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Chapter 1

Introduction

This deliverable describes the progress on the multi-simulation framework
and the model-based testing infrastructure, in particular in response to de-
mands by other workpackages and in response to decisions taken at the last
review. One major decision was to use the FMI standard as the basis of our
multi-simulation tool. This switch is one of the main contributions described
in this deliverable. In the rest of this introduction chapter, we summarise
this and other important contributions and developments achieved in the
second period of the ADVANCE project. A more detailed account of the
contributions can then be found in the later chapters.

Simulating Models with Theories

The Event-B language can be extended by using the Theory plug-in. Both
industrial workpackages, WP1 and WP2 require mathematical extension to
model the case studies. In WP1, the interlocking model requires the transi-
tive closure operator for relations, e.g., to compute reachable track sections
starting from a given train position. Similarly, in WP2 various mathemati-
cal extensions such as set summation are used to encode the smart grid case
study. It is thus important that these mathematical extensions are supported
by our multi-simulation tool in general, and ProB in particular. This has
been successfully achieved in Chapter 2 of this deliverable.

Co-Simulating According to the FMI-standard

In the previous review it was suggested that we build the ADVANCE multi-
simulation framework on the FMI standard. This undertaking was tackled in
the second period of the review, and some of this work described in Chapter 3
of the deliverable. A lot of work went into the ProB 2.0 Scripting architecture,
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to enable one to write multi-simulation masters in Groovy or Java. Another
notable development is the Components Diagram Editor, which enables one
to compose FMUs within the Rodin IDE. With these contributions in place,
the last period can now focus on using our multi-simulation framework for
simulating cyber-physical systems in the smart grid and railway domain.
High-level, discrete components can be described in Event-B and simulated
with ProB, continuous or low-level hardware components can be simulated
using FMI-compliant simulation tools.

Visualization

Visualization is important to quickly assess the behaviour or current state of
a formal model. Various visualizations previously only available in the ProB
Tcl/Tk version are now available for Event-B models within Rodin. Some
new visualizations for co-simulation were developed, in order to observe vari-
able values over a certain trace of the system. This work is described in
Chapter 4. A lot of effort went into the graphical, domain specific visual-
ization using HTML and SVG technology. It allows, e.g., to render complex
railway topologies for the formal models developed in WP1. This work is
still ongoing and will be reported in the final deliverable.

Model-Based Testcase Generation

Thus far there has been relatively little need for testcase generation coming
from the workpackages WP1 and WP2. We foresee more activities in the
last period of ADVANCE. In preparation, the existing algorithm has been
improved and made more generic. Various features have been developed
mainly according to the needs of WP5, with an interplay between testing
and safety analyses. The minimum-maximum coverage information arose
out of the need to analyse the state explosion occuring during one WP5 case
study, and has proven to be useful in providing a quick overview of the state
space to the formal modeler.

Constraint Solving

The power and usefulness of many features of our multi-simulation and test-
case generation framework depend on the performance of the underlying con-
straint solver. Some of the effort that went into these tasks is summarised
in Chapter 6. Of interest here are the performance improvements for ap-
plications in the railway workpackage WP1, and the automatic detection of
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certain infinite comprehension sets, which greatly simplifies the modelling
required by industrial users.

Summary

We have made substantial progress on our multi-simulation tool, which is now
capable of seamlessly simulating cyber-physical system components. We have
made major improvements in the scalability of ProB, both for simulation of
high-level models, for complicated constraints in particular in light of model-
based testing.
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Chapter 2

Theory-Plug-in Support

The Theory plug-in [MBER10] provides the ability to append new data types
and operators to Event-B’s mathematical toolkit and extend Rodin’s proof
rules.

E.g. the railway sector case study [Col12] makes use of the Theory plug-in
to define new mathematical operators and to facilitate the proofs.

We give a brief overview about how operators can be defined in a theory
and how ProB can deal with that kind of definition. In the next paragraphs,
we illustrate which ways the Theory plug-in offers to define new data types
and operators and how ProB can handle them automatically. We also show
the limitations of the approach and how ProB will be able to handle prob-
lematic operators by adding annotations manually.

2.1 Datatypes
The Theory plug-in allows to define recursive data types similar to algebraic
data types known from functional programming languages. We take the
theory of inductive lists as an example. A list is either empty or has a first
element connected to the rest of the list which again is a list. We have two
constructors:

• nil returns the empty list.

• cons(head, tail) constructs the list which has head as first element fol-
lowed by the list tail.

Both constructors constitute a new operator in Event-B. The data type List
itself is also an operator which returns the set of all lists over a given set.

Lists makes also use of parametric polymorphism, another feature of the-
ories. E.g. for the list example, we have a generic type parameter T to allow
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lists for arbitrary sets. The argument head of the operator cons is of type
T , the argument tail of type List(T ).

The datatypes of the Theory plug-in are similar to the free types of the
Z notation. In a previous project [PL07] to support the Z notation by ProB
we implemented an internal representation of free types. To re-use this effort
we adapted the implementation in a way that it now also supports type
parameters. For animation the constructors and destructors are directly
replaced by the internal syntax constructs for free type constructors and
destructors.

We can also encounter the situation that the type argument of a list is
not only a type. E.g. the expression List(1 ..9) specifies the set of lists whose
elements can be integers between 1 und 9. Internally we use comprehension
sets like

List(1 .. 9) = { l · l 2 List(Z) ^
(l = cons(h, t)) h 2 1 .. 9 ^ t 2 List(1 .. 9)) }

Note that this definition is recursive, in the comprehension set, we refer again
to List(1 .. 9). We explain the consequences of this in more detail below in
section 2.3.

