therefore that modelling a
system is at last four times quicker than prototyping it. While the prototype
involved several weeks from a team of three programmers each model was about
one and a half week for one person effort. In all cases the people involved had the
same level of expertise required to use the necessary technology during both the
prototyping and the modelling stages of the development. We do not of course
propose developers should construct multiple models. We did so ourselves only
to compare notations and tools.

Both tools assisted the modelling stage with syntax and type checking, basic
model checking, e.g. infinite loops and deadlock detection, and animation facil-
ities. After no more basic errors were found some simulations were carried out
to compare the behavior of the model with the behavior of the prototype and
the one expected from the system. By building this models of the system we
have been able to check behavioral properties that allowed us to pinpoint some
interesting aspects of the system:

EXAMPLE 1 (Credit card loop) Part of the user interaction with the system in-
volves to provide an authorized credit card brand. The initial prototype allowed
users to introduce an unbounded number of attempts to provided their credit card
brand. Both tools, SPIN and CIA, allowed us to detect that, although in different
ways.

EXAMPLE 2 (Deadlocks) Communications between user, travel agent and shops
was implemented via synchronous channels. Sometimes during the construction
of the model the interaction of the different processes was very important to
detect how interdependent the different parts of the system were to each other.
This was especially well considered in SPIN were there is a graphical interface
focused on channel communication.

EXAMPLE 3 (detecting subtler errors). An error was introduced in purpose dur-
ing the construction of the prototype to experiment how we were able to detect it
at modelling time. The error is related to the strategy that the Travel Agency has
to handle second reservations. This strategy was left unfinished so that when the

travel agency is asked to book a room in a hotel for a second time by the same
user, it tries to book the room in the same hotel used for the first booking. When
failing to find another room available the travel agency will not try to book the
room in another hotel. Instead it will consider the operation unsuccessful. We
were able to detect the potential anomaly during simulation and then confirm it
by model checking.

7 Relating Both Modelling Experiments

Some differences emerged from this experience between Promela/SPIN and
CSP(LP)/CIA as tools to guide the first stages of modelling:

1. Both demanded almost the same level of knowledge and effort to write the
specifications.

2. CSP(LP) is more declarative and hence allows more compact models to be
written

3. Altough Promela allows asynchronous channels, CSP(LP) has extra ex-
pressiveness due to the logic programming extension (see for example the
database implementation provided in last appendix)

4. SPIN currently offers more support for building the model

5. Channel handling demands more work in CSP(LP) specifications which also
have the positive side-effect of forcing the user to have a more detailed knowl-
edge about them

6. Trace extraction is currently easier with SPIN

7. CSP(LP) allows to complement CSP with the use of logic programming fea-
tures which extends considerably the flexibility of the specification language.
An evidence of the importance of this can be seen on [ALBF03] where the
flexibility of the input language was a key feature in allowing model checking
of a Business Specification Language.

In summary, both tools proved to be very useful in terms of building a sim-
plified version of the system with a slight advantage of SPIN, of being a system
developed over more than one decade. In consequence it offers better interface
and more information to the system but on the other side there is no impediment
for the CSP(LP)/CIA combination to evolve in the same direction.

8 StAC, A More Specific Business Modelling Language

After focusing on Promela and CSP(LP) we also considered StAC. StAC (Struc-
tured Activity Compensation) is a language that, in addition to CSP-like op-
erators [Hoa85], offers a set of operators to handle the notion of compensation.
In StAC it is possible to associate to an action a set of compensation actions
providing a way to repair an undesired situation. Compensations are expressed
as pairs with the form P + @, meaning that) is the compensation planned in
case that the effect of P needs to be compensated at a later stage. As the sys-
tem evolves, compensations are remembered. If all the activities are successfully

accomplished then the operator accept, 4 | releases the compensations. If any
activity fails then the operator reverse, X , orders the system to apply all the
recorded compensations for the current scope. In some contexts the failure to
accomplish an activity can be so critical that demands the abortion of a pro-
cess, that is the role of the early termination operator. Both compensation and
termination operators can be bounded to a scope of application.

