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An example: automatic brake

=k

0 p d SP
A car (p, v, a) must stop before SP
= design a correct controller that stops the car in time

Problem : controller = program, car = physical object
= controller characterised by code
= car characterised by differential equations

3/31



Hybrid systems

Definition

Hybrid systems (HS) integrate both discrete and continuous
behaviours.
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Event-B
Definition

Event-B is formal method for the correct-by-construction design of
complex systems|[Abr10].
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Event-B
Definition

Event-B is formal method for the correct-by-construction design of
complex systems|[Abr10].

System = state (variables) + events + invariants
Event = guard + state transition (BAP)

MACHINE Car
VARIABLES p, v, state
INVARIANTS
invl: p € Z
inv2: v € Z
inv3: state € {lg,l1,l2}
invd: p < SP
EVENTS
INITIALISATION
THEN
actl: p,v := pg,vo
act2: state :=lg
END

move

ANY At

WHERE

grdl: At e NAp+v X At < SP
THEN

actl: p:|p’ =p+ v x At

END

close

WHEN

grdl: p+ (v X v)/(2 X b) = SP
THEN

actl: state := Iy

END

brake
ANY At
WHERE
grdl:
grd2:
THEN
actl:
END

stop
WHERE
grdl:
THEN
actl:
END

state = 11

At e NAv—bXxX At >0

viv =v—bx At
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Event-B

Definition

Event-B is formal method for the correct-by-construction design of
complex systems|[Abr10].

System = state (variables) + events + invariants
Event = guard + state transition (BAP)

nove brake
MACHINE Car ANY At ANY At
VARIABLES p, v, state WHERE WHERE
INVARIANTS grdl: state = Iy
X . grdl: At e NAp+v X At < SP . _
i:g zgé THEN Tg;:z. Ate NAv —bx At >0
. . . VA
inv3: state € {lg,l1,12} E:;tll PP =ptuvxat actl: v:\v,:v—bXAt
invd: p < SP END
EVENT.
s close
INITIALISATION stop
THEN WHEN WHERE
actl: p,v := pg,vo Tﬁgzl: p+(vxv)/(2xb)=5P grdl: v =0
act2: state :=lg THEN
actl: state := 1y L. L
END END E:;tl. state := lo

Event-B supports refinement: gradual inclusion of details while
preserving properties (hence correctness by construction)
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Theory extension

Event-B is based on first order logic and set theory
= expressive but low-level, lack of reusable higher order constructs
Solution: the theory component |[BM13]

Theory = algebraic/axiomatic datatypes + operators and properties

THEORY Th
IMPORT Thl, ...
TYPE PARAMETERS E, F, ...
DATATYPES
Typel(E, ...)

constructors cstrl(py: T, ..

OPERATORS
0Opl <nature> (py: 17, ...)

well-definedness WD(pq, ...

direct definition Dj

S

)

AXIOMATIC DEFINITIONS

TYPES Ay, ...

OPERATORS

AOp2 <nature> (py1: Tq, ...): Ty
well-definedness WD(pq,...)

AXIOMS A1, ...

THEOREMS T7, ...
PROOF RULES

END

= theories used to formalise mathematical concepts (continuous
functions, diff. eq.) and domain knowledge (trains, cars)
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Outline

© Designing hybrid systems
@ Continuous behaviours in Event-B
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Modelling HS: How?

We want in the same model:
» discrete behaviours [easy!/
» continuous dynamics: “dense” time, continuous functions, diff.
equations
Idea: try to elaborate a general HS schema
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Modelling HS: How?
We want in the same model:
» discrete behaviours [easy!/

» continuous dynamics: “dense” time, continuous functions, diff.
equations

Idea: try to elaborate a general HS schema

Continuous state variables = functions of time (€ R+ S)
= continuous evolution as CBAP

CBAP(t,t’,xp,x;,P,H) = :z:p:|t_>t/73(xp,x;,)&H =

[0, t[<1z;, = [0, t[<1x, (Past Preservation)
AP([0,t] < p, [t, 1] < 7)) (Predicate)
AVE € [t 1],z (t") € H (Evolution Dom.)

