A Translation from Alloy to B

Sebastian Krings', Joshua Schmidt!, Carola Brings, Marc Frappier?, and
Michael Leuschel!

1 Institut fiir Informatik, Universitit Diisseldorf
Universitatsstr. 1, D-40225 Diisseldorf
{krings,leuschel}@cs.uni-duesseldorf.de
2 Université de Sherbrooke, Québec, Canada
marc.frappier@usherbrooke.ca

Abstract. In this paper, we introduce a translation of the specifica-
tion language Alloy to classical B. Our translation closely follows the
Alloy grammar, each construct is translated into a semantically equiva-
lent component of the B language. In addition to basic Alloy constructs,
our approach supports integers and orderings. The translation is fully
automated by the tool “Alloy2B”. We evaluate the usefulness by apply-
ing AtelierB and PrROB to the translated models, and show benefits for
proof and solving with integers and higher-order quantification.

1 Introduction

Both B [I] and Alloy [I0] are specification languages based on first-order logic.
The languages share several features, such as native support for integers, sets
and relations as well as user-defined types. However, there are also considerable
differences. For instance, one of B’s key concepts is to encode state changes by
means of transitions, effectively computing successor states featuring all vari-
ables. In contrast, Alloy allows to define orderings over certain types.

Another difference between Alloy and B is tool support, especially when it
comes to available backends for constraint solving. For Alloy, the Alloy An-
alyzer [10] is used to compute models by translating Alloy predicates to SAT
using Kodkod [30]. The most prominent constraint solver for B, PRoB [16/I8/17],
however mainly relies on constraint logic programming [IT]. In particular, it uses
the CLP(FD) library of SICStus Prolog [2] and extends it to support constraints
over infinite domains [12]. Additionally, PROB allows to use other backends, such
as SMT solvers[13] or, again, Kodkod [28].

The different constraint solving techniques show different performance char-
acteristics [29]. Certain predicates can be solved faster by using a particular
backend or combination of backends; others cannot be handled by a particular
solving technique at all. We thus suppose that a translation from Alloy models
to B models serves different purposes:

— It provides Alloy users access to a set of new backends, and might enable
constraint solving for Alloy models that can not be handled efficiently by
the Alloy Analyzer,

N O Ut W N

0~ O UL Wi

— e e e e
Tk W N = O O

Listing 1. Own Grandpa (Alloy)

module SelfGrandpas
abstract sig Person {

father : lone Man,

mother : lone Woman
}
sig Man extends Person { wife : lone Woman
sig Woman extends Person { husband : lone Man

[}

Listing 2. Own Grandpa (B - Signatures)

MACHINE SelfGrandpas
SETS
Person
CONSTANTS
Man, Woman, father, mother, wife, husband
PROPERTIES
father : Person +-> Man &
mother : Person +-> Woman &
Man <: Person &
wife : Man +-> Woman &
Woman <: Person &
husband : Woman +-> Man &
Man /\ Woman = {} &
Man \/ Woman = Person
END

— it enables the application of the Atelier-B provers [3] to Alloy models,
— it enables the usage of PROB as a second toolchain to validate the results of

the Alloy Analyzer,

— it provides new test cases and benchmarks to the B community and should

aid in improving PROB,

— it helps communication between the Alloy and B communities.

Details about installing and using our translation can be found at:

https://www3.hhu.de/stups/prob/index.php/Alloy

2 Translation Example

In the following section, we will introduce our translation on a simple Alloy model
taken from [I0]. The model is given in Listing [I| and Listing |3} the translation
is given in Listing [2| and Listing 4l Our translation will only use the following

concepts of a B machine:

https://www3.hhu.de/stups/prob/index.php/Alloy

mother father

Alloy: B Translation:
Person
abstract sig Person { father € Person + Man A
father : lone Man mother € Person + Woman A
’ husband
mother : lone Woman B Man ¢ Person A
wife € Man » Woman A
sig Man extends Person { Woman ¢ Person A
) wife : lone Woman husband € Woman + Man A
. Man n Woman = @
sig Woman extends Person { wife ! .

husband : lone Man Man u Woman = Person

}

Fig. 1. Signatures and Fields in the Own Grandpa Model

. Deferred sets, introducing new types for Alloy signatures in the SETS clause
. Constants, introduced in the CONSTANTS clause,

. Predicates about the constants and deferred sets in the PROPERTIES clause,
. DEFINITIONS, aka B macros, to ease translating certain Alloy concepts,

. B Operations for Alloy assertion checks.