2.2 Directly defined operators

Directly defined operators can directly expressed by another predicate or
expression. Let’s take the theory of sequences as functions as an example.
The set of sequences over a set S is defined by the operator Seq(S). Seq(S)
is directly defined by the expression {n 7! f | n 2 N ^ f 2 1 .. n! S}.
Thus, a sequence is a pair whose first element is the size of the sequence,
and its second element is a total function which defines the elements at each
position. Another example for a directly defined operator is the operator
seqIsEmpty(s) to check whether a sequence s is empty. It is defined by the
predicate prj1(s) = 0.

We can animate the behaviour of such an operator by just replacing the
operator with the given definition.

2.3 Recursively defined operators

Recursively defined operators are defined by a distinction of cases for an
operator argument. E.g. the size listSize(l) of an inductive list can be
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defined recursively by:

listSize(nil) = 0
listSize(cons(head, tail)) = 1 + listSize(tail)

We implemented recursive operators by translating an application of the
operator to an B/Event-B function application with the particularity that
the function is recursively defined:

listSize(l) = { a, r · a = nil) r = 0 ^
a = cons(head, tail)) r = 1 + listSize(tail) }(l)

Please note that we omitted existential quantifiers in the formula above to
make it more readable. If an operator defines a predicate instead of an
expression, we replace the application of the operator by a membership test.

ProB’s support for recursive functions was limited to global functions
that depend not on a current state. But the theory plug-in’s datatypes can
be used in a more general style. E.g. the expression List(X) specifies a
the set of lists whose elements in the set X. But X can be a variable of
the machine or even a parameter of an operation. Thus we needed a more
flexible way to specify recursive functions. We introduced a new element
recursive(I, S) in the internal abstract syntax tree of ProB that allows us
to define an identifier I that refers to the specified comprehension set S. We
had to adapt the internal datastructure that represents symbolic sets such
that the recursive definition is respected when evaluating the set.

The translation of e 2 List(X) with X beeing a set of integers is now.

e 2 recursive(L, { l · l 2 List(Z) ^
(l = cons(h, t)) h 2 X ^ t 2 L) }).

2.4 Axiomatic defined operators
The most flexible approach to define the behaviour of an operator is to specify
a set of axioms. We currently do not see any feasible way to provide generic
support for expressions that use these operators.

An example for an axiomatic definitions is the summation operator, whose
behaviour is defined by the following three axioms:

axm1 SUM(?) = 0
axm2 8t, x·t 2 T ^ x 2 Z) SUM({t 7! x}) = x
axm3 8s, t·s 2 T 7! Z ^ t 2 T 7! Z ^ s \ t = ?

)SUM(s [ t) = SUM(s) + SUM(t)

10



2.5 Annotations for ProB
In the previous sections, we explained how operators can be animated by
analysing their definition. For practical purposes it can be more effective
to instruct ProB directly how an operator should be handled. We give two
examples where an alternative to the standard behaviour described above is
preferred.

2.5.1 Transitive closure

The closure operator which returns the transitive closure of a relation r is
defined by using a direct definition:

closure(r) = fix(�s·s 2 S$ S | r [ (s; r))

The fixpoint operator fix is also defined by a direct definition

fix(f) = inter({s|f(s) ✓ s}).

In summary, the operator could theoretically be handled automatically by
ProB by replacing closure(r) with the expression

inter({s|r [ (s; r) ✓ s}).

In practice, the number of possibilities for the quantified variable s in the
expression becomes large very fast. If s is of type T $T , s has 2|T |2 possible
values. For |T | = 4, ProB must check 65536 sets, for |T | = 5 already more
than 33 million sets. Thus for most models, ProB is not capable of handling
this direct definition effectively.

On the other hand, ProB has already built-in support for classical B’s
closure1 operator. To handle the closure operator effectively, we have added
an annotation to the operator definition that instructs ProB to use its built-in
closure support (rather than the direct definition). The built-in closure sup-
port has no problem dealing with large relations, as the following transcript
from ProB’s REPL (Read-Eval-Print-Loop) shows:

>>> f=closure1(%x.(x:1..5000|x*x)) & f[{2}] = r
Existentially Quantified Predicate over f,r is TRUE
Solution:

f = #5077:{(1|->1),(2|->4),...,(4999|->24990001),(5000|->25000000)} &
r = {4,16,256,65536}

>>> g=closure1(%x.(x:1..5000000|x*x)) & g[{2}] = r
Existentially Quantified Predicate over f,r is TRUE
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Solution:
g = closure1(%x.(x : (1 .. 5000000)|x * x)) &
r = {4,16,256,65536,4294967296}

>>> h=closure1(%x.(x:NATURAL|x/2)) & h[{2**40}] = r
Existentially Quantified Predicate over h,r is TRUE
Solution:

h = closure1(%x.(x : NATURAL|x / 2)) &
r = {0,1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,
65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,
33554432,67108864,134217728,268435456,536870912,1073741824,
2147483648,4294967296,8589934592,17179869184,34359738368,
68719476736,137438953472,274877906944,549755813888}

The first expression shows that the transitive closure f of a 5000 element
relation can be computed quickly (in about 50 ms). The last two expressions
show that, for large or infinite relations, ProB reverts to computing the
closure lazily on demand. The computation is instantaneous (10 ms or less).

2.5.2 Sum and Product

The sum operator as described above cannot be animated by ProB without
additional information because axiomatic definitions are not supported. By
explicitly instructing ProB we can compute the sum operator by using the
classical B sum operator ⌃:

SUM(s) = (⌃t, x·t 7! x 2 s|x)

Currently, ProB supports a theory with the sum operator together with
a product operator (Fig. 2.1). We have added an annotation that instructs
ProB to use its built-in support for sum and product.

2.5.3 Implementation of the Annotation Mechanism

ProB checks if there exists a file with the name ⌧theory_name�.ptm in
the same directory of the theory and reads its content. A first version only
allows tags that show ProB that this is an operator with an alternative
implementation. E.g. “SUM is the summation operator”.