Note: shorthand for differential equations:
Tpir~vy sy E&H = x|y solutionOf([t, t'], &, :E;,) & H
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Continuous Assignment — Properties

CBAP associated to particular proved meta-theorems:
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Continuous Assignment — Properties

CBAP associated to particular proved meta-theorems:
> Well-Definedness: assignment is well-defined iff

1. ¢ <t (time progression)
2. Yu,v-Pu,v) =>ueRT»SAveR +» S
A0, t[C dom(u) A [t,t'] C dom(v) (type/domain coherence)

> Feasibility: there exists ) € R + S with [t,#'] C dom(z)) s.t.:

P
L. P([0,t] @y, 2)) (predicate holds)
2. Vt* e [t,t'],2)(t*) € H (evolution domain holds)

= reachibility of next state t'

» Invariant preservation (continuous induction): for establishing
invariant Z C S on [0,#'], it is sufficient that:
1. Vt* € [0,t),zp(t*) €L
2. CBAP(t,', 2,2, P, HNT)

= instantiated to discharge POs for continuous events
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Modelling Features

THEORY DiffEq IMPORT Functions
TYPE PARAMETERS E, F
DATATYPES
DE(F) constructors ode(f,ng,tg), ...
OPERATORS
solutionOf predicate (D : P(R), n : R+ F, & : DE(F)) ...
Solvable predicate (D : P(R), € : DE(F)) ...
| :~ predicate (t,t' : RY, zp,2/ : R+ F, & : DE(F), H : P(F))
well-definedness condition Solvable([t,t], £)
direct definition solutionOf([t,t'],z},E) A ...
AXIOMS
CauchyLipschitz: -- external
VE,D,Dp - £ € DE(F) A ... = Solvable(D, £)
THEOREMS
CBAPINV:

CBAP predicate (t,t' : RT, xp,x; c R+ F, P :P(R+»F)xR+F)), H: P(F)) ...

vt t' ', P, H, T -t,t' €RAn,n €R-FA...= (Vt* - t* € [0,t] = n'(t*) € T)

> use of theories to integrate continuous features

= e.g. continuous behaviour using differential equations

» exploit WD to ensure correct use of operators/theorems
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Modelling Features

DE(F) ode(f, no, to)

solutionOf
Solvable
CBAP

well-definedness condition Solvable([t,t], £)

CauchyLipschitz:
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Event-B “Hybridation”

sense

J

|

Ctrl Plant
T actuate @
command environment

Generic schema for HS
» discrete controller (program)
» continuous “plant” (physical)

P sensing and actuation events
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Event-B “Hybridation”

sense

T actuate @

command environment

» Dense time t € R
» Discrete: discrete variables s + BAP

» Continuous: continues continuous Tp +
CBAP

Generic schema for HS

» discrete controller (program
L Ctrl Plant J ) . (p g_ )
» continuous “plant” (physical)

P sensing and actuation events

MACHINE Generic
VARIABLES ¢, =5, =
INVARIANTS
invi: ¢t € RT
inv2: x5 € STATES
inv3: z, € R+ S
inv4: [0,t] C dom(zyp)
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Generic Model (Cont’d)

» Event parameters for
genericity

> Sensing with guard on
continuous state and discrete
state (grd3)

Sense
ANY s,
WHERE

grdl:
grd2:

grd3
THEN

actl:

END

P

s € P1(STATES)
p € P(STATES X R X S)
i(@s >t ap(t) €D

Ts €S
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Generic Model (Cont’d)

» Event parameters for P—
.. ANY s, p
generlclty WHERE
~ . . grdl: s € P1(STATES)
» Sensing with guard on grd2: p € P(STATES x R x S)
. . grd3: (ms >t 2p() € P
continuous state and discrete THEN
actl: x5 :€ s
state (g rd3) END
Actuate .
AN P, s, H, » Model plant’s behaviour
grde: ¢t >t > :
ol P o (@F = 5) x @ - 3) Contlnuqus evept based on QBAP
grd2: Feasible([t, t'], vy, P, H) = generic continuous behaviour P
grd3: s C STATES
grdd: x5 € s I . . § .
grds: H C S » Feasibility: Feasible guard
grdé: x,(t) € H . .
THEN » Associated discrete state
actl: @p [, 0 P(.’I?Ih:r;}) & H . . .
END » Constrained by evolution domain
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Example: Stopping Car

MACHINE Car REFINES Generic

VARIABLES t, =5, p, v

INVARIANTS

inv31-32: pe R+ S, veER+-» S
inv41-42: [0,t] C dom(p),[0,t] C dom(v)
invs: zp = [vp ]T

invé: Vt* - tast € [0,t] = p(t) < SP

sense_close REFINES Sense
WHERE grdl: zs = lg
grd2: p(t) +v(t)2/2 > SP
WITH s : s = {l1}
pip={p* 0" |p* +v*?/2 > SP}
THEN actl: zg := [y
END

actuate_move REFINES Actuate
ANY t’
WHERE grd0: ¢t/ >t
grdl: =g = lg
grd2: p(t) +v(t)2/2 < SP