DEFINITION 1 Let A represent an activity, b a boolean condition, P and @ two
generic processes, x a variable and X a set of values. Then, we can define as
follows the set of well formed formulas in StAC:

Process ::= A (activity label)

| 0 (skip) |b— P (condition)

| rec(P) (recursion) | P;Q (sequence)

| P||Q (parallel) | ||z € X.P, (generalised parallel)

| P[lQ (choice) | [€ X.P, (generalised choice)

| ® (early termination) | {P} (termination scoping)

| P+ @ (compensation pair) | [P] (compensation scoping)
| & (reverse) | 4 (accept)

In the example below, processes written in boldface are intended to be basic
activities. Each StAC specification is coupled with a B machine [Abr96] describ-
ing the state of the system and its basic activities. Basically a B machine is
composed by a declaration of sets, variables, invariants, initialisation and op-
erations over those structures. Each StAC activity in a specification will have
associated an operation in the corresponding B machine explaining how that
activity is implemented in logical terms. We address the reader who wants a
more in-detail account of StAC to [CGVT02] and [BF00].

8.1 Travel Agency Example

The travel agency example presented in this section extends the previous travel
agency example. In this version the user requests a collection of services instead
of a single service, and the travel agency will then try to provide all the requested
services. In the StAC model we associate a compensation activity to each ser-
vice reservation, as the recovery mechanism if any reservation fails or the client
decides to cancel his/her requests. A trip is arranged by getting an itinerary,
followed by verifying the client’s credit card, and depending on whether the card
is accept or rejected the reservation is continued or abandoned:

Trip = Getltinerary; VerifyCreditCard; (accepted — ContinueReservation

[

—accepted — clearItinerary)

Getting an itinerary involves continually iterating over offering the client the
choice of selecting from a car or a hotel “until” (%, defined by using recursion
[Fer03]) EndSelection is invoked.

Getltinerary = (SelectCar || SelectHotel) x EndSelection

ContinueReservations starts by making the reservations on the client’s itinerary.
If some of the reservations failed, the client is contacted; otherwise, the process
ends. The car and hotel reservations are made concurrently.

ContinueReservation = MakeReservations; (okReservations — EndTrip

[

-okReservations — ContactClient)

MakeReservations = CarReservations || HotelReservations
CarReservations = || ce cAr . CarReservation(c)
HotelReservations = || he HOTEL . HotelReservation(h)

The CarReservation process reserves a single car using the Reserve activity. The
travel agency uses two compensation tasks: compensation task S, representing
compensation for reservations that have been booked successfully, and compen-
sation task F', representing compensation for reservations that have failed. The
choice between which task to add the compensation to is determined by the out-
come of the ReserveCar activity. Since we use two compensation tasks, instead
of having a compensation pair we have a compensation triple, with a primary
process P and two compensations ()1 and Q2. We model this triple with a con-
struction of the form: P; (¢ — (null +1 Q1)) [(-¢ — (null +2 Q2)) If P makes ¢
true, this is equivalent to P +1 Q1 with @)1 being added to compensation task 1.
If P makes c false, this is equivalent to P+ Q2 with Q2 being added to compen-
sation task 2. With this construction it is possible to organize the compensation
information into several compensations tasks, where each one of those tasks can
later be reversed or accepted independently. All the cars reservations are made
concurrently. The car reservation and its compensations is defined as follows:

CarReservation(f) = ReserveCar(c);
((carIsReserved(c) — (null +g (CancelCar(c) || RemoveCar(c))))

(—carIsReserved(c) — (null +r RemoveCar(c)))