T W N~

In particular, our translation does not use variables, invariants or assertions.

2.1 Translating Signatures

We first concentrate on the translation of Alloy’s signatures and fields in Listing|[T]
to B types. An overview of the signatures and fields can be found in Figure [I}

In order to translate the Alloy module SelfGrandpas, we create a B machine
with the same name. Inside, the basic signature Person, defined in line 2 of the
Alloy model, is represented as a user-given set in line 3 of the B machine in
Listing Iﬁ Deferred sets in B can have any size, just like signatures in Alloy. (In
Section [3.3[we show how a limit on the size of the signature is translated.)

The signature features two fields, father and mother, each representing a
relation of members of Person to members of Man and Woman. The keyword
lone states that the relation is in fact a partial function, i.e., a 1-to-at-most-1
mapping. This can be encoded into B using a partial function, as created by the
+-> operator in lines 7 and 8 of Listing [2]

The extending Man and Woman are subsets of Person. As user-given sets in
B are distinct, we introduce constants Man and Woman and assert the subset
property in lines 9 and 11 of Listing [2] As above, the fields wife and husband
are translated into partial functions in lines 10 and 12.

Since Person was declared abstract, two additional properties have to hold
for the sub-signatures: each element of Person has to be in one of the sub-
signatures and the two sub-signatures have to be disjoint. This partitioning of
Person is encoded in B’s set theory in lines 13 and 14 of Listing [2|

3 For the sake of readability, the example translation uses the same identifiers as the
Alloy module. Of course, one has to ensure the translation is valid, e.g., identifiers
do not collide with B’s keywords.

— O © 00 O Uik Wi+~

— =

13
14
15
16
17

Listing 3. Own Grandpa (Alloy - Facts and Predicates)

fact Terminology { wife = “husband }
fact SocialConvention {

no wife & *(mother + father) .mother

no husband & *(mother + father).father

}
fact Biology {
no p : Person | p in p.~(mother + father)
}
fun grandpas[p : Person] : set Person {
let parent = mother + father + father.wife + mother.
husband
| p.parent.parent & Man
}

pred ownGrandpal[m : Man] {
m in grandpas [m]
}

run ownGrandpa for 4 Person

2.2 Translating Facts and Predicates

Alloy facts are added to the B machine’s PROPERTIES clause. For example, the
Alloy fact Terminology of Listing [3] stating that wife is the inverse of husband,
can be encoded in B using the relational inverse, see line 11 of Listing

The first fact in SocialConvention states that your wife cannot be your
mother or the mother of any of your ancestors. The second fact asserts the same
property for husband and father. Both can be translated directly as far as set
union, intersection and closure computation are concerned. The dot join in this
case is interpreted as the composition of the two relations, which is available in
B as using the ; operator. Other interpretations of the dot join operator will be
discussed later. The no keyword enforcing the emptiness of a set is translated to
equalities to the empty set in lines 12 and 13.

The Alloy fact Biology, stating that nobody can be its own ancestors, intro-
duces a quantified local variable p. We translate the fact into a set comprehen-
sion, which again is able to introduce the variable. Again, no enforces emptiness
of the set comprehension. Observe, that quantification in Alloy is over single-
ton sets only. More generally, we translate the quantificationno p : S | Pinto

{pl{p} € SAP}=0.

The function definition grandpas and the predicate definition ownGrandpa,
both with a parameter, are encoded as B definitions to allow their reuse through-
out the model. ownGrandpa only includes the application of grandpas as well as
a membership check and can thus be translated directly.