WITH eq : eq = ode(fmove, [v(t) p(t)] T
s:s={lp}
/Y AWERE
Tp P Ty = [U p ]

H:H={v*p*|p"+v*3/2> SP}
THEN actl: v, pi~, 4/
ode( frmoue, [v(t) p(t>] ) 1)
&{v*,p* | p* +v*2/2 > SP}

> Instantiation = refinement
= witnesses (WITH) and gluing
invariant (inv5) provided

» Continuous behaviour = ODE
= ODE solvability required by
WD of .~y = by GS:

solvability = Feasible
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Example: Stopping Car

invs: x, = [vp] "
> Instantiation = refinement
= witnesses (WITH) and gluing
;Zz{{lpl} ot | p* 4022 > SP) invariant (inv5) provided

» Continuous behaviour — ODE
= ODE solvability required by
WD of :~;_,y = by GS:

20 eq = ode(fmowe, [ (1) ZONND! solvability = Feasible

s:s5 ={lg

I;) : 7:;7 = [v/ P
H:H={v*p*|p"+v*3/2> SP}
actl: v, pirv, L/

ode(fmove, [v(t) p(f)] t)

&{v*,p* | p* +v*/2 Z SP}

/]T
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Towards a formal framework

Idea:

» use algebraic theories to extend Event-B
= CBAP, diff. eq. + formal properties

» define a parameterised generic model of hybrid systems
= refinement-instantiation to derive any HS

» parameterised refinement of generic model = applicable to any HS
= definition of formal design patterns
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Towards a formal framework

Idea:

» use algebraic theories to extend Event-B
= CBAP, diff. eq. + formal properties

» define a parameterised generic model of hybrid systems
= refinement-instantiation to derive any HS

» parameterised refinement of generic model = applicable to any HS
= definition of formal design patterns

In a nutshell, designing a hybrid system involves a refinement chain
stemming from the generic model and consisting of design pattern
application
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Framework — Overview

General theories

Set Theor,
and FOLy Generic models

extension

IConti M th; importation
Bli‘fElAméOUS , < Generic Model

quations

> based on
extension I I
’ Approximation }(——{ Approximated ‘ Single-to-Single Single-to-Many ’I\/Iany—to—l\dany
ES ) — = -
! ,m,po'rf,amon\ \ e

) ! i
extension g

Instance ¥ -~ - Instance !
| |

l,,j,,,

N 3 importation System-specific models

Domain theories
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Outline

© Designing hybrid systems

o Architectural patterns
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Architectural patterns

Decompose HS in multiple interacting components:

» one controller + one plant (“single-to-single”)
= generic model

» one controller + multiple plants (“single-to-many”)
= centralised control of multiple components

» multiple controllers + multiple plants (“many-to-many”)
= distributed HS, cyber-physical system
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Architectural patterns

Decompose HS in multiple interacting components:

» one controller + one plant (“single-to-single”)
= generic model

» one controller + multiple plants (“single-to-many”)
= centralised control of multiple components

» multiple controllers + multiple plants (“many-to-many”)
= distributed HS, cyber-physical system

Idea: introduce architecture with a pattern
= challenge: link global state to local state
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S2M, Centralised control (Example)

» Abstract tank, volume V()
» Controller state x4

(Filling, Emptying, ...)

= control In/Out pumps
> Safety: View <V < Vhigh
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S2M, Centralised control (Example)

Ctrl

» Abstract tank, volume V() » 2 cylindrical tanks (B;)
» Controller state x4 » Sensing height (h;)
(Filling, Emptying, ...) = V(t) = Bihi(t) + Baha(t)

= control In/Out pumps » Centralised controller + policy

» Safety: Vigw <V < Vi = P(xs, Iny, Outy, Ing, Outs)

20/31



M2M, Distributed HS (Example)

> Same situation but independant HS (z, 1,/ et 242, ho)
= still V(t) = Blhl (t) + B2h2(t>
= policy between discrete states P(xs, %51, %s2)

21/31



M2M, Distributed HS (Example)

> Same situation but independant HS (z, 1,/ et 242, ho)
= still V(t) = Blhl (t) + BQhQ(t)
= policy between discrete states P(xs, %51, %s2)

» Imperfect communication = imprecision, no global state

» cach component estimates the others = 1"

> precision A% |h; — R < ASM

» predicate strengthening: _
V < Vhigh — Bihi + Bah3" < Viyigr, — A%
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© Designing hybrid systems