We examine upcoming theories to check whether a more flexible approach
is beneficial. E.g. the file could contain instructions how the value of an
operator can be computed effectively. We currently do not see a need to
provide this feature for the theories known to us.
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Figure 2.1: Screenshot of an animation using the theory of sum and product
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2.6 Theorems in Theories
A theory might also contain arbitrary theorems. They are usually provided to
facilitate proofs. ProB completely ignores the theorems because it is currently
not our goal to check the correctness of the theory but to animate the models
that use it.

In future, it could be interesting to provide support for checking theories,
too. This would be especially helpful for users who define their own theories.

2.7 Currently supported standard theories
The developers of the Theory plug-in contributed a project with a set of
theories. These are candidates for standard theories when the next version
of the plug-in will be released.

All operators defined in these standard theories are now supported

by ProB:

• “Sum and Product” defines operators to compute the sum or product
of integer sets. It is fully supported by specific tagged operators as
explained above (2.5.2).

• “Binary Tree” defines a new polymorphic data type to represent binary
trees and operators on these. The structure is very similar to the
“List” theory. It uses recursively defined operators, all operators are
supported.

• “Bool Ops” defines operators on Boolean values (AND, OR, NOT ). It
uses direct operator definitions, all operators are supported.

• “Fix Point” uses a direct operator definition, is theoretically supported
but usually to complex to animate.

• “List” defines a polymorphic datatype and operators on lists. The op-
erators are all recursively defined, all operators are supported.

• “Main” contains no operators, just theorems and proof rules which is
not relevant for animation.

• “Seq” is a theory over sequences. All operators are defined by direct
definitions and are supported (see 2.2).

• “closure” is a theory which defines an operator that yields the transitive
closure of a relation. It supported by a specific tagged operator (see
2.5.1).
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There is some demand within the Advance project to support a theory of
real numbers. (This would allow to express certain models in Event-B rather
than requiring co-simulation with continuous models.) This would, however,
require considerable implementation effort to extend the ProB kernel for
real numbers and the associated operators.
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Chapter 3

Multi-Simulation Framework

3.1 Co-simulation

As mentioned in D4.2, in order to enable co-simulation of discrete models in
Event-B with continuous models of the environment, exported from other lan-
guages and tools, we have decided to use an industrial level tool-independent
standard Functional Mock-up Interface1, which specifies cross-platform API
for the exchange and simulation of dynamic models. The Co-Simulation part
of the standard is based on the concept of a Master-Slave architecture, where
the master is responsible for data exchange and synchronisation of the sim-
ulation of all slaves, i.e. subsystems exported from other environments as
Functional Mock-up Units (FMUs). In order to reflect this architecture we
have defined our master algorithm and slave semantics in a formal way.

Our simple generic master algorithm has been designed based on the
algorithm example from the FMI Standard document[?]. The abstract form
of our algorithm, within the context of discrete-continuous co-simulation,
is shown in Figure 3.12. At every simulation step of fixed time period the
CoSim master has to perform simulation of each slave (either continuous
CStep or discrete DStep) and synchronise the simulation on what we call a
Wait event, which marks the end of simulation cycle. Here we distinguish
the continuous simulation step of FMUs and the discrete simulation step of
Event-B models.

To synchronise the simulation the master keeps a record of the global
simulation time. The state of an individual slave can thus be defined as a
function

1https://www.fmi-standard.org
2
Read the graph from top to bottom, left to right
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Figure 3.1: Abstract view of the co-simulation master

F : T ime! V (3.1)

where V is the state of the slave’s internal variables. The evolution of
each variable (and thus each slave) over time can also be represented on a
graph:

Figure 3.2: The state of a slave over time

where g is the state function at time + t. The master only synchronises
simulation at fixed points in time, when it exchanges data between connected
slaves and simulates them to the next step. If we assume that t equals the
step period of the master, the simulation semantics of each slave can be
formally defined using Event-B notation as follows:

machine C
variables F, time
event CStep
any i, t, g
where

g 2 [time . . . time+ t]! V
g(time) = F (time)
P (g, i, F, time, t)

then

time := time+ t
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F := F [ g

where parameter i is slave inputs and P is model properties, or predicates
that must hold. This formal model specifies the semantics of continuous
slaves, as it depends on time and is based on continuous function F . For the
discrete slaves of Event-B we can derive a simpler formalism that depends
purely on input and internal variables:

machine D
var V,O
event DStep =
any i
where

i 2 T
then

V,O := S(V,O, i)

where i is the input, O is internal variables that are also outputs, and
S is a discrete state function. As global time is absent in Event-B models,
to synchronise them with other slaves the master uses the Wait event as an
indication of the end of discrete simulation step. The Wait event must be an
existing Event-B machine event, which pauses further execution at the end
of a simulation cycle.

The demonstration of the above concepts is shown below on a simple wa-
ter tank example, which consists of a plant (water tank) with constant water
outflow and a controller that controls the valve of input flow to maintain the
desired water level:

Figure 3.3: Controlled water tank model

The plant and controller can be modelled as continuous and discrete slave,
accordingly, which exchange continuous signal level and discrete signal valve.
Given the formalism above, the simulation can be represented as a state
machine in Figure 3.4.

Note that the Wait event performs two roles here: synchronisation of
the simulation of both slaves and data exchange, in which case it needs to
be executed at the start of simulation step. This duality of the Wait event
is chosen on purpose in order to enable Event-B development starting from

18



Figure 3.4: Abstract state machine of discrete-continuous co-simulation

abstract models, where a single abstract event could model the whole control
step. In a more concrete model such an event would be split into a dedicated
event for data exchange and a Wait event. Also note that the order of the
simulation of two slaves does not matter in this simple example – in fact they
could be executed in parallel, and the same principle applies to our generic
master.