0~ O ULk W N

e el e e e N e =
© 00O Ul W+~ O

Listing 4. Own Grandpa (B - Facts and Predicates)

MACHINE SelfGrandpas

DEFINITIONS
parent == mother \/ father \/

(father ; wife) \/ (mother ; husband);
ownGrandpa(m) == {m} <: Man & ({m} <: grandpas(m));
grandpas (p) == {tmp | {p} <: Person &

tmp : (parent[parent[{p}]] /\ Man)}
PROPERTIES

wife = husband”™ &
wife /\ (closure((mother \/ father)) ; mother) = {} &
husband /\ (closure((mother \/ father)) ; father) = {} &
{p | {p} <: Person &
{p} <: closurel((mother \/ father))[{p}]} = {} &
card (Person) <= 4
OPERATIONS
run_ownGrandpa = PRE #(m).(ownGrandpa(m)) THEN skip END
END

Translating grandpas however is not straightforward, as it includes a let ex-
pression, which is not available in BE] As an alternative to inlining, we again
create a definition named parent in order to hold the value of the newly intro-
duced variable. Note that this changes the scope in which the variable resides
and might make renaming necessary to avoid conflicts. Furthermore, observe
that there are no free variables in the definition of parent. Otherwise, those
would be passed to the B definition as parameters. As grandpas returns a set
of Persons, the definition again uses a set comprehension.

3 Translating Alloy to B

In this section, we will outline how to translate the components of an Alloy
model into semantically equivalent B components. Each Alloy module is trans-
lated into a corresponding B machine. As of now, our translation supports all
basic Alloy constructs, i.e., everything that is not inside a library. In particu-
lar, this includes integers and the corresponding operations. Regarding libraries,
we support orderings, because they are closely related to state transitions in B.
Further libraries will be considered in the future.

4 Let expressions are available in an extended version of B understood by PrRoB.

3.1 Signature Declarations

Since a signature declaration can be quite complex, let us start with the most
simple one, omitting everything optional, i.e., we only add a named signature
to the model. A signature has the properties of a set, containing atoms of the
signature’s type. For the translation to B, we will create a new deferred set for
each signature.

Additionally, a signature can extend another signature by making use of
either the in or the extends keyword. In this case, we set up a subset of an
already existing set, i.e., for each sub-signature s extending base signature s, we
define a constant s and add s C s, to the PROPERTIES clause.

For the extends keyword, we ensure that extending signatures are pairwise
disjoint by adding s; N s = & for each combination of extending signatures
$1, 82 to the B machine’s PROPERTIES clause.

Next, base signatures can be declared as abstract: Abstract signatures are
used for the sole purpose of being extended by other signatures. They do not
contain elements which are not also elements of other sets [10]. In B, this property
can be modeled by adding the following constraint to the PROPERTIES section:

Sp = U S.

s extends sy

Alloy allows to state the cardinality of signatures by using one of the quan-
tifiers no (empty), lone (at most one), one (exactly one), some (at least one)
or set (any number). The quantifiers can be translated straightforwardly using
cardinality constraints as well as existential and universal quantification.

An Alloy signature may contain a list of fields, i.e., relations defined over
the signature’s elements. Since B natively supports relations, the translation is
straightforward - for a signature s with fields f;, each mapping an element of s
to s;, we add a constant f; and state that f; is a relation between s and s; by
the B constraint f; € s > s;.

It is also possible to make use of quantifiers when declaring field variables:
In this way we can decide on the number of elements that are mapped to. The
default quantification for relations in Alloy is a 1-to-1 mapping (Alloy quantifier
one) while in B it is an 1-to-n mapping (Alloy quantifier set). Therefore, if no
quantifier is given in the Alloy model, the translation to B has to be adapted,
i.e., we add the constraint f; € s — s;, stating that f is a total function.

The translation of the remaining quantifiers is analogous, e.g., the quantifier
lone results in a partial function. In case of set, no additional property is
needed, since it is the default of B. Alloy allows to provide additional constraints
on signature elements together with the signature definition. However, aside of
syntactical sugar, they do not differ from regular constraints stated via fact
declarations and are thus not considered further in this article.

3.2 Fact, Function & Predicate Declaration

Alloy’s fact declaration has an optional name and contains any number of ex-
pressions, which pose additional constraints to be added to the model. The

translation of these expressions will be discussed in Section [3.4} The results are
conjoined and added to the PROPERTIES section of our B model.

Alloy allows to declare functions and predicates for later reuse. As usual, a
function declaration takes a name, a (possibly empty) list of parameters and a
body containing the actual computation. Parameters are scoped and can only
be referred to by the function itself. Furthermore, they are typed as subsets of
an Alloy signature and can again be quantified to constrain the set SizeSEI

Functions will be listed in the DEFINITIONS section of the B model, if the
model contains at least one invocation. Each function is translated into a single
definition with matching parameters, consisting of a set comprehension wrap-
ping the actual body to account for the expected return type, e.g., the function
declaration fun £ [p : S] : S { body } is translated into the B definition
f(p) == {z|p € S Abody}. We include the translation of parameter types con-
joined with the translated body.

