Designing Safe Cybper-Physical Systems A proof and refinement based approach

Guillaume Dupont

IRIT, Toulouse INP – ENSEEIHT¹

ABZ 2025

 $^{^1{\}rm This}$ work was supported by grant ANR-17-CE25-0005 (DISCONT Project https://discont.loria.fr)

Outline

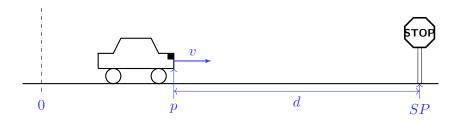
1 Introduction

- Context
- Event-B and theories

Designing hybrid systems

- Continuous behaviours in Event-B
- Formal framework: principle and overview
- Architectural patterns
- Behavioural patterns
- Co-verification, co-validation

An example: automatic brake



A car (p, v, a) must stop before SP \Rightarrow design a correct controller that stops the car in time

Problem : controller = program, car = physical object \Rightarrow controller characterised by code \Rightarrow car characterised by differential equations

Definition

Hybrid systems (HS) integrate both **discrete** and **continuous** behaviours.

Definition

Hybrid systems (HS) integrate both **discrete** and **continuous** behaviours.

 \Rightarrow *hybrid* nature, makes reasoning difficult

Definition

Hybrid systems (HS) integrate both **discrete** and **continuous** behaviours.

 \Rightarrow *hybrid nature*, *makes reasoning difficult*

We want a formal method for modelling and verifying $HS \Rightarrow integration$ of discrete and continuous aspects at the same level

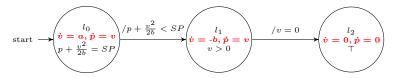
Definition

Hybrid systems (HS) integrate both **discrete** and **continuous** behaviours.

 \Rightarrow *hybrid nature*, *makes reasoning difficult*

We want a formal method for modelling and verifying $HS \Rightarrow integration$ of discrete and continuous aspects at the same level

Ex.: hybrid automata [Alu+95] : automata + continuous



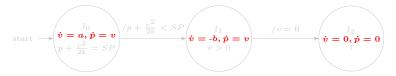
Definition

Hybrid systems (HS) integrate both **discrete** and **continuous** behaviours.

 \Rightarrow *hybrid nature*, *makes reasoning difficult*

We want a formal method for modelling and verifying $HS \Rightarrow integration$ of discrete and continuous aspects at the same level

Ex.: hybrid automata [Alu+95] : automata + continuous



Definition

Event-B is formal method for the **correct-by-construction** design of complex systems[Abr10].

Definition

Event-B is formal method for the **correct-by-construction** design of complex systems[Abr10].

System = state (variables) + events + invariants

 $Event = guard + state \ transition \ (BAP)$

Definition

Event-B is formal method for the **correct-by-construction** design of complex systems[Abr10].

System = state (variables) + events + invariants

Event = guard + state transition (BAP)

$\label{eq:machine car} \begin{bmatrix} MACHINE Car \\ VARIABLES p, v, state \\ INVARIANTS \\ invl: p \in \mathbb{Z} \\ inv2: v \in \mathbb{Z} \\ inv3: state \in \{l_0, l_1, l_2\} \\ inv4: p < SP \end{bmatrix}$	$ \begin{array}{l} \hline \mathbf{move} \\ \mathbf{ANY} \ \Delta t \\ \mathbf{WHRE} \\ \mathbf{grd1:} \ \Delta t \in \mathbb{N} \land p + v \times \Delta t < SP \\ \mathbf{THEN} \\ \mathbf{act1:} \ p: \mid p' = p + v \times \Delta t \\ \mathbf{END} \end{array} $	brake ANY Δt WHERE grd1: $state = l_1$ grd2: $\Delta t \in \mathbb{N} \land v - b \times \Delta t > 0$ THEN act1: $v : v' = v - b \times \Delta t$ END
	close when $\begin{array}{l} {\rm grd1:} p + (v \times v)/(2 \times b) = SP \\ {\rm THEN} \\ {\rm act1:} state := l_1 \\ {\rm END} \end{array}$	

Definition

Event-B is formal method for the **correct-by-construction** design of complex systems[Abr10].

System = state (variables) + events + invariants

Event = guard + state transition (BAP)

MACHINE Car VARIABLES p , v , state INVARIANTS inv1: $p \in \mathbb{Z}$ inv2: $v \in \mathbb{Z}$ inv3: state $\in \{l_0, l_1, l_2\}$ inv4: $p < SP$	$ \begin{array}{l} \textbf{move} \\ \textbf{ANY } \Delta t \\ \textbf{WHERE} \\ \textbf{grd1: } \Delta t \in \mathbb{N} \land p + v \times \Delta t < SP \\ \textbf{THEN} \\ \textbf{act1: } p: \mid p' = p + v \times \Delta t \\ \textbf{END} \end{array} $	brake ANY Δt WHERE grd1: $state = l_1$ grd2: $\Delta t \in \mathbb{N} \land v - b \times \Delta t > 0$ THEN act1: $v : v' = v - b \times \Delta t$ END
EVENTS INITIALISATION THEN act1: $p, v := p_0, v_0$ act2: $state := l_0$ END	close when grd1: $p + (v \times v)/(2 \times b) = SP$ THEN act1: $state := l_1$ END	$\begin{array}{l} \textbf{stop} \\ \textbf{WHERE} \\ \textbf{grd1: } v = 0 \\ \textbf{THEN} \\ \textbf{act1: } state := l_2 \\ \textbf{END} \end{array}$