The RemoveCar activity removes car ¢ from the client’s itinerary, while the
CancelCar activity cancels the reservation of car ¢ with the car rental. If the
activity ReserveCar is successful, then to compensate it one has to cancel
the reservation with the car rental and also remove that car from the client’s
itinerary. Otherwise, if the car reservation fails its only necessary to remove
the car from the client’s itinerary in order to compensate, its not necessary to
cancel the car reservation. The hotel reservations are defined similarly and are
omitted here. The ContactClient process is called if some reservations failed. In
this process the client is offered the choice between continuing or quitting:

ContactClient = (Continue; Kp; Getltinerary; ContinueReservations)

(Quit; (Mg || ®p))

In the case that the client decides to continue, reverse is invoked on compen-
sation task F', the failed reservations. This has the effect of removing all failed

reservations from the clients itinerary. Compensation task S is preserved as the
successful reservations may need to be compensated at a later stage. The client
continues by adding more items to the itinerary, which are then reserved. In the
case that the client decides to quit, reversal is invoked on both compensation
threads. This has the effect of removing all reservations from the clients itinerary
and cancelling all successful reservations. Finally, a successful trip reservation is
ended by accepting both compensation tasks:

EndTrip = Mg || Up

8.2 Executable Semantics

One benefit of using StAC is that it would not be possible to capture advanced
aspects of the system with Promela (see [ABF03]) and CSP. Modelling with
StAC will focus in the higher levels of the system. Any of the previously consid-
ered languages can be a good complement by using them to model some of the
more low-level features of the system as the communication between processes.

During modelling we have used an animator for StAC processes [LAB101]
based on the CSP(PL) animator described in [Leu01]. At the moment it supports
step-by-step animation and backtracking of StAC processes, and it can also
detect deadlocks. Animation has helped in the verification of the travel agency,
just by comparing the animation execution traces with the expected behavior of
the specification several error where found:

— There is a potential infinite loop if any of the services requested by the client
fails. In this case the client can then start choosing a new itinerary that may
lead again to some of his/hers requested services to fail.

— The use of two independent compensation threads for the successful and
failed reservations uses a complex notation that is difficult to understand.
All this is overcome by the animating the model, because the user can observe
the evolution of the compensation threads.

— The initial StAC model did not have the EndTrip process, but the animation
showed that without EndTrip the compensation information would still be
available after the client’s logout.

9 Future Work

The XTL model checker allows the user to model check a wide range of sys-
tem specifications, (see for example [LM99] and [LMO02]) the only requirement
being that the specification is made by using high level Prolog predicates de-
scribing how the system makes transitions between its different states. In this
section we describe some basic aspects of XTL and exemplify how to use it to
model check StAC specifications. XTL has been implemented using XSB Prolog
(http://xsb.sourceforge.net/). Expressiveness and performance indicators are
very encouraging for XTL in the sense that it has been able to model check
case studies where other tools like SPIN failed and solved problems at similar

performance levels. Some domains where XTL was applied successfully are CSP
and B [LABT01], Petri nets [LM02] and StAC [ALBF03].

The second phase of this research involves model checking both models by
contrasting them against behavioral properties expressed in a formal language,
LTL (Linear Temporal Logic) for SPIN and CTL (Computational Tree Logic)
for XTL. Some properties had been checked by using SPIN and the next step
will be to check equivalent or closely related properties in XTL.

The comparison also highlights that part of SPIN success derives from a nice
interface which can be even profitable for non-experts in model checking. Some
of these services are available in the animators for CSP(LP) and for StAC while
the others can be relatively easy added.

10 Conclusions

We conducted an experiment of modelling a prototype by using different lan-
guages which have tool support available. We considered Promela/SPIN and
CSP(LP)/CIA which share many features in common but also more specific
modelling languages like StAC. We left outside the models several details, e.g.
all the web based communication was replaced by synchronous channels, the re-
lation sessions/logins is simplified to a userID, the communication between the
travel agency was simplified to a request and a response when in reality it is
a two steps dialog. The models can be expanded in any of those directions as
needed. A quick summary of our experience follows.