Syntax and functionality of the predicate definition is slightly different. For
the predicate to evaluate to true or false instead of computing a value, we omit
the set comprehension.

3.3 Assertion Declaration and Run & Check Commands

In Alloy, assertions can be stated using the assert declaration. An assertion
does not immediately enforce further constraints. Rather it can later be verified
or falsified in a given variable scope, using the run and check commands. To do
so, assertions are named and contain any number of predicates to be checked.
The predicates are translated and added to the DEFINITIONS clause of the model
once they are used inside a run or check command.

The run command instructs the Alloy Analyzer to search for variable states
that satisfy the model’s constraints. It can either refer to a named predicate
introduced by one of the declarations above or include an explicit Alloy predicate.
The check command is used to check an assertion.

We introduce an operation to the B machine for each run and check com-
mand having the translated instructions of the command as its precondition.
The operation’s substitution is a skip, i.e., we only test if the operation can be
executed, without any effect on the model. If the translated model satisfies the
predicate to be checked, its specific operation is enabled.

Together with the predicate to be checked, both run and check include a
scope, used to control the search space. By default, the scope defines an upper
bound for the cardinality of a signature. The size can be set to a fixed value by
using the keyword exactly. We define the translated scope in the precondition
of the corresponding operation. For instance, the command run p for 3 S, for
a predicate p and an unordered signature S, results to card(S) < 3 in B.

To run the Alloy check with PROB one can either use model checking, i.e., try
all possible ways to instantiate the constants of the B translation and examine
whether the operation is covered, or use constraint-based checking, e.g., using

5 Quantifiers are used for typing but do not enforce restrictions on possible models.

the cbc_sequence command of PROB, which will send the operation’s guard
and the properties to PROB’s constraint solver.

3.4 Expressions

Numbers, Identifiers and Blocks The most basic expressions in Alloy are
numbers, identifiers and blocks. Renaming aside, numbers and identifiers can
simply be copied to the B machine.

Integer arithmetic is available both in Alloy and in B. Operators have direct
counterparts and no involved translation is needed. However, the Alloy Ana-
lyzer’s approach of translating to SAT is limited: bit width has to be restricted
and overflows might occur. We discuss several implications in Section [6.1

Two kinds of blocks can be used for grouping and to manage precedences:

(expr) and { expr* }, where the list of expressions in the second case is
connected conjunctively. Both can directly be translated.

Operations Aside of basic expressions mentioned above, Alloy expressions can
be operations on expressions. As usual, the Alloy grammar distinguishes between
unary, binary and comparison operators. For the sake of brevity, we will only
discuss operators, that have no direct correspondence in B.

One such special case is the implication operation: ifExpr (implies | =>)
thenExpr else elseExpr. B does not include a native if-then-else. However, we
can achieve the same behavior using two implications: i f Expr = thenFExpr A
—ifExpr = elseExpr.

The translation of the join operation is the most challenging one. Since all
variables are tuples - either unary or binary ones - this operator can be used
on any two variables (with the exception of two unary variables, which would
always result in an empty set). Joining a field variable (binary tuples) with a
signature variable (unary tuples), returns a set of unary tuples. Joining a field
variable with another field variable, returns a set of binary tuples.

Unfortunately, there is no universal operator to achieve this behavior in B.
Thus, we have a different translation for each of the three possibilities:

— Join of unary tuple e, with binary tuple e, is translated as the relational
image ele.);
— Join of binary tuple e, with unary tuple e, is translated as the relational
image of the inverse binary tuple (e, ~)[eu],
— Join of two binary tuples by, bs is translated as the sequential substitution
(bl; bg)
In order to select the correct translation for the join operation, we compute the

arity of the expressions involved.