Event-B supports **refinement**: gradual inclusion of details while preserving properties (hence correctness by construction)

Theory extension

Event-B is based on first order logic and set theory \Rightarrow expressive but low-level, lack of reusable higher order constructs Solution: the theory component [BM13]

 $Theory = algebraic/axiomatic \ data types + operators \ and \ properties$

```
THEORY Th

IMPORT Th1, ...

TYPE PARAMETERS E, F, ...

DATATYPES

Type1(E, ...)

constructors cstr1(p_1: T_1, ...), ...

OPERATORS

Op1 <nature> (p_1: T_1, ...)

well-definedness WD(p_1, ...)

direct definition D_1
```

```
\begin{array}{l} \mbox{AXIOMATIC DEFINITIONS} \\ \mbox{TYPES } A_1, \hdots \\ \mbox{OPERATORS} \\ \mbox{AOp2 <nature>} (p_1: T_1, \hdots): T_r \\ \mbox{well-definedness} & WD(p_1, \hdots) \\ \mbox{AXIOMS } A_1, \hdots \\ \mbox{AXIOMS } A_1, \hdots \\ \mbox{THEOREMS } T_1, \hdots \\ \mbox{PROOF RULES} \\ \hdots \\ \mbox{END} \end{array}
```

 \Rightarrow theories used to formalise **mathematical concepts** (continuous functions, diff. eq.) and **domain knowledge** (trains, cars)

Outline

1 Introduction

- Context
- Event-B and theories

Designing hybrid systems

- Continuous behaviours in Event-B
- Formal framework: principle and overview
- Architectural patterns
- Behavioural patterns
- Co-verification, co-validation

Outline

1 Introduction

- Context
- Event-B and theories

Designing hybrid systems

• Continuous behaviours in Event-B

- Formal framework: principle and overview
- Architectural patterns
- Behavioural patterns
- Co-verification, co-validation

3 Conclusion and Future Work

Modelling HS: How?

We want in the same model:

- discrete behaviours [easy!]
- continuous dynamics: "dense" time, continuous functions, diff. equations

Idea: try to elaborate a general HS schema

Modelling HS: How?

We want in the same model:

- discrete behaviours [easy!]
- continuous dynamics: "dense" time, continuous functions, diff. equations

Idea: try to elaborate a general HS schema

Continuous state variables = functions of time $(\in \mathbb{R} \leftrightarrow S)$ \Rightarrow continuous evolution as CBAP

$$\begin{aligned} \mathbf{CBAP}(t,t',x_p,x'_p,\mathcal{P},H) &\equiv x_p:|_{t \to t'} \mathcal{P}(x_p,x'_p) \& H \equiv \\ & [0,t[\lhd x'_p = [0,t[\lhd x_p \quad (Past\ Preservation) \\ & \land \mathcal{P}([0,t] \lhd x_p, [t,t'] \lhd x'_p) \quad (Predicate) \\ & \land \forall t^* \in [t,t'], x_p(t^*) \in H \quad (Evolution\ Dom.) \end{aligned}$$

Note: shorthand for differential equations:

 $x_p: \sim_{t \to t'} \mathcal{E} \& H \equiv x_p : |_{t \to t'}$ solution $Of([t, t'], \mathcal{E}, x'_p) \& H$

CBAP associated to particular proved **meta-theorems**:

CBAP associated to particular proved **meta-theorems**:

► Well-Definedness: assignment is well-defined iff

1. t < t' (time progression)

2.
$$\forall u, v \cdot \mathcal{P}(u, v) \Rightarrow u \in \mathbb{R}^+ \Rightarrow S \land v \in \mathbb{R}^+ \Rightarrow S$$

 $\wedge [0, t] \subseteq \operatorname{dom}(u) \wedge [t, t'] \subseteq \operatorname{dom}(v)$ (type/domain coherence)

CBAP associated to particular proved **meta-theorems**:

▶ Well-Definedness: assignment is well-defined iff

1. t < t' (time progression) 2. $\forall u, v \cdot \mathcal{P}(u, v) \Rightarrow u \in \mathbb{R}^+ \Rightarrow S \land v \in \mathbb{R}^+ \Rightarrow S$ $\land [0, t[\subseteq \operatorname{dom}(u) \land [t, t'] \subseteq \operatorname{dom}(v)$ (type/domain coherence)