In a more concrete form our master algorithm is designed to comply
with FMI standard (though it is not part of the standard itself), i.e. we
have developed it to reflect the use of FMI API. The outline of the master
algorithm is as follows:

1. Instantiate slaves

2. Initialise slaves

3. Set global time/begin simulation loop

4. Read all outputs

5. Write all inputs

6. Perform simulation step

7. Increase time by step size; if time has reached simulation time then
stop, otherwise go back to step 4

8. Terminate slaves

The FMI API defines a method for each action on a slave, thus master
only needs to operate with API. We followed the same approach by defining
a similar API for Event-B slaves and moved it to an abstract slave, which
we call Component. Thus both Event-B and FMI components implement
the same API, which greatly simplifies the master and allows us to extend
co-simulation to other types of components without modifying the master.
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The metamodel that reflects the data structure of co-simulation framework
and relationships between involved entities is shown in Figure 3.5.

Figure 3.5: Metamodel of the co-simulation framework

As you can see the simulation API is defined in the abstract class Com-
ponent, and consists of key methods, required by the master: instantiate,
initialise, writeOutputs, readInputs, doStep and terminate.

For FMU components the mapping to implementation of our API is
straightforward, as it directly maps to corresponding FMI API. In order
to operate FMI models from Rodin we have implemented an interface in the
ProB Core using the JFMI Java wrapper3 on top of the FMU SDK4.

For the implementation of Event-B components we used the formalism
described earlier, which maps the simulation step marked by Wait event(s) to
the method doStep, essentially executing a sequence of events non-determinis-
tically until one of the Wait events is enabled (multiple events can be defined

3http://ptolemy.eecs.berkeley.edu/java/jfmi/
4http://www.qtronic.de/en/fmusdk.html
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as Wait events). The data exchange is implemented by writeOutputs and
readInputs methods. The former is implemented by executing one of the
special ReadInput events of Event-B machine (again, multiple events can
be defined as ReadInput events, but they must match in the number and
name of parameters). The writeOutputs method is implemented by simply
reading a value of the corresponding Event-B variable to the output port, as
reading variables does not require an event.

To demonstrate how Event-B machines map to Event-B Components used
in the simulation we show a simple refinement of a water tank valve controller
model in Event-B:

machine tankController0
variables valve
events

SwitchOn = any l where l < LT then valve := on end

NoSwitch = any l where l � LT ^ l  HT then skip end

SwitchOff = any l where l > HT then valve := off end

end

In this abstract machine all three events are ReadInput events and Wait
events. Only one of these events gets executed in a simulation cycle, depend-
ing on the value of l that is an input signal from the plant.

When tankController0 is refined to introduce multiple sequential discrete
steps, then the ReadInput and Wait events become distinct. tankController0
could be refined as a state machine as follows:

machine tankController1 refines tankController0
variables valve, level, state
events

ReadLevel = any l where state = 0 then level := l end

DecideOn = where state = 1 ^ level < LT then state := 2 end

DecideSkip = where state = 1 ^ level � LT ^ level  HT
then state := 3 end

DecideOff = where state = 1 ^ level > HT then state := 4 end

SwitchOn refines SwitchOn =
witness l = level where state = 2 then valve := on end

NoSwitch refines NoSwitch =
witness l = level where state = 3 then skip end

SwitchOff refines SwitchOff =
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witness l = level where state = 4 then valve := off end

end

In the refinement ReadLevel is a ReadInput event and SwitchOn, NoSwitch
and SwitchOff are Wait events. This flexibility of indicating multiple
and/or same events as ReadInput and Wait events enables the refinement
of control events and, most importantly, verification and co-simulation of
Event-B components from the early stage of development, which is crucial
for safety-critical systems.

3.2 Components Diagram Plug-in
The key elements required for the FMI co-simulation are the master algo-
rithm, described in 3.1, and a component-connection graph that captures the
topology of subsystem (slave) composition into a complete simulated model.
The graph is used by the master to perform data exchange and coordination
of the simulation of all components. For our co-simulation framework we have
designed a visual diagram editor and simulation surface for Rodin that allows
to import components (currently Event-B or FMU) to the diagram as nodes,
connect them via input/output ports, validate the resulting composition and
control/display the simulation state with time. Below we demonstrate the
capabilities of the tool and the results of co-simulation experiments with one
of the leading modelling and simulation environments Dymola5.

In order to create a composed model for co-simulation we first need to
create an empty components diagram and import the required components.
A diagram can be created by going to the standard new elements wizard:
File->New->Example->Components Diagram. The diagram always consists
of two files: the diagram file itself .cmd and a corresponding domain file
.cmp, both of which will be created in a workspace folder of our choice. Note
that the Event-B Explorer view in Rodin does not show any resources apart
from Event-B. To see the diagram files either resource view filters must be
turned off or another project view can be used, such as the Project Explorer
or Navigator. When the diagram is created it is opened in the components
editor automatically (Figure 3.6).

To import a component we use the Import button on the diagram toolbar
(in the main Rodin toolbar). The button opens a Component Import Wizard
(Figure 3.7), where we can either browse the file system or the workspace for
components. Currently only Event-B machines and FMUs are supported for
import.

5http://www.3ds.com/products-services/catia/portfolio/dymola
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Figure 3.6: An empty components diagram

Figure 3.7: Component import wizard

Depending on the selected component (Event-B or FMU) a corresponding
component definition wizard page is loaded. If we select an FMU file and
press Next, the FMU Component Definition page is displayed (Figure 3.8),
which shows all the variables declared in the loaded FMU, grouped into
inputs, outputs and internal variables. The variables of interest that we
want to observe during the simulation can be selected here, before the Finish
button is pressed and a component node is created on the diagram.

Figure 3.8: FMU component definition page
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In case an Event-B machine file is selected, first, the Event-B Parameter
Definition page is loaded (Figure 3.9), which lets us to define the simulation
step period of the Event-B component, Real-type signal conversion precision
(magnitude of the conversion from FMU Real type to Event-B integer and
back), a dedicated Event-B variable for time (optional), and ReadInput and
Wait events. The wizard cannot be progressed until the Wait events are
added. The ReadInput events are optional, as some components may not
have any input ports.