Universe and Identity Alloy features two special constants: univ, referring
to the set of all instances of all signatures and ident, the identity relation over

the universe. Both are unavailable in B. To translate univ, we create a top-
level set UNIVERSE and ensure that all base signatures implicitly extend it. This
negatively impacts PROB’s solving capabilities: without distinct sets for differ-
ent signatures, techniques such as symmetry reduction cannot be applied as
efficiently. PROB’s kernel becomes unable to reason on types and thus has to
perform more involved case distinctions. In consequence, we only create the uni-
versal type if necessary. Translation can be avoided in several typical use cases,
e.g., left and right joins with the universe can be translated into domain and
range computation.

Using UNIVERSE, we could translate ident to id (UNIVERSE). However, as
we want to avoid the universal type as much as possible, we again chose a
more specialized translation wherever possible, i.e., instead of translating into
the identity over the universe, we rely on Alloy’s type checking information and
translate into a more restricted identity relation.

Let, Quantified Expressions and Set Comprehensions As discussed in the
introductory example in Section [2] classical B does not feature a let expression.
This can either be resolved by using a definition as done in the example, inlining
or by using the extended version of B understood by PROB.

Alloy features two types of quantified expressions, one that constrains the
cardinality of sets and one that allows to introduce quantified variables. The first
one uses the quantifiers introduced in Section followed by a set expression,
e.g., no Number & Letter, and is translated accordingly. In the second case,
quantified variables are introduced and translated to B using set comprehensions
as well as universal and existential quantification.

Both Alloy and B feature set comprehensions, consisting of local identifiers
and a constraining predicate. Translation is straightforward, as only the predi-
cate has to be translated according to the rules given above.

4 Translating Orderings

Alloy data types are universally based on relations. For instance, sets are unary
relations while scalars are singleton sets. Signatures are not ordered by default.
However, Alloy allows to declare a total order on signature elements.

Alloy offers the operations first, last, next, prev, nexts(s) and prevs(s) for
element access on ordered signatures. For an ordered Signature s,, so/nexts(s)
returns the set of all successors of s € s,.

Initially, we translated ordered signatures to B sequences. Sequences are or-
dered sets of couples whose domains are finite and enumerated from 1..n, where n
is the number of elements. Usually, we translate an Alloy signature to a deferred
set in B having the same name as described in Section[3:1} The ordered signature
can then be represented by a sequence of type s,, i.e., a set of couples of integer
and s,. B directly offers the operations first, last, next, prev for sequences while
nexts(s) and prevs(s) can be implemented using set comprehensions.

However, PROB’s performance on predicates involving sequences can be lack-
ing when compared to (sets of) integers. In consequence, we tried a different
translation: The scope of a signature is defined within the run or check state-
ment of an Alloy model. Assuming the ordered signature s, has size k € N, we
translate it to an interval 1,... k in B.

However, we have to consider that ordered signatures can interact, e.g., when
computing the union. In consequence, we ensure that ordered signatures are
distinct by translating them into disjoint intervals.

Besides that, ordered signatures might interact with unordered ones in Alloy.
We then have to define the unordered signature as a set of integer too to avoid
type errors in B. To do so, we check an Alloy model for interactions between
ordered and unordered signatures prior to the translation.

Using integer intervals, we can define the operations provided by Alloy or-
derings using set comprehensions. For first and last we memorize the bounds
of each defined set in B which are constant values. We then define s,/next and
So/nexts(s) (and prev and prevs(s) analogously) for a signature s, as

next(s) =={zlr=s+ 1Az € s,} nexts(s) == {z|lx > sAx € s,}.

5 Empirical Evaluation

To validate the correctness of our translation we have applied it to a variety of
mathematical laws and have checked that PROB does not find counter examples
to those laws on the translated B models. In this section we will give a brief
empirical evaluation, comparing the Alloy Analyzer and PROB applied to Al-
loy models. Since the Alloy Analyzer translates models to SAT, we assume it
to be efficient for mostly relational models. However, for integers SAT encod-
ing is often inefficient, e.g., one has to encode arithmetic using binary adders.
PRrROB on the other hand has native support for integers, hopefully leading to
better performance for arithmetic calculations. In contrast, relations often cause
a combinatorial explosion, which results in a weaker performance compared to
the Alloy Analyzer.

To explore both extremes, we chose two different models: First, we translate
an Alloy model of the river crossing puzzle, a type of transport puzzle with the
goal to carry several objects from one river bank to another. There are constraints
defining which objects are safe to be left alone, e.g., a fox can not be left alone
with a chicken. The model uses an ordered signature for states.