Feasibility: there exists x⁰_p ∈ ℝ → S with [t, t'] ⊆ dom(x⁰_p) s.t.:
1. P([0,t] ⊲ x_p, x⁰_p) (predicate holds)
2. ∀t* ∈ [t,t'], x⁰_p(t*) ∈ H (evolution domain holds)
⇒ reachibility of next state t'

CBAP associated to particular proved **meta-theorems**:

▶ Well-Definedness: assignment is well-defined iff

1. t < t' (time progression) 2. $\forall u, v \cdot \mathcal{P}(u, v) \Rightarrow u \in \mathbb{R}^+ \Rightarrow S \land v \in \mathbb{R}^+ \Rightarrow S$ $\land [0, t[\subseteq \operatorname{dom}(u) \land [t, t'] \subseteq \operatorname{dom}(v)$ (type/domain coherence)

Feasibility: there exists x⁰_p ∈ ℝ → S with [t, t'] ⊆ dom(x⁰_p) s.t.:
1. P([0,t] ⊲ x_p, x⁰_p) (predicate holds)
2. ∀t* ∈ [t,t'], x⁰_p(t*) ∈ H (evolution domain holds)
⇒ reachibility of next state t'

▶ Invariant preservation (continuous induction): for establishing invariant $\mathcal{I} \subseteq S$ on [0, t'], it is sufficient that:

1.
$$\forall t^* \in [0, t[, x_p(t^*) \in \mathcal{I}$$

2. **CBAP** $(t, t', x_p, x'_p, \mathcal{P}, H \cap \mathcal{I})$

CBAP associated to particular proved **meta-theorems**:

▶ Well-Definedness: assignment is well-defined iff

1. t < t' (time progression) 2. $\forall u, v \cdot \mathcal{P}(u, v) \Rightarrow u \in \mathbb{R}^+ \Rightarrow S \land v \in \mathbb{R}^+ \Rightarrow S$ $\land [0, t[\subseteq \operatorname{dom}(u) \land [t, t'] \subseteq \operatorname{dom}(v)$ (type/domain coherence)

Feasibility: there exists x⁰_p ∈ ℝ → S with [t, t'] ⊆ dom(x⁰_p) s.t.:
1. P([0,t] ⊲ x_p, x⁰_p) (predicate holds)
2. ∀t* ∈ [t,t'], x⁰_p(t*) ∈ H (evolution domain holds)
⇒ reachibility of next state t'

▶ Invariant preservation (continuous induction): for establishing invariant $\mathcal{I} \subseteq S$ on [0, t'], it is sufficient that:

1.
$$\forall t^* \in [0, t[, x_p(t^*) \in \mathcal{I}$$

2. **CBAP** $(t, t', x_p, x'_p, \mathcal{P}, H \cap \mathcal{I})$

 \Rightarrow instantiated to discharge POs for continuous events

Modelling Features

```
THEORY DiffEq IMPORT Functions
TYPE PARAMETERS E, F
DATATYPES
 \mathbf{DE}(F) constructors \mathbf{ode}(f, n_0, t_0), \ldots
OPERATORS
 solutionOf predicate (D : \mathbb{P}(\mathbb{R}), \eta : \mathbb{R} \to F, \mathcal{E} : \mathbf{DE}(F)) \dots
 Solvable predicate (D : \mathbb{P}(\mathbb{R}), \mathcal{E} : \mathbf{DE}(F)) \dots
 \textbf{CBAP predicate } (t,t' : \mathbb{R}^+, x_p, x_p' : \mathbb{R} \twoheadrightarrow F, \mathcal{P} : \mathbb{P}((\mathbb{R} \twoheadrightarrow F) \times (\mathbb{R} \twoheadrightarrow F)), H : \mathbb{P}(F)) \ldots
 :~ predicate (t, t' : \mathbb{R}^+, x_p, x'_p^{r} : \mathbb{R} \to F, \mathcal{E} : \mathbf{DE}(F), H : \mathbb{P}(F))
     well-definedness condition Solvable([t, t'], \mathcal{E})
     direct definition solutionOf([t, t'], x'_n, \mathcal{E}) \land \dots
AXTOMS
 CauchyLipschitz: -- external
    \forall \mathcal{E}, D, D_F \cdot \mathcal{E} \in \mathbf{DE}(F) \land \ldots \Rightarrow \mathbf{Solvable}(D, \mathcal{E})
THEOREMS
 CBAPINV:
     \forall t, t', \eta, \eta', \mathcal{P}, H, \mathcal{I} \cdot t, t' \in \mathbb{R} \land \eta, \eta' \in \mathbb{R} \to F \land \ldots \Rightarrow (\forall t^* \cdot t^* \in [0, t'] \Rightarrow \eta'(t^*) \in \mathcal{I})
```

