
Designing Safe Cybper-Physical Systems
A proof and refinement based approach

Guillaume Dupont

IRIT, Toulouse INP – ENSEEIHT1

ABZ 2025

1
This work was supported by grant ANR-17-CE25-0005 (DISCONT Project https://discont.loria.fr)

1/31

https://discont.loria.fr

Outline

1 Introduction
Context
Event-B and theories

2 Designing hybrid systems
Continuous behaviours in Event-B
Formal framework: principle and overview
Architectural patterns
Behavioural patterns
Co-verification, co-validation

3 Conclusion and Future Work

2/31

An example: automatic brake

STOP

d0

v

p SP

A car (p, v, a) must stop before SP
⇒ design a correct controller that stops the car in time

Problem : controller = program, car = physical object
⇒ controller characterised by code
⇒ car characterised by differential equations

3/31

Hybrid systems

Definition
Hybrid systems (HS) integrate both discrete and continuous
behaviours.

⇒ hybrid nature, makes reasoning difficult

We want a formal method for modelling and verifying HS ⇒ integration
of discrete and continuous aspects at the same level

Ex.: hybrid automata [Alu+95] : automata + continuous

l0
v̇ = a, ṗ = v

p + v2

2b
= SP

start
l1

v̇ = -b, ṗ = v
v > 0

l2
v̇ = 0, ṗ = 0

⊤

/p + v2

2b
< SP /v = 0

4/31

Hybrid systems

Definition
Hybrid systems (HS) integrate both discrete and continuous
behaviours.

⇒ hybrid nature, makes reasoning difficult

We want a formal method for modelling and verifying HS ⇒ integration
of discrete and continuous aspects at the same level

Ex.: hybrid automata [Alu+95] : automata + continuous

l0
v̇ = a, ṗ = v

p + v2

2b
= SP

start
l1

v̇ = -b, ṗ = v
v > 0

l2
v̇ = 0, ṗ = 0

⊤

/p + v2

2b
< SP /v = 0

4/31

Hybrid systems

Definition
Hybrid systems (HS) integrate both discrete and continuous
behaviours.

⇒ hybrid nature, makes reasoning difficult

We want a formal method for modelling and verifying HS ⇒ integration
of discrete and continuous aspects at the same level

Ex.: hybrid automata [Alu+95] : automata + continuous

l0
v̇ = a, ṗ = v

p + v2

2b
= SP

start
l1

v̇ = -b, ṗ = v
v > 0

l2
v̇ = 0, ṗ = 0

⊤

/p + v2

2b
< SP /v = 0

4/31

Hybrid systems

Definition
Hybrid systems (HS) integrate both discrete and continuous
behaviours.

⇒ hybrid nature, makes reasoning difficult

We want a formal method for modelling and verifying HS ⇒ integration
of discrete and continuous aspects at the same level

Ex.: hybrid automata [Alu+95] : automata + continuous

l0
v̇ = a, ṗ = v

p + v2

2b
= SP

start
l1

v̇ = -b, ṗ = v
v > 0

l2
v̇ = 0, ṗ = 0

⊤

/p + v2

2b
< SP /v = 0

4/31

Hybrid systems

Definition
Hybrid systems (HS) integrate both discrete and continuous
behaviours.

⇒ hybrid nature, makes reasoning difficult

We want a formal method for modelling and verifying HS ⇒ integration
of discrete and continuous aspects at the same level

Ex.: hybrid automata [Alu+95] : automata + continuous

l0
v̇ = a, ṗ = v

p + v2

2b
= SP

start
l1

v̇ = -b, ṗ = v
v > 0

l2
v̇ = 0, ṗ = 0

⊤

/p + v2

2b
< SP /v = 0

4/31

Event-B
Definition
Event-B is formal method for the correct-by-construction design of
complex systems[Abr10].