Second, we translate a model of the n queens problem. Here, the goal is to
place n queens on a n*n chess board without two queens threatening each other.
The chess board is represented as tuples of row and column, encoded as integers.

Benchmarks were run on an Intel Core 17-7700HQ CPU (2.8GHz) and 32GB
of RAM. We use the median time of five independent checks where the runtime
of the Alloy analyzer includes generating the conjunctive normal form.

For the river crossing puzzle, the Alloy analyzer finds a solution in 10ms.
The translated model is valid, yet PROB fails to find a solution in < 5 minutes.

10

35000 1 ___ prog
----- Alloy MiniSat
30000 { —-- Alloy SAT4)
25000 :
’:E: 20000 H)
o e
£ 15000 4 £
=] B
.'- ' /
10000 | I~
[
5000 A A
;i
04 O O OOy L 9 AU R AU
4 6 8 10 12 14 16 18 20

Fig. 2. Find a Single Solution for the n Queens Puzzle with varying N

The B model defines three relations, two of which have an ordered signature
for a domain. Using a total function instead of a relation improves performance:
PrOB now finds a solution in ~ 7s. After rewriting the model in idiomatic
B style by hand, PROB can solve it in about 80ms. However, this translation
is a manual optimization using background knowledge and cannot simply be
generalized. An exact opposite to our translation is [28], which uses the Alloy
Analyzer’s Kodkod API [30] to translate B to SAT. When we use this backend
within PROB, the unmodified Alloy translation is solved in about 0.3 seconds.
Note that in recent work [15], we have shown that an integration of the Alloy and
PRrROB backend can be very useful for complex constraint satisfaction problems.

We evaluated the n queens model for n € 4..20 using PROB and the Alloy
analyzer with the MiniSat and SAT4J backend. The evaluation in Figure 2]shows
that PROB is the fastest solver for the chosen model. The runtime of the Alloy
analyzer gets worse when increasing the bit-width for n > 8 and n > 16.

6 Improvements over existing Alloy Tools

Even though our translation cannot always compete with the Alloy Analyzer as
we have demonstrated in Section [5] it provides several interesting improvements
and applications.

6.1 Integers

Mathematically speaking, integers in Alloy are unsound due to overflows. In
contrast, PROB has multi-precision integers without overﬂowsﬂ Using [24] the

5 CLP(FD) overflows are caught and handled by custom implementation.

11

Alloy Analyzer can detect models with overflows, but to our knowledge cannot
detect where an overflow has prevented a model being found. For this purpose,
an alternative to translation is to use an SMT-based backend, e.g., [31/7] or [22].

For example, for the following model Alloy 4.2 finds a counter example, while
PROB correctly determines that no counter example exists. If overflows are per-
mitted (the default), the Alloy Analyzer finds a counter example for the first
formula. If overflows are forbidden, no counter example is detected by the Al-
loy Analyzer for the first formula, but then a counter example is found for the
second one. With higher integer ranges the translation fails.

open util/integer
abstract sig setX { }
one sig V {

SS: setX -> setX
}

assert Bug {
#(V.8S)>1 implies #(V.SS->V.SS) >3
#(V.8S->V.8S)=0 iff no V.SS

X
check Bug for 3 setX, 7 int // for 8 int Translation capacity exceeded

6.2 Higher-Order Quantification

The universal quantification below, using the same signatures as in Section [6.1]
above, causes an eHOIEI7 while PROB can check the validity of this assertion. An
extension of Alloy called Alloy* [25] might be able to handle this example. In
future, we would like to investigate translating Alloy* models to B.

assert HO {

V.SS + V.SS = V.SS

all xx : V.8S | (xx in V.TT implies xx in V.SS & V.TT)
}
check HO for 3 setX

6.3 Proof

Finally, our translation to B also makes it possible to apply its provers, such as
[3]. One could thus try and develop a proof assistant for Alloy, similar to the
work pursued in [32] by a translation to Key.