• use of theories to integrate continuous features \Rightarrow e.g. continuous behaviour using differential equations

exploit WD to ensure correct use of operators/theorems

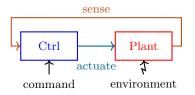
Modelling Features

```
\mathbf{DE}(F) constructors \mathbf{ode}(f, \eta_0, t_0), \ldots
solutionOf predicate (D : \mathbb{P}(\mathbb{R}), \eta : \mathbb{R} \to F, \mathcal{E} : \mathbf{DE}(F)) \dots
Solvable predicate (D : \mathbb{P}(\mathbb{R}), \mathcal{E} : \mathbf{DE}(F)) \dots
\textbf{CBAP predicate } (t,t' : \mathbb{R}^+, \ x_p, x_p' : \mathbb{R} \nrightarrow F, \ \mathcal{P} : \mathbb{P}((\mathbb{R} \nrightarrow F) \times (\mathbb{R} \nrightarrow F)), \ H : \mathbb{P}(F)) \ \dots
:~ predicate (t, t' : \mathbb{R}^+, x_p, x'_p) : \mathbb{R} \to F, \mathcal{E} : DE(F), H : \mathbb{P}(F))
   well-definedness condition \mathbf{Solvable}([t, t'], \mathcal{E})
CauchyLipschitz: -- external
   \forall \mathcal{E}, D, D_F \cdot \mathcal{E} \in \mathbf{DE}(F) \land \ldots \Rightarrow \mathbf{Solvable}(D, \mathcal{E})
CBAPINV:
   \forall t, t', \eta, \eta', \mathcal{P}, H, \mathcal{I} \cdot t, t' \in \mathbb{R} \land \eta, \eta' \in \mathbb{R} \Rightarrow F \land \ldots \Rightarrow (\forall t^* \cdot t^* \in [0, t'] \Rightarrow \eta'(t^*) \in \mathcal{I})
```

• use of theories to integrate continuous features \Rightarrow e.g. continuous behaviour using differential equations

exploit WD to ensure correct use of operators/theorems

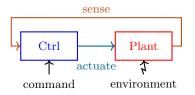
Event-B "Hybridation"



Generic schema for HS

- ▶ discrete controller (program)
- continuous "plant" (physical)
- sensing and actuation events

Event-B "Hybridation"



- Generic schema for HS
 - ▶ discrete controller (program)
 - continuous "plant" (physical)
 - sensing and actuation events
 - $\begin{array}{l} \text{MACHINE Generic} \\ \text{VARIABLES } t, x_s, x_p \\ \text{INVARIANTS} \\ \text{invl: } t \in \mathbb{R}^+ \\ \text{inv2: } x_s \in STATES \\ \text{inv3: } x_p \in \mathbb{R} \rightarrow S \\ \text{inv4: } [0, t] \subseteq \operatorname{dom}(x_p) \end{array}$

- $\blacktriangleright Dense time t \in \mathbb{R}$
- **>** Discrete: discrete variables x_s + BAP
- Continuous: continuous continuous x_p + CBAP

Generic Model (Cont'd)

- Event parameters for genericity
- Sensing with guard on continuous state and discrete state (grd3)

```
Sense

ANY s, p

WHERE

grd1: s \in \mathbb{P}1(\text{STATES})

grd2: p \in \mathbb{P}(\text{STATES} \times \mathbb{R} \times S)

grd3: (x_s \mapsto t \mapsto x_p(t)) \in p

THEN

act1: x_s :\in s

END
```

Generic Model (Cont'd)

- Event parameters for genericity
- Sensing with guard on continuous state and discrete state (grd3)

```
Actuate

ANY \mathcal{P}, s, H, t'

WHERE

grd0: t' > t

grd1: \mathcal{P} \in (\mathbb{R}^+ \rightarrow S) \times (\mathbb{R}^+ \rightarrow S)

grd2: Feasible([t, t'], x_p, \mathcal{P}, H)

grd3: s \subseteq \text{STATES}

grd4: x_s \in s

grd5: H \subseteq S

grd5: H \subseteq S

grd6: x_p(t) \in H

THEN

act1: x_p :|_{t \rightarrow t'} \mathcal{P}(x_p, x'_p) \& H

END
```

```
Sense

ANY s, p

WHERE

grd1: s \in \mathbb{P}1(\text{STATES})

grd2: p \in \mathbb{P}(\text{STATES} \times \mathbb{R} \times S)

grd3: (x_s \mapsto t \mapsto x_p(t)) \in p

THEN

act1: x_s :\in s

END
```

- Model plant's behaviour
- ▶ Continuous event based on CBAP
 ⇒ generic continuous behaviour P
- ▶ Feasibility: Feasible guard
- ► Associated discrete state
- ▶ Constrained by evolution domain