Benefits of animation/simulation include a) demonstrating flow of informa-
tion through the system b) exploring interaction between components c) extrac-
tion of traces that could be used for generating test cases. In general, however,
animations produced by these tools are not of sufficient visual quality to be use-
ful in end users or customer demonstrations. Benefits of model-checking include
a) easy discovery of concurrency flaws eg deadlock b) in depth understanding
of protocols (process/object interactions) c) discovery of invariants (database
consistency constraints) By comparison, benefits of prototyping include a) more
realistic user interfaces b) evolution of a class structure that, we believe, would
closely approximates that of the actual implementation ¢) opportunity to gain
knowledge of the actual implementation technologies

Still, our experiments show that rapid modelling is possible (one or two weeks
to develop a model, about five times faster than prototyping). Mature notations
and tools such as Promela/Spin provide better automated support for modelling,
animation, and model-checking. On the other hand, the higher level constructs
in CSP(LP) allow more faithful modelling of, for example, database tables. Tool
support for this notation is sufficiently mature to provide useful insight, but
further improvements would be welcomed. Finally, application specific notations
such as StAC allow the most rapid modelling of all. Given that long-running
transactions are likely to be the basis of future e-business systems, we believe
that it is worthwhile further developing such notations and tools to support
them.

References

[ABF03)

[Abr96]

Juan C. Augusto, Michael Butler, and Carla Ferreira. Using spin and step
to verify stac specifications. In Proceedings of PSI’03, 5th International
A.P.Ershov Conference on Perspectives of System Informatics (to be pub-
lished), Novosibirsk (Russia), 2003.

J. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Uni-
versity, 1996.

[AFG*03] J. Augusto, Carla Ferreira, Andy Gravell, Michael Leuschel, and Karen

[ALBF03]

[BF00]

M. Y. NG. Exploring different approaches to modelling in enterprise
information systems. Technical report, Electronics and Computer Sci-
ence Department, University of Southampton, 2003. Technical Report,
http://www.ecs.soton.ac.uk/~jca/rm.pdf.

Juan C. Augusto, Michael Leuschel, Michael Butler, and Carla Ferreira.
Using the extensible model checker xtl to verify stac business specifications.
In Pre-proceedings of 3rd Workshop on Automated Verification of Critical
Systems (AVoCS 2003), Southampton (UK), pages 253-266, 2003.

M. Butler and C. Ferreira. A process compensation language. In IFM’2000
- Integrated Formal Methods, volume 1945 of LNCS, pages 61-76. Springer
Verlag, 2000.

[CGVT02] M. Chessell, C. Griffin, D. Vines, M. Butler, C. Ferreira, and P. Hender-

[Fer03]
[Hoa85]
[Hol97]
[LAB*01]

[Leu01]

[LM99]

[LMO02]

[LROO]

[Ros99]

son. Extending the concept of transaction compensation. IBM Journal of
Systems and Development, 41(4):743-758, 2002.

C. Ferreira. Precise modelling of business processes with compensation.
PhD Thesis (submitted), Electronics and Computer Science Department,
University of Southampton, 2003.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
Gerard Holzmann. The spin model checker. IEEE Trans. on Software En-
gineering, 23(5):279-295, 1997.

M. Leuschel, L. Adhianto, M. Butler, C. Ferreira, and L. Mikhailov. Ani-
mation and model checking of csp and b using prolog technology. In Pro-
ceedings of the ACM Sigplan Workshop on Verification and Computational
Logic, VCL’2001, pages 97-109, 2001.

M. Leuschel. Design and implementation of the high-level specification lan-
guage csp(lp) in prolog. In Proceedings of PADL’01, pages 14-28. editor I.
V. Ramakrishnan, LNCS 1990, Springer Verlag, 2001.