Figure 3.9: Event-B component parameter definition page

The second definition page of Event-B components is the Variable Defi-
nition page (Figure 3.10), which lets us to add input/output ports to a com-
ponent and select Event-B variables to be displayed on the diagram. When
adding ports a pop-up window is shown where we have to specify correct
port type (Real, Integer, Boolean or String) and either a ReadInput event
parameter (for input ports) or Event-B variable (for output ports).

When the configuration of Event-B component is finished and the compo-
nent is imported, saving the diagram will also save our configuration in the
corresponding Event-B machine, which will be used in succeeding imports of
the same component (it can be still reconfigured if necessary).

After components are imported they can be connected via input/output
ports using Connectors. Connectors are required due to the limitations of
the GMF framework that was used to implement the diagram. To connect
an output port to an input port a Connector element needs to be selected
from the diagram palette and added to the diagram. A Link element then
can be used to connect a port to a connector. Only a single link is allowed
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Figure 3.10: Event-B component variable definition page

per port and a single output can be linked to a connector. The attributes of
any component can be modified at any point in the Properties view.

When done with the connection graph the system can be simulated either
in a single run (Simulate button) or step-by-step (Simulate Step button). At
the beginning of the simulation a dialog is displayed, where we can enter the
duration of the simulation and the step size (Figure 3.11).

Figure 3.11: Simulation dialog

If the Simulate Step mode is selected the simulation will be executed for
one step and paused, at which point the next step can be simulated by re-
peated press of the Simulate Step button, or the system can be simulated
until the end time by pressing Simulate. The values of all the variables, ports
and connectors are updated between the simulation steps and displayed on
the diagram. Complete results of the simulation, i.e. the time of communi-
cation points of the master and values of all the variables, are written at the
end of simulation into a results.csv file in the same directory where the
diagram is located. Additionally, signals can be plotted over time using the
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Display component, which can have only input ports. When double-clicked
at any time before, during or after simulation it shows a plot of the connected
input signals. During the simulation the plot is updated in real time.

To test the functionality of our framework we have conducted a number
of experiments with the available simulation environments that support the
FMI standard. One of the best tools in our opinion is a Modelica-based
commercial environment Dymola. We took the same water tank example
mentioned previously and modelled it in the Dymola using only components
of the Modelica Standard Library and its sub-libraries Fluid and StateGraph.
The model consists of the plant and controller parts. The plant was modelled
by a tank, a water source boundary under pressure, connected to the tank via
discrete valve, and an ambient pressure water sink boundary. The controller
was modelled using the StateGraph library as a two-state state machine, with
states valveOn and valveOff and input signal triggered transitions, linked to
level threshold predicates. The complete model is displayed in Figure 3.12.

Figure 3.12: Controlled water tank model in Dymola

The model was initialised using the parameters for the water tank and
port dimensions, pressure and temperature in the source and sink, and valve
pressure loss. The medium of all fluid elements was set to a ConstantProp-
ertyLiquidWater. Tank water level thresholds were set to 1m and 2m. The
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model was validated and simulated, yielding the results plotted in Figure
3.13.

Figure 3.13: Co-simulation results of the controlled water tank model in
Dymola (simulation time = 30s, step size = 0.1s)

The next step was to split the model into a plant and controller, and, as
we were only interested in the continuous model of the plant, export the plant
subsystem as an FMU for Co-simulation. The model of the plant is shown in
Figure 3.14. The only difference from the complete model is the replacement
of the valve input signal expression with the external input signal.

Figure 3.14: Controlled water tank plant subsystem

For the controller subsystem we took Event-B models described in 3.1
and imported them as Event-B components, specifying ReadInput and Wait
events and adding a Real-type input port (linked to a parameter l of the
ReadInput event readLevel) and a Boolean-type output port (linked to vari-
able valve). The plant FMU was also imported and configured by unchecking
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all internal variables and leaving only input port valveInput and output port
levelOutput. To visualise the signals a Display component was added. The
screenshot of the final composition diagram is shown in Figure 3.15.

Figure 3.15: Component diagram of the controlled water tank

The diagram was simulated for the same duration and step size as in the
Dymola. The simulation results that were plotted via the Display component
are shown in Figure 3.16. Comparison with the results obtained from the Dy-
mola (Figure 3.13) demonstrates that the dynamics is simulated as expected,
although there is a slight miss of the water threshold due to a relatively big
communication step size, which directly translates to a delay in the control
signal. This issue can be either minimised by reducing the step size, or by
modelling a predictive controller that would take into consideration possible
communication delays, which is a more realistic solution.
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Figure 3.16: Co-simulation results of the controlled water tank model in the
multi-simulation framework (simulation time = 30s, step size = 0.1s)
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Chapter 4

Visualization

The effectiveness of new visualization techniques developed to aid under-
standing of large-scale simulations have been evaluated and measured. One
of the main areas that we have focused on is the generation of simple vi-
sualizations based on the data that is produced by ProB during animation.
These visualizations will allow the users both to better understand the be-
havior of their specifications as well as to explain that behavior to others.
The algorithms that we used were already available in ProB, but we have now
integrated them into the ProB Rodin plugin. Furthermore, previously, the
visualizations were statically generated. Now they are dynamically updated
when changes in the current animation take place.

4.1 Visualization of the State Space

One of the main visualizations that we focused on was the dynamic creation
of a visualization for the state space of the current animation. This visu-
alization uses a force based layout to visualize the states in the state space
and the operations between given states. The visualization does not require
the complete exploration of the state space before its creation. Instead, the
visualization of the state space is created using the known transitions and
states and then updated when new states are discovered.