Example: Stopping Car

```
\begin{array}{l} \text{MACHINE Car REFINES Generic} \\ \text{VARIABLES } t, \ x_s, \ p, \ v \\ \text{INVARIANTS} \\ \text{inv31-32:} \ p \in \mathbb{R} \rightarrow S, \ v \in \mathbb{R} \rightarrow S \\ \text{inv41-42:} \ [0,t] \subseteq \text{dom}(p), [0,t] \subseteq \text{dom}(v) \\ \text{inv5:} \ x_p = \begin{bmatrix} v \ p \end{bmatrix}^\top \\ \text{inv5:} \ \forall t^* \cdot t^a st \in [0,t] \Rightarrow p(t) \leq SP \end{array}
```

```
\begin{array}{l} \mbox{sense_close REFINES Sense} \\ \mbox{WHERE grd1: } x_s = l_0 \\ \mbox{grd2: } p(t) + v(t)^2/2 \geq SP \\ \mbox{WITH } s: s = \{l_1\} \\ \mbox{$p: p = \{p^*, v^* \mid p^* + v^{*2}/2 \geq SP\}$} \\ \mbox{THEN act1: } x_s := l_1 \\ \mbox{END} \end{array}
```

```
 \begin{array}{l} \texttt{actuate}\_\texttt{move REFINES Actuate} \\ \texttt{ANY } t' \\ \texttt{WHERE } \texttt{grd0: } t' > t \\ \texttt{grd1: } x_s = l_0 \\ \texttt{grd2: } p(t) + v(t)^2/2 < SP \\ \texttt{WITH } eq : eq = \texttt{ode}(f_{move}, [v(t) \ p(t)]^\top, t) \\ \texttt{s: } s = \{l_0\} \\ \texttt{x'_p: } x'_p = [v' \ p']^\top \\ \texttt{H: } H = \{v^*, p^* \mid p^* + v^{*2}/2 \geq SP\} \\ \texttt{THEN } \texttt{act1: } v, p: \sim_{t \rightarrow t'} \\ \texttt{ode}(f_{move}, [v(t) \ p(t)]^\top, t) \\ \texttt{\&} \{v^*, p^* \mid p^* + v^{*2}/2 \geq SP\} \\ \end{array}
```

► Instantiation = refinement ⇒ witnesses (WITH) and gluing invariant (inv5) provided

► Continuous behaviour = **ODE** ⇒ *ODE* solvability required by **WD** of : $\sim_{t \to t'}$ ⇒ by GS:

 $solvability \Rightarrow \mathbf{Feasible}$

Example: Stopping Car

```
MACHINE Car REFINES Generic VARIABLES t, x_s, p, v
VARIABLES t, x_s, p, v
inv31-32: p \in \mathbb{R} \rightarrow S, v \in \mathbb{R} \rightarrow S
inv41-42: [0,t] \subseteq dom(p), [0,t] \subseteq dom(v)
inv5: x_p = [v p]^{\mathsf{T}}
inv6: \forall t^* \cdot t^a st \in [0,t] \Rightarrow p(t) \leq SP
```

```
\begin{array}{l} \text{sense\_close REFINES Sense} \\ \text{WHERE grd1: } x_s = l_0 \\ \text{grd2: } p(t) + v(t)^2/2 \geq SP \\ \text{WITH } s: s = \{l_1\} \\ p: p = \{p^*, v^* \mid p^* + v^{*2}/2 \geq SP \} \\ \text{THEN act1: } x_s := l_1 \\ \text{END} \end{array}
```

```
 \begin{array}{l} \text{actuate=move REFINES Actuate} \\ \text{ANY } t' \\ \text{WHERE grd0: } t' > t \\ \text{grd1: } x_s = l_0 \\ \text{grd2: } p(t) + v(t)^2/2 < SP \\ \text{WITH } eq : eq = \text{ode}(f_{move}, \left\lceil v(t) \ p(t) \right\rceil^\top, t) \\ s : s = \left\lbrace l_0 \right\rbrace \\ x'_p : x'_p = \left\lceil v' \ p' \right\rceil^\top \\ H : H = \left\lbrace v, p^* \mid p^* + v^{*2}/2 \geq SP \right\rbrace \\ \text{THEN actl: } v, p: \sim_{t \to t'} \\ \text{ode}(f_{move}, \left\lceil v(t) \ p(t) \right\rceil^\top, t) \\ \& \{v^*, p^* \mid p^* + v^{*2}/2 \geq SP \} \\ \end{array}
```

Instantiation = refinement ⇒ witnesses (WITH) and gluing invariant (inv5) provided

► Continuous behaviour = **ODE** ⇒ *ODE* solvability required by **WD** of : $\sim_{t \to t'}$ ⇒ by GS:

 $solvability \Rightarrow \mathbf{Feasible}$

Outline

1 Introduction

- Context
- Event-B and theories

Designing hybrid systems

• Continuous behaviours in Event-B

• Formal framework: principle and overview

- Architectural patterns
- Behavioural patterns
- Co-verification, co-validation

3 Conclusion and Future Work

Towards a formal framework

Idea:

- use algebraic theories to extend Event-B \Rightarrow CBAP, diff. eq. + formal properties
- ▶ define a parameterised generic model of hybrid systems ⇒ refinement-instantiation to derive any HS
- parameterised refinement of generic model = applicable to any HS
 ⇒ definition of formal design patterns

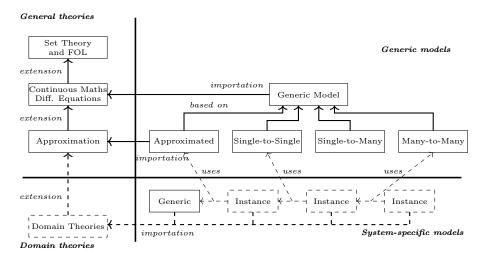
Towards a formal framework

Idea:

- use algebraic theories to extend Event-B \Rightarrow CBAP, diff. eq. + formal properties
- ▶ define a parameterised generic model of hybrid systems
 ⇒ refinement-instantiation to derive any HS
- parameterised refinement of generic model = applicable to any HS
 ⇒ definition of formal design patterns

In a nutshell, designing a hybrid system involves a **refinement chain** stemming from the **generic model** and consisting of **design pattern application**

Framework – Overview



Outline

1 Introduction

- Context
- Event-B and theories

Designing hybrid systems

- Continuous behaviours in Event-B
- Formal framework: principle and overview

• Architectural patterns

- Behavioural patterns
- Co-verification, co-validation

3 Conclusion and Future Work

Architectural patterns

Decompose HS in multiple interacting components:

- one controller + one plant ("single-to-single") \Rightarrow generic model
- ▶ one controller + multiple plants ("single-to-many")
 ⇒ centralised control of multiple components
- multiple controllers + multiple plants ("many-to-many")
 ⇒ distributed HS, cyber-physical system

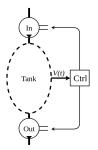
Architectural patterns

Decompose HS in multiple interacting components:

- one controller + one plant ("single-to-single") \Rightarrow generic model
- ▶ one controller + multiple plants ("single-to-many")
 ⇒ centralised control of multiple components
- multiple controllers + multiple plants ("many-to-many")
 ⇒ distributed HS, cyber-physical system

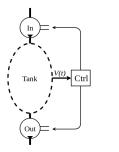
Idea: introduce architecture with a pattern \Rightarrow challenge: link global state to local state

S2M, Centralised control (Example)

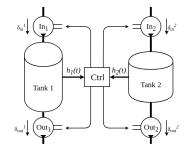


- Abstract tank, volume V(t)
- ► Controller state x_s (Filling, Emptying, ...) \Rightarrow control In/Out pumps
- ► Safety: $V_{low} \le V \le V_{high}$

S2M, Centralised control (Example)

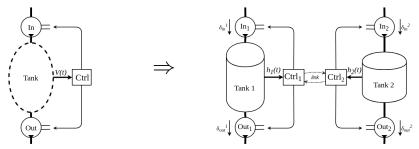


- Abstract tank, volume V(t)
- ► Controller state x_s (Filling, Emptying, ...) \Rightarrow control In/Out pumps
- ► Safety: $V_{low} \le V \le V_{high}$



- ▶ 2 cylindrical tanks (B_i)
- Sensing height (h_i) $\Rightarrow V(t) = B_1 h_1(t) + B_2 h_2(t)$
- Centralised controller + policy $\Rightarrow P(x_s, In_1, Out_1, In_2, Out_2)$

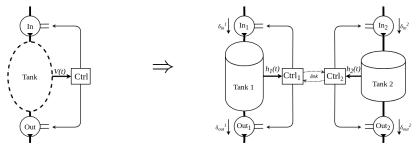
M2M, Distributed HS (Example)



Same situation but **independant HS** $(x_{s,1}, h_1 \text{ et } x_{s,2}, h_2)$ $\Rightarrow still V(t) = B_1 h_1(t) + B_2 h_2(t)$

 \Rightarrow policy between discrete states $P(x_s, x_{s,1}, x_{s,2})$

M2M, Distributed HS (Example)



- Same situation but independent HS $(x_{s,1}, h_1 \text{ et } x_{s,2}, h_2)$ $\Rightarrow still V(t) = B_1 h_1(t) + B_2 h_2(t)$
 - \Rightarrow policy between discrete states $P(x_s, x_{s,1}, x_{s,2})$
- ▶ Imperfect communication = imprecision, no global state
 - each component *estimates* the others $\Rightarrow h_i^{sim}$
 - precision Δ^{sim} : $|h_i h_i^{sim}| \leq \Delta^{sim}$
 - predicate strengthening: $V \leq V_{high} \rightarrow B_1 h_1 + B_2 h_2^{sim} \leq V_{high} - \Delta^{sim}$