In the example below, we can prove the assertion using AtelierB’s prover for
any scope, by applying it to the translated B machine. We check that the move
predicate preserves the invariant src+dst=0bject.

sig Object {}
sig Vars {

7 Analysis cannot be performed since it requires higher-order quantification that could
not be skolemized.

12

src,dst : Object
}
pred move (v, v’: Vars, n: Object) {
v.src+v.dst = Object
n in v.src
v’.src = v.src - n
v’.dst = v.dst + n
}
assert add_preserves_inv {
all v, v’: Vars, n: Object |
move [v,v’,n] implies v’.src+v’.dst = Object
X

check add_preserves_inv for 3

Note that our translation does not (yet) generate an idiomatic B encoding,
with move as a B operation and src+dst=0bject as an invariant: it generates
a check operation encoding the predicate add_preserves_inv with universal
quantification. Below we show the B machine we have input into AtelierB. It
was obtained by pretty-printing from PROB, and putting the negated guard of
the add_preserves_inv into an assertion (so that AtelierB generates the desired
proof obligation).

MACHINE alloytranslation

SETS /* deferred */
Object_; Vars_

CONCRETE_CONSTANTS
src_Vars, dst_Vars

PROPERTIES
src_Vars : Vars_ --> Object_
& dst_Vars : Vars_ --> Object_
ASSERTIONS
'(v_,v__,n_).(v_ : Vars_ & v__ : Vars_ & n_ : Object_
=>
(src_Vars[{v_}] \/ dst_Vars[{v_}] = Object_ &
v_ |->n_ : src_Vars &

src_Vars[{v__}] = src_Vars[{v_}] - {n_} &
dst_Vars[{v__}] = dst_Vars[{v_}] \/ {n_}
=>
src_Vars[{v__}] \/ dst_Vars[{v__}] = Object_)
)

END

7 Related Work, Future Work and Conclusions

Translations to Alloy directly have been pursued from B [23I21] and also Z [20].
Other formal languages have previously been translated to B as well [27]8]. A
comparison between TLA+ and Alloy can be found in [19].

The original paper [9] (notably figure 2 in [9]) provides a semantics of the
kernel of Alloy in terms of logical and set-theoretic operators. Our translation

13

rules can be seen as an alternate specification of this semantics, using the B
operators and also using B quantification.

While our translation of orderings, as given in Section [d] allows to translate
arbitrary Alloy models, the resulting B machine is often suboptimal for PROB’s
solving kernel. To improve performance, we want to investigate a translation
into a (bounded or explicit) model checking rather than a constraint problem.
In particular, we intend to translate predicates over states and their successors
into B operations. While this is not possible in general, e.g., in the presence of
predicates relating more than two states, it would allow us to use symbolic model
checking algorithms [I4] to find solutions. [26] presents an imperative extension
of Alloy, i.e, making a step towards B and its operations. In a similar fashion,
[506] extended Alloy with actions or bounded model checking [4]. It would be
interesting to extend our translation and produce idiomatic B machines with B
operations from such Alloy models.

In summary, we have presented an automatic translation of Alloy to B, which
provides an alternative semantic definition of Alloy, enables proof and constraint
solving tools of B to be applied, and can serve as a vehicle of communication
between the Alloy and B community.

References

1. J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA, 1996.

2. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In Proceedings PLILP, volume 1292 of LNCS, pages 191-206. Springer, 1997.

3. ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France, 2009.
Available at http://www.atelierb.eu/.

4. A. Cunha. Bounded Model Checking of Temporal Formulas with Alloy. In Pro-
ceedings ABZ, volume 8477 of LNCS, pages 303-308, 2014.

5. M. F. Frias, J. P. Galeotti, C. L. Pombo, and N. Aguirre. DynAlloy: upgrading
alloy with actions. In Proceedings ICSE, pages 442—-451, 2005.

6. M. F. Frias, C. L. Pombo, J. P. Galeotti, and N. Aguirre. Efficient Analysis of
DynAlloy Specifications. ACM Trans. Softw. Eng. Methodol., 17(1):4:1-4:34, 2007.

7. A. A. E. Ghazi and M. Taghdiri. Analyzing Alloy Formulas using an SMT Solver:
A Case Study. CoRR, abs/1505.00672, 2015.

8. D. Hansen and M. Leuschel. Translating TLA+ to B for validation with ProB. In
Proceedings iFM, volume 7321 of LNCS, pages 24-38. Springer, 2012.

9. D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Transactions
on Software Engineering and Methodology, 11:256-290, 2002.