M. Leuschel and T. Massart. Infinite state model checking by abstract
interpretation and program specialisation. In Proceedings of Logic-Based
Program Synthesis and Transformation (LOPSTR’99), pages 63-82. editor
Annalisa Bossi, Venice, Italy, LNCS 1817, 1999.

Michael Leuschel and Thierry Massart. Logic programming and partial
deduction for the verification of reactive systems: An experimental evalua-
tion. In Proceedings of 2nd Workshop on Automated Verification of Critical
Systems (AVOCS’02), Birmingham (UK), pages 143-150, 2002.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice Hall PTR, 2000.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1999.

A Fragment of Promela Model

/* channels for communication between processes */
chan ch_ta = [queue_length] of {bit, byte, bit};
chan ch_car00 = [queue_length] of {bit, byte};

chan ch_car00_2_ta =

/* databases */
byte cars00[resources_length];
byte carsO1[resources_length];
byte roomsi0O[resources_length];
byte roomsll[resources_length];
DBrecord taDB[ta_records];
proctype user() {

i=0;

do /* repeat choices */
:: (i < logins) —->
if /* choose a user ID

fi

it++;

loginID
loginID
loginID

>

=1
2
3

[queue_length] of {b

in {1..3} */

checkCreditCard(ccbitl, ccbit2);

if

fi

(i >= logins) -> break

od
}

correctCreditCard ->

it, bit};

if
:: ch_ta!0, loginID, O /* unbook a car */
ch_ta!l, loginID, O /* book a car */
ch_ta!0, loginID, 1 /* unbook a room */
:: ch_ta!l, loginID, 1 /* book a room */
fi
else -> atomic{ printf("Incorrect credit card !!");

proctype ta() {

end:
do

ch_ta?0,
ch_ta?1,
ch_ta?0,
ch_ta?1,

userid,0 ->
userid,0 ->
userid,0 ->
userid,0 ->

ch_car00!0,userid;
ch_car00!1,userid;
ch_car01!0,userid;
ch_car01!1,userid;

CUnbooking(0, 0)
CBooking (0, 0)
CUnbooking(0, 1)
CBooking (0, 1)

(idem for Hotels)
od
}
init{run user(); run taQ);
run car00(); run car01(); run hotell0(); run hotell1l()
}

B Fragment of CSP(LP) Model

agent User(integer) : {tadb, hilldb};
User(_logins) =
if (_logins > 5) then STOP
else
((CheckCreditCard(1l, _logins)) []
(CheckCreditCard(2, _logins)) []
(CheckCreditCard (3, _logins)));

agent TA:{ch_ta,ch_car00,ch_car0O1,ch_hotell0,ch_hotelll};
TA = ch_ta?07_userID?70 ->
(((ch_car00'0!_userID -> SKIP) [| {ch_car00} |] CarRental0OO)
[]
((ch_car01!0!_userID -> SKIP) [| {ch_car01} |] CarRentalOl));
TA = ch_ta?1?_userID?70 ->
(((ch_car00!1!_userID -> SKIP) [| {ch_car00} |] CarRentalO0)
[]
((ch_car01!1! _userID -> SKIP) [| {ch_car01} |] CarRentalOl));
(idem for Hotels)

-- Travel Agent database

agent TADB(multiset) : {tadb};

TADB(nil) = tadb'!empty -> TADB(nil);

TADB(_State) = tadb?member._x: (_x in _State) -> TADB(_State);
TADB(_State) tadb?add?_x -> TADB(cons(_x,_State));

TADB(_State) tadb?rem?_x: _x in _State -> TADB(rem(_State,_x));
TADB(_State) tadb?nexists?_x: not(_x in _State) -> TADB(_State);

agent MAIN : {};
MAIN =
(TADB(nil) [| {tadb} |]
(CoODB(nil) [l {c00db} |1 (CO1DB(nil) [| {cO1db} |]
(H10DB(nil) [l {h10db} |1 (H11DB(nil) [l {h1idb} |1 User(1))))));