Outline

1 Introduction

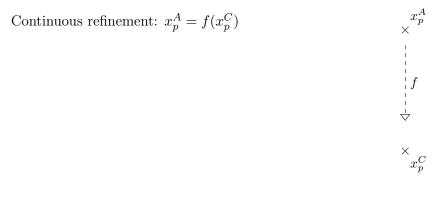
- Context
- Event-B and theories

Designing hybrid systems

- Continuous behaviours in Event-B
- Formal framework: principle and overview
- Architectural patterns
- Behavioural patterns
- Co-verification, co-validation

HS usually involve complex dynamics, hard to handle \Rightarrow engineers use approximation

HS usually involve complex dynamics, hard to handle \Rightarrow engineers use approximation



HS usually involve complex dynamics, hard to handle \Rightarrow engineers use approximation

Continuous refinement:
$$x_p^A = f(x_p^C)$$

 $\Rightarrow Let's "loosen" equality: $x \stackrel{\delta}{\approx} y \equiv d(x,y) \leq \delta$

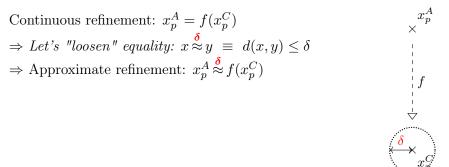
$$\downarrow f$$

$$\downarrow f$$

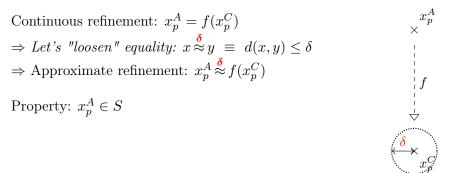
$$\downarrow f$$

$$\downarrow x_p^C$$$

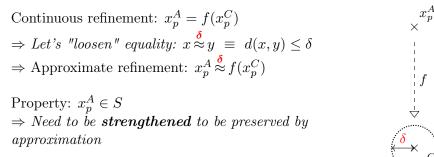
HS usually involve complex dynamics, hard to handle \Rightarrow engineers use approximation



HS usually involve complex dynamics, hard to handle \Rightarrow engineers use approximation



HS usually involve complex dynamics, hard to handle \Rightarrow engineers use approximation

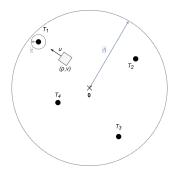


HS usually involve complex dynamics, hard to handle \Rightarrow engineers use approximation

Continuous refinement:
$$x_p^A = f(x_p^C)$$

 $\Rightarrow Let's "loosen" equality: $x \stackrel{\delta}{\approx} y \equiv d(x,y) \leq \delta$
 $\Rightarrow \text{Approximate refinement: } x_p^A \stackrel{\delta}{\approx} f(x_p^C)$
Property: $x_p^A \in S$
 $\Rightarrow Need to be strengthened to be preserved by
approximation
 $\Rightarrow x_p^A \in S \land \forall \hat{x} \notin S, d(x_p^A, \hat{x}) > \delta \text{ (shrinking } \mathcal{S}_{\delta}(S))$$$

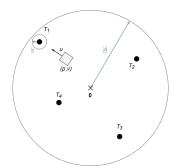
Approximation (Example)



- ▶ Robot (p, v), visiting targets T_i
- Control system (u^C, w^C)
- ▶ Remains in area $||p|| \le A$
- $\blacktriangleright \text{ Controller} + \text{motors} \Rightarrow complex DE$

$$\begin{cases} \dot{v}^C &= \frac{1}{2}u^C - K(p^C - w^C) - v^C \\ \dot{p}^C &= v^C \\ \dot{w}^C &= u^C \end{cases}$$

Approximation (Example)



• Robot (p, v), visiting targets T_i

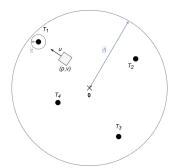
- ▶ Control system (u^C, w^C)
- ▶ Remains in area $||p|| \le A$

• Controller + motors \Rightarrow complex DE

$$\begin{cases} \dot{v}^{C} &= \frac{1}{2}u^{C} - K(p^{C} - w^{C}) - v^{C} \\ \dot{p}^{C} &= v^{C} \\ \dot{w}^{C} &= u^{C} \end{cases}$$

Idea: approximate system, simpler, $p^A = u^A$, with $p^A \stackrel{o}{\approx} p^C + \text{Safety} : ||p^A|| \le A - \delta \implies ||p^C|| \le A$

Approximation (Example)



• Robot (p, v), visiting targets T_i

- ▶ Control system (u^C, w^C)
- ▶ Remains in area $||p|| \le A$

• Controller + motors \Rightarrow complex DE

$$\begin{cases} \dot{v}^C &= \frac{1}{2}u^C - K(p^C - w^C) - v^C \\ \dot{p}^C &= v^C \\ \dot{w}^C &= u^C \end{cases}$$

Idea: approximate system, simpler, $p^A = u^A$, with $p^A \stackrel{o}{\approx} p^C + \text{Safety} : ||p^A|| \le A - \delta \implies ||p^C|| \le A$

Strategy: verified simpler model + correct approximation = preserved properties on complex model

Outline

1 Introduction

- Context
- Event-B and theories

Designing hybrid systems

- Continuous behaviours in Event-B
- Formal framework: principle and overview
- Architectural patterns
- Behavioural patterns
- Co-verification, co-validation

Co-validation – Motivation

Rodin (inc. Pro-B) = adapted to discrete systems, not so much for continuous...