10. D. Jackson. Software Abstractions: Logic, Language and Analysis. MIT Press,
2006.

11. J. Jaffar and S. Michaylov. Methodology and Implementation of a CLP System.
In Proceedings ICLP, pages 196-218. MIT Press, 1987.

12. S. Krings and M. Leuschel. Constraint Logic Programming over Infinite Domains
with an Application to Proof. In Proceedings WLP, volume 234 of EPTCS. Elec-
tronic Proceedings in Theoretical Computer Science, 2016.

13. S. Krings and M. Leuschel. SMT Solvers for Validation of B and Event-B models.
In Proceedings iF'M, volume 9681 of LNCS. Springer, 2016.

14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

S. Krings and M. Leuschel. Proof Assisted Bounded and Unbounded Symbolic
Model Checking of Software and System Models. Sci. Comput. Program., 2017.
S. Krings, M. Leuschel, P. Korner, S. Hallerstede, and M. Hasanagic. Three Is a
Crowd: SAT, SMT and CLP on a Chessboard. In Proceedings PADL 2018, pages
63-79, 2018.

M. Leuschel, J. Bendisposto, I. Dobrikov, S. Krings, and D. Plagge. From An-
imation to Data Validation: The ProB Constraint Solver 10 Years On. In J.-L.
Boulanger, editor, Formal Methods Applied to Complex Systems: Implementation
of the B Method, chapter 14, pages 427-446. Wiley ISTE, Hoboken, NJ, 2014.

M. Leuschel and M. Butler. ProB: A model checker for B. In Proceedings FME,
volume 2805 of LNCS, pages 855-874. Springer, 2003.

M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf., 10(2):185-203, 2008.

N. Macedo and A. Cunha. Alloy meets TLA+: An exploratory study. CoRR,
abs/1603.03599, 2016.

P. Malik, L. Groves, and C. Lenihan. Translating Z to Alloy. In Proceedings ABZ,
volume 5977 of LNCS, pages 377-390, 2010.

P. J. Matos and J. Marques-Silva. Model Checking Event-B by Encoding into
Alloy. In Proceedings ABZ, volume 5238 of LNCS, page 346, 2008.

B. Meng, A. Reynolds, C. Tinelli, and C. W. Barrett. Relational constraint solving
in SMT. In Proceedings CADE, volume 10395 of LNCS, pages 148-165, 2017.

L. Mikhailov and M. J. Butler. An Approach to Combining B and Alloy. In
Proceedings ZB, volume 2272 of LNCS, pages 140-161. Springer, 2002.

A. Milicevic and D. Jackson. Preventing arithmetic overflows in Alloy. Sci. Com-
put. Program., 94:203-216, 2014.

A. Milicevic, J. P. Near, E. Kang, and D. Jackson. Alloy*: a general-purpose
higher-order relational constraint solver. Formal Methods in System Design, Jan
2017.

J. P. Near and D. Jackson. An Imperative Extension to Alloy. In Proceedings
ABZ, volume 5977 of LNCS, pages 118-131, 2010.

D. Plagge and M. Leuschel. Validating Z Specifications using the ProB Animator
and Model Checker. In Proceedings iF'M, volume 4591 of LNCS, pages 480-500.
Springer, 2007.

D. Plagge and M. Leuschel. Validating B, Z and TLA T using ProB and Kodkod.
In Proceedings FM, volume 7436 of LNCS, pages 372—-386. Springer, 2012.

A. Siilflow, U. Kiithne, R. Wille, D. Grofse, and R. Drechsler. Evaluation of SAT-like
Proof Techniques for Formal Verification of Word-Level Circuits. In Proceedings
IEEE WRTLT, Beijing, China, Oct. 2007. IEEE Computer Society Press.

E. Torlak and D. Jackson. Kodkod: A Relational Model Finder. In Proceedings
TACAS, volume 4424 of LNCS, pages 632—647. Springer, 2007.

E. Torlak, M. Taghdiri, G. Dennis, and J. P. Near. Applications and extensions
of Alloy: past, present and future. Mathematical Structures in Computer Science,
23(4):915-933, 2013.

M. Ulbrich, U. Geilmann, A. A. E. Ghazi, and M. Taghdiri. A Proof Assistant for
Alloy Specifications. In Proceedings TACAS, volume 7214 of LNCS, pages 422-436,
2012.

15

	A Translation from Alloy to B