Status about the invariant is available in the visualization based on the
color of the nodes. If an invariant violation is present, the state is colored red.
If the invariant is ok, the state is colored green. Otherwise, if the invariant
has not yet been calculated for the given state, the node is colored gray. The
labels for the states are the values of the variables for the given state. An
example of this visualization can be seen in Figure 4.1.
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4.1.1 Reduced State Spaces

Because of the state space explosion problem, a visualization of the entire
state space can be too much information for a user to process at any given
time. In order to help understand the overall behavior of the state space, we
have also made smaller graphs available that are derived from the original
state space and can be more useful for the user. Both of the algorithms that
we used were adapted from the visualizations that are currently available in
the Tcl/Tk version of ProB.

Signature Merged State Spaces

The signature merge algorithm is shown in Figure 4.2. The algorithm works
by merging all of the states which have the same outgoing transitions. This
creates a state space that is considerably smaller but that still preserves
information about the operations that are enabled for a given state. By
default, the algorithm considers all of the transitions that are present in the
model. However, it is also possible for the user to specify a given subset of
transitions that are of interest.

Transition Diagrams

The other reduction algorithm that is supported is the creation of transition
diagrams. In order to perform this algorithm, ProB receives an expression
from the user and calculates all of the possible solutions to the expression in
the scope of the model that is being animated. These become the vertices
in the graph. The edges in the graph show the transitions that change the
value of the given expression to that of the value shown in the target state
(see Figure 4.3).

4.1.2 User Customization

We also wanted the user to be able to customize the appearance of the
visualizations. This is particularly the case with the state space visualization
because there is so much information that has to be visualized. In order to
provide the user with this functionality, we have integrated the visualization
framework into the existing Groovy console in order to enable the user to
customize their visualization. The customization works by allowing the user
to define the states that they wish to transform and the transformations
that they wish to apply. For instance, the user can select states that match
a specified predicate and change their color.
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Figure 4.1: Section of the state space visualization for a scheduler example

Figure 4.2: Reduced state space using the signature merge algorithm
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Figure 4.3: Transition diagram for a scheduler example

4.2 Value over Time Visualization

Because of the focus on the multi-simulation of specifications over a given
time period, we were interested in creating a visualization that would be
able to provide the user with information concerning the behaviors of the
animation over that given time period. In order to do this, we created a
simple line plot which plots the value of a user specified formula over a given
animation. By default, the values of the formula are plotted against the
number of animation steps in the given trace, but it is also possible for the
user to specify an expression that represents time for the given specification.
In this case, the values of the formula over the given trace will be plotted
against the value of the given expression.

There are two modes for viewing the line plots. The first mode plots all of
values in the same line plot which allows the user to visualize how the values
of the formulas react in relation to each other. The second mode creates a
separate line plot for each specified formula. This is useful for a user who
wants to visualize several formulas that may not necessarily be related. It
is possible to visualize predicates and expressions that take on integer or
boolean values. If the formula that is being visualized is a predicate or an
expression that takes on a boolean value, the resulting value is mapped to
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Figure 4.4: Value over time visualization

an integer value. If all of the formulas are being drawn in the same line plot,
the boolean value TRUE will be mapped to the maximum value of all the
data sets. This allows the user to see if the change in a predicate or boolean
expression resulted in the change of the formula with an integer value. If
the boolean formula is plotted separated, the values TRUE and FALSE are
mapped to 0 and 1 respectively. An example of this visualization can be seen
in Figure 4.4.

We also created a visualization for the closer inspection of a given for-
mula. ProB already includes support for the generation of a DOT file which,
when rendered, breaks the displays a formula as a tree in which the direct
subformulas of a given formula are children nodes [LSBL08]. The formulas
and its subformulas are also evaluated for the current state in the animation,
and the resulting representation of the formula is colored so as to specify its
value (e.g. if a predicate evaluates to true at the specified state, the predicate
is colored green). This enables the user to identify the parts of a formula
that may be problematic. We recreated this visualization within ProB 2.0.
The new visualization is also interactive. The user can click on a node to
expand or contract that part of the tree. This allows the user to really focus
on the parts of the formula that are of interest.

Both of the visualizations that are described above are based on the
current state in a given animation. When an animation step in an animation
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Figure 4.5: Visualization of the invariant for a scheduler example

occurs, they are automatically updated to display the data for the current
state in the animation. An example of this visualization can be seen in Figure
4.5.
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Chapter 5

Model-Based Testcase Generation

5.1 Constraint-based test case generation

Figure 5.2 contains the ProB constraint-based test-case generation algo-
rithm, which is at the basis of the developments within the Advance project.

Thus far we have already achieved the following goals:

• the algorithm can now be called from the ProB command-line tool us-
ing the command -cbc_tests Depth EndPredicate File. The cover-
age criterion can be specified using the commands -cbc_cover Event-Name
or -cbc_cover_all if all events should be covered.

• the Prolog code corresponding to Figure 5.2 has been refactored for
allowing the introduction of new coverage criteria; its documentation
has been improved.

• the implementation has been extended to also handle classical B specifi-
cations (e.g, as they are being used in workpackage WP1), in particular
return values of operations.

• the Tcl/Tk GUI has been improved (see Fig. 5.1), with more fine-
grained selection of events and better feedback.

• the performance of the algorithm has been substantially improved.
E.g., the algorithm is now 8 times faster for generating full event cover-
age for a Volvo Cruise controller model (one of our reference models):
the runtime has been reduced from about 80 seconds down to 10 sec-
onds. Further improvements and a combination with the ProB model
checker are planned within Advance.
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Figure 5.1: The Tcl/Tk Interface to the Constraint-Based Test Case Gener-
ator
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Procedure CBTestCaseGeneration

Input: The events to cover to_cover,

and the maximum test case length max_length.