@ Behavioural patterns
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Approximation pattern

HS usually involve complex dynamics, hard to handle
= engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour = formalise approximation as a refinement
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Approximation pattern

HS usually involve complex dynamics, hard to handle
= engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour = formalise approximation as a refinement

A
; A c T
Continuous refinement: z," = f(z},) P
!
!
!
S
1
v
e
mp
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Approximation pattern

HS usually involve complex dynamics, hard to handle
= engineers use approximation
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Approximation pattern

HS usually involve complex dynamics, hard to handle
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A
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[
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[ |
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= engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour = formalise approximation as a refinement

A
Continuous refinement: x f(z, o xxp
[
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Approximation pattern

HS usually involve complex dynamics, hard to handle
= engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour = formalise approximation as a refinement

A
Continuous refinement: x f(z, o xxp
[
= Let’s "loosen" equality: x~y = d(z,y) <9d !
[ \
= Approximate refinement: :L‘;;‘ ~f (xg) ! P
Property: 93;;‘ es !
= Need to be strengthened to be preserved by V
approzimation i0. %
= 2t € SAVE ¢ S,d(x),&) > 6 (shrinking S5(5)) L ad
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Approximation (Example)

P /
i ) /
e , /
/ [}
(v) / T2
/
/
X
T4 0
[ ]
T3
[}

» Robot (p, v), visiting targets T;

» Control system (u®,w®)

» Remains in area [|p|| < A
» Controller

@C
-C

p
u']C

+ motors = complex DE

%uC _ K(pc _ wC) _ UC
v

ne
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Approximation (Example)

» Robot (p, v), visiting targets T;

» Control system (u®,w®)

» Remains in area [|p|| < A
» Controller

@C
-C
p

u']C

+ motors = complex DE

%uc _ K(pc _ wC) _ UC
v¢

ne

Al ¢

Idea: approximate system, simpler, p? = u#, with pA ~p
- Safety  [pA<A-6 = [p7]| < A
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Approximation (Example)

» Robot (p, v), visiting targets T;

» Control system (u®,w®)

» Remains in area [|p|| < A

» Controller

@C
-C
p

Wl =

+ motors = complex DE

%uc _ K(pc _ wC) _ UC
e

u€

Al ¢

Idea: approximate system, simpler, p? = u#, with pA ~p
- Safety  [pA<A-6 = [p7]| < A

Strategy: verified simpler model + correct approximation = preserved

properties on complex model
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Co-validation — Motivation

Rodin (inc. Pro-B) = adapted to discrete systems, not so much for
continuous...

= we should use adapted tools
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Co-validation — Motivation

Rodin (inc. Pro-B) = adapted to discrete systems, not so much for
continuous...

= we should use adapted tools

In particular, two specific POs:

T, Z([0,t] < zp), CBAP(t,t', xp, 2, P, H) = Z([t,t'] < x;,)  (CINV)
LE3t' -t e RY At >t A Feasible([t,t'], zp, P, Har) (CFIS)

This correspond to a reachability problem
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Principle

Simulation-based analysis, State-based pivot model ,
(A)

(©)

(€.1)
Pivot, model

Simulation

Model

simqlation

Validation & Tuning

(©.2)

(B.1)

= (B.2)

Model n i

(B)

P . . .
Continuous specification

Reachability
Goal

Specification witness

Reachability analysis
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Some results

(case study = railway signaling systems)

[ free mode: position
[ free mode: speed
T .

15+
>

» using JuliaReach
» complex diff. eq.

v=f—(a+bv+e?),p=0

w/ invariant:
o o 5 = = p + StoppingDistance < EOA

t

» simulation with Simulink




Outline

@ Conclusion and Future Work
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Conclusion

A formal framework for designing HS and CPS:

> generic and reusable
= generic model + patterns defined once and for all, instantiation
via refinement

P integrates discrete and continuous aspects at the same level,
integrates domain knowledge
= thanks to the use of theories

» features extensible architectural and behavioural formal design
patterns = new pattern = refinement of the generic model

> support of a general methodology for HS development
= concrete system = sequence of pattern application with generic
model as Toot

Note: a diversity of case studies available on my website
https://irit. fr/~Guillaume.Dupont/models/
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Future work

Include more types of systems:
» other architectures, other dynamics

» other domains + properties

Possible improvements
» easing modelling (models a bit difficult to write...)
» helping proof (proof automation, specialised provers)
Bridging the gap with implementation:
» discretisation, floating points

> event-based > clock-based, heterogeneous times

» constraint synthesis
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