 \Rightarrow we should use adapted tools

Co-validation – Motivation

Rodin (inc. Pro-B) = adapted to discrete systems, not so much for continuous...

 \Rightarrow we should use adapted tools

In particular, two specific POs:

$$\Gamma, \mathcal{I}([0,t] \triangleleft x_p), CBAP(t,t',x_p,x'_p,\mathcal{P},\mathcal{H}) \vdash \mathcal{I}([t,t'] \triangleleft x'_p) \quad (CINV)$$
$$\Gamma \vdash \exists t' \cdot t' \in \mathbb{R}^+ \land t' > t \land \mathbf{Feasible}([t,t'],x_p,\mathcal{P},\mathcal{H}_{saf}) \quad (CFIS)$$

Co-validation – Motivation

Rodin (inc. Pro-B) = adapted to discrete systems, not so much for continuous...

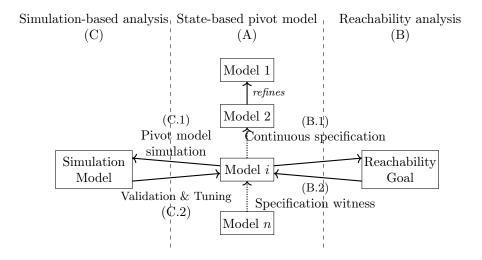
 \Rightarrow we should use adapted tools

In particular, two specific POs:

$$\Gamma, \mathcal{I}([0,t] \triangleleft x_p), CBAP(t,t',x_p,x'_p,\mathcal{P},\mathcal{H}) \vdash \mathcal{I}([t,t'] \triangleleft x'_p) \quad (CINV)$$
$$\Gamma \vdash \exists t' \cdot t' \in \mathbb{R}^+ \land t' > t \land \mathbf{Feasible}([t,t'],x_p,\mathcal{P},\mathcal{H}_{saf}) \quad (CFIS)$$

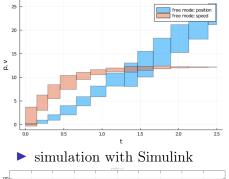
This correspond to a **reachability problem**

Principle



Some results

(case study = railway signaling systems)

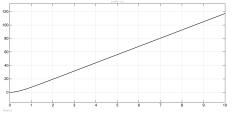


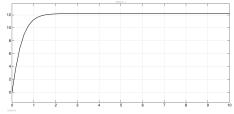
▶ using JuliaReach

▶ complex diff. eq.

$$\dot{v} = f - (a + bv + cv^2), \dot{p} = v$$

 $\begin{array}{l} {\rm w/~invariant:} \\ p+StoppingDistance \leq EOA \end{array}$





Outline

1 Introduction

- Context
- Event-B and theories

Designing hybrid systems

- Continuous behaviours in Event-B
- Formal framework: principle and overview
- Architectural patterns
- Behavioural patterns
- Co-verification, co-validation

3 Conclusion and Future Work

Conclusion

A formal framework for designing HS and CPS:

generic and reusable

 \Rightarrow generic model + patterns defined once and for all, instantiation via refinement

- ▶ integrates discrete and continuous aspects at the same level, integrates domain knowledge
 ⇒ thanks to the use of theories
- ▶ features extensible architectural and behavioural formal design patterns ⇒ new pattern = refinement of the generic model
- support of a general methodology for HS development
 ⇒ concrete system = sequence of pattern application with generic model as root

Note: a diversity of case studies available on my website https://irit.fr/~Guillaume.Dupont/models/

Future work

Include more types of systems:

- ▶ other architectures, other dynamics
- other domains + properties

Possible improvements

- easing modelling (models a bit difficult to write...)
- helping proof (proof automation, specialised provers)

Bridging the gap with implementation:

- **discretisation**, floating points
- event-based > clock-based, heterogeneous times
- constraint synthesis

Part II Bibliography

References I

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. 1st. New York, NY, USA: Cambridge University Press, 2010. ISBN: 9781139637794.

- [Alu+95] Rajeev Alur et al. "The algorithmic analysis of hybrid systems". In: *Theoretical Computer Science* 138.1 (1995). Hybrid Systems, pp. 3–34. ISSN: 0304-3975.
- [BM13] Michael Butler and Issam Maamria. "Practical Theory Extension in Event-B". In: Theories of Programming and Formal Methods. Ed. by Zhiming Liu, Jim Woodcock, and Huibiao Zhu. Vol. 8051. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 67–81. ISBN: 978-3-642-39697-7.