\— Initialisation —\
paths := {[ ]} — [ ] is the path of length 0

testcases := ?
cur_length := 1

\— Breadth first search —\
while cur_length  max_length ^ to_cover 6= ? do

next_paths := ?
for each path p 2 paths and event e do

s1 := solve constraints of the path p e

where its last state fulfills the target predicate.

if s1 6= fail then

next_paths := next_paths [ {p e}
testcases := testcases [ {s1}
\— With p1, . . . , pcur_length�1 beeing the events in p: —\
to_cover := to_cover \ {p1, . . . , pcur_length�1, e}

else

s2 := solve constraints for the path p e

if s2 6= fail then

next_paths := next_paths [ {p e}

end for

paths := next_paths

cur_length := cur_length+ 1

end

Figure 5.2: Constraint based test case generation

5.2 Evaluation of ProB performance on Setlog
Test-case Generation Benchmarks

A series of constraint solving tasks that arose during test-case generation for
Z models has been published in [CF12]. The authors have evaluated ProB

on a series of benchmarks in [set, ?]. While ProB fares much better than
setlog on the benchmarks, the authors also present a new extended version
of setlog, which fares slightly better than ProB. However, the paper used an
older version of ProBand we have rerun those experiments to evaluate the
performance of the latest version of our ProB constraint solver. Overall,
the performance of ProB has improved and a large number of test-case
generation constraints can now be solved by ProB. We describe a selection
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of those below, to give the reader a flavour of the kind of constraints that
arise in test-case generation and can be solved. In principle, the performance
of ProB could be further improved by replacing the abundant use of the
STRING datatype by more focussed enumerated sets. In order to not change
the experimental setup from [set, ?], we have not done this below. Also note
that [set, ?] made a mistake in setting the time-out value of ProB; as such
the timings appear larger than they actually are.

Below, we always call ProB with the following parameters:

-p BOOL_AS_PREDICATE TRUE -p CLPFD TRUE -p MAXINT 127 -p MININT -128

For the experiments below, the constraints for a valid test-case a put
into a file. For example, this is the file bank-Extraer_SP_29.prob containing
constraints for a particular test scenario for a banking system:

cajas : STRING +-> NATURAL &
num : STRING &
m : NATURAL

&
m > cajas(num) &
num : dom(cajas) &
cajas /= { } &
{ num |-> ( ( cajas(num) ) - m ) } /= { } &
dom({ num |-> ( ( cajas(num) ) - m ) }) <<: dom(cajas)

This constraint can be solved with the latest version of ProB; note that
several of the variables are unbounded (hence also the enumeration warnings
below):

probcli -eval_file bank-Extraer_SP_29.prob
### Warning: enumerating INTEGER : 0:sup ---> 0:127
### Warning: enumerating STRING : inf ---> "STR1","STR2",...
### Warning: enumerating NATURAL(1) : 0:sup ---> 0:127
Existentially Quantified Predicate over cajas,num,m is TRUE
Solution:

cajas = {(""STR1""|->0),(""STR2""|->0)} &
num = ""STR1"" &
m = 1

Another test-case generation constraint that can now be solved is bancoG-Withdraw_NR_22.prob:

clients : STRING +-> STRING &
balances : STRING +-> NATURAL &
owners : STRING <-> STRING &
u : STRING &
n : STRING &
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m : NATURAL
&
m > balances(n) &
m < 100000

A more complicated benchmark constraint is the following one, qsee-LoadMemory_SP_11.prob
(quite similar to another one qsee-LoadMemory_SP_12.prob):

srv : {"HS","SC","COM","VOM","SDA","RDA","TD","RA","GMR","LDM","EP","MSP"} &
om : {"SAFETY","NOM","DIAG"} &
acquiring : {TRUE,FALSE} &
prepData : {TRUE,FALSE} &
prepDataType : {"SD","HD","MD"} &
page : NATURAL &
ia : NATURAL & fa : NATURAL &
lpck : seq(STRING) &
lpckDT : {"CR","CD","OM","ND","ASD","AMD","MSE","ICS","LS"} &
csrs : {"SD","HD","MD"} --> NATURAL & totCSR : {"SD","HD","MD"} --> NATURAL &
csc : NATURAL &
mem : 1 .. 1024 --> STRING &
modMem : POW(NATURAL) &
sdwp : NATURAL &
sparam : {"HGT","ILP","AICST"} --> NATURAL &
time : NATURAL &
processingCmd : {TRUE,FALSE} &
iain : NATURAL &
data : seq(STRING) &
c : NATURAL

&
processingCmd = TRUE &
srv = "LDM" &
om = "NOM" &
csc > 0 &
c = csc - 1 &
sparam("ILP") <= iain &
iain + card(data) : 0 .. 32 &
{x | x-iain:dom(data)} /\ modMem = { } &
{x | x-iain:dom(data)} /= { } &
modMem = { }

probcli -evalt_file qsee-LoadMemory_SP_11.prob
### Warning: enumerating NATURAL(1) : 0:sup ---> 0:127
### Warning: enumerating INTEGER : 0:sup ---> 0:127
### Warning: enumerating INTEGER : 1:sup ---> 1:127
### Warning: enumerating STRING : inf ---> "STR1","STR2",...
### Warning: enumerating seq (length) : inf ---> 127
Existentially Quantified Predicate over srv,om,acquiring,prepData,
prepDataType,page,ia,fa,lpck,lpckDT,csrs,totCSR,csc,mem,modMem,
sdwp,sparam,time,processingCmd,iain,data,c is TRUE
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Solution:
srv = "LDM" &
om = "NOM" &
acquiring = TRUE &
prepData = FALSE &
prepDataType = "HD" &
page = 0 &
ia = 0 &
fa = 0 &
lpck = [] &
lpckDT = "AMD" &
csrs = {("HD"|->0),("MD"|->0),("SD"|->0)} &
totCSR = {("HD"|->0),("MD"|->0),("SD"|->0)} &
csc = 1 &
mem = #1024:{(1|->""STR1""),(2|->""STR1""),...,

(1023|->""STR1""),(1024|->""STR1"")} &
modMem = {} &
sdwp = 0 &
sparam = {("AICST"|->0),("HGT"|->0),("ILP"|->0)} &
time = 0 &
processingCmd = TRUE &
iain = 0 &
data = [""STR1""] &
c = 0

As you can see, ProB is able to construct large datavalues (such as
mem above). Finally note, that on no benchmark file of [set, ?] did the new
version of ProB fare worse than the previous one. All in all, 54 of the 68
testcase benchmarks are solved in 17 seconds using a time-out of 1 second
per benchmark (compared to 24 with setlog and also 52 with an extended
version of setlog generated for those benchmarks; the extended version can
solve 54 testcases in 13 minutes and 43 seconds). A few more can be solved
by ProB if we replace the generic unbounded STRING type by more focussed
enumerated types. In summary, this evaluation on an external set of test-case
generation benchmarks has shown ProB to perform very well and confirms
that the tools has improved considerably over this period of the Advance
project.

5.3 Minimum-Maximum Variable Coverage
Based on the needs from the case studies, we have added a new feature to
ProB: it can keep track of the minimum and maximum values of variables
encountered during model checking or test-case generation.

This feature provides a quick measure of data coverage. It is also useful
in detecting unexpected behaviours and identifying why model checking ex-
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Figure 5.3: Minimum-Maximum Coverage Information Feedback on CAN
Bus Hardware model

plodes. In one hardware model, this feature allowed us to quickly pinpoint
which variable is responsible for an exploding (in this case infinite) state
space: by observing the minimum/maximum coverage date (see Figure 5.3)
one could see that the BUSwrite queue was growing in an unbounded fashion.

Formally, the minumum and maximum values uses an ordering of values
v � w of type ⌧ , defined inductively as follows:

• if ⌧=INTEGER then v � w iff v < w

• for ⌧=BOOL we have FALSE � TRUE

• for ⌧ = E being an enumerated set defined by E = {e1,e2,...,ek},
we define ei � ej iff i < j.

• for ⌧ = D being a deferred set instantiated by ProB to D = {d1,d2,...,dk},
we define di � dj iff i < j.

• for ⌧ = ⌧1⇥ ⌧2 we have (v1, v2) � (w1, w2) iff v1 � w1 _ (v1 = w1 ^ v2 �
w2)

• for ⌧ = POW (⌧1) we define v � w iff card(v) � card(w) _ (card(v) =
card(w) ^ max(v) � max(w)), where max makes use of � for the
smaller type ⌧1.
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Chapter 6

Constraint Solving

The deliverable also describes the improvements made to the constraint-
solving kernel of ProB which is a pre-requisite for constrained random testing.

6.1 General Improvements

Based upon feedback from the industrial case studies, the ProB’s kernel has
been improved to deal better with large data in particular in conjunction
with large or infinite functions. The kernel now detects when infinite types
have been enumerated using an exception mechanism. For example, if during
the computation of a set comprehension such an exception is raised, then the
set comprehension is kept symbolic and not expanded. For example, given
the constraint:

ev = { x | x:NATURAL1 & x mod 2 = 0 } & 2000:ev

ProB now automatically detects that ev should be kept symbolic and not
be expanded; its membership will be tested upon demand.

We have also enlarged the number of operations that can be applied to
symbolic representations compilation first steps.

Many performance improvements have been put into the kernel over the
last year. One particular experiment we want to mention is a model from
workpackage 1, where ProB is now simulating the B-model of a dynamic
interlocking controller about 2.5 times faster than a hand-translated version
of the model in OCAML.
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6.2 Random Enumeration
The current version of ProB’s constraint-solving kernel relies on linear enu-
meration of the possible values of a variable. This leads to long solving times
for constraints in which a solution is only found after several enumeration
steps. Furthermore, ProB can only perform a certain number of enumera-
tion steps, before a timeout is reached.

To overcome this limitation, we are experimenting with different enu-
meration orders. As a first step, we implemented random enumeration of
integer variables and booleans. While this has the same worst case complex-
ity as linear enumeration, it might hit a valid solution sooner. Currently, our
benchmarks range from small slowdowns to a speedup of two for certain cases.
When enabled for the test-case generation benchmarks from Section 5.2, sev-
eral difficult constraints can now be solved. More benchmarks and a more
thorough investigation of the performance impact have to be performed.

6.3 CHR
Aside from evaluating our constraint-solving techniques, we also investigate
the use of the CHR - Constraint Handling Rules - language. CHR is a declar-
ative language extension, which can be embedded into languages like Prolog,
Java or Haskell. That makes it easily embeddable with the current Prolog
core of ProB. CHR is a language especially crafted for writing constraint
solvers. It features a compact and easy to understand syntax that might be
useful to keep ProB maintainable.

We evaluated the use of CHR in several parts of ProB’s core. Fur-
thermore, a prototypical implementation of a constraint solver for boolean
conjunction, disjunction and negation was written and benchmarked. While
the current prototypes suffer from performance issues, we are confident that
further investigation and development in this area is necessary and advanta-
geous.

6.4 ProB as an SMT solver
In order to test and verify the formerly mentioned concepts, we started imple-
menting a parser and translator for constraint satisfaction problems written
in the SMT-LIBv2 language. This enables us to use the benchmarks and
testfiles collected by the SMT-LIB project. Currently, ProB can evaluate
simple problems in the AUFLIA and QF_LIA logics specified in the SMT-
LIB standard.

44



We plan to further improve ProB’s ability to read and evaluate SMT-
LIBv2 files. Systematically testing the available benchmarks should help to
identify persisting bottlenecks in the constraint-solving kernel. Furthermore,
the additional set of test cases increases the confidence in ProB.

6.5 Kodkod updates
ProB now uses the new version 2.0 of the Kodkod library.

We have implemented several small additions (e.g. support for some
operators on sequences). Also, several encountered bugs have been fixed.
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