System = state (variables) + events + invariants
Event = guard + state transition (BAP)

MACHINE Car
VARIABLES p, v, state
INVARIANTS
inv1: p ∈ Z
inv2: v ∈ Z
inv3: state ∈ {l0, l1, l2}
inv4: p < SP
EVENTS
INITIALISATION
THEN
act1: p, v := p0, v0
act2: state := l0
END

move
ANY ∆t
WHERE
grd1: ∆t ∈ N ∧ p + v × ∆t < SP
THEN
act1: p :| p′ = p + v × ∆t
END

close
WHEN
grd1: p + (v × v)/(2 × b) = SP
THEN
act1: state := l1
END

brake
ANY ∆t
WHERE
grd1: state = l1
grd2: ∆t ∈ N ∧ v − b × ∆t > 0
THEN
act1: v :| v′ = v − b × ∆t
END

stop
WHERE
grd1: v = 0
THEN
act1: state := l2
END

Event-B supports refinement: gradual inclusion of details while
preserving properties (hence correctness by construction)

5/31

Event-B
Definition
Event-B is formal method for the correct-by-construction design of
complex systems[Abr10].

System = state (variables) + events + invariants
Event = guard + state transition (BAP)

MACHINE Car
VARIABLES p, v, state
INVARIANTS
inv1: p ∈ Z
inv2: v ∈ Z
inv3: state ∈ {l0, l1, l2}
inv4: p < SP
EVENTS
INITIALISATION
THEN
act1: p, v := p0, v0
act2: state := l0
END

move
ANY ∆t
WHERE
grd1: ∆t ∈ N ∧ p + v × ∆t < SP
THEN
act1: p :| p′ = p + v × ∆t
END

close
WHEN
grd1: p + (v × v)/(2 × b) = SP
THEN
act1: state := l1
END

brake
ANY ∆t
WHERE
grd1: state = l1
grd2: ∆t ∈ N ∧ v − b × ∆t > 0
THEN
act1: v :| v′ = v − b × ∆t
END

stop
WHERE
grd1: v = 0
THEN
act1: state := l2
END

Event-B supports refinement: gradual inclusion of details while
preserving properties (hence correctness by construction)

5/31

Event-B
Definition
Event-B is formal method for the correct-by-construction design of
complex systems[Abr10].

System = state (variables) + events + invariants
Event = guard + state transition (BAP)

MACHINE Car
VARIABLES p, v, state
INVARIANTS
inv1: p ∈ Z
inv2: v ∈ Z
inv3: state ∈ {l0, l1, l2}
inv4: p < SP
EVENTS
INITIALISATION
THEN
act1: p, v := p0, v0
act2: state := l0
END

move
ANY ∆t
WHERE
grd1: ∆t ∈ N ∧ p + v × ∆t < SP
THEN
act1: p :| p′ = p + v × ∆t
END

close
WHEN
grd1: p + (v × v)/(2 × b) = SP
THEN
act1: state := l1
END

brake
ANY ∆t
WHERE
grd1: state = l1
grd2: ∆t ∈ N ∧ v − b × ∆t > 0
THEN
act1: v :| v′ = v − b × ∆t
END

stop
WHERE
grd1: v = 0
THEN
act1: state := l2
END

Event-B supports refinement: gradual inclusion of details while
preserving properties (hence correctness by construction)

5/31

Event-B
Definition
Event-B is formal method for the correct-by-construction design of
complex systems[Abr10].

System = state (variables) + events + invariants
Event = guard + state transition (BAP)

MACHINE Car
VARIABLES p, v, state
INVARIANTS
inv1: p ∈ Z
inv2: v ∈ Z
inv3: state ∈ {l0, l1, l2}
inv4: p < SP
EVENTS
INITIALISATION
THEN
act1: p, v := p0, v0
act2: state := l0
END

move
ANY ∆t
WHERE
grd1: ∆t ∈ N ∧ p + v × ∆t < SP
THEN
act1: p :| p′ = p + v × ∆t
END

close
WHEN
grd1: p + (v × v)/(2 × b) = SP
THEN
act1: state := l1
END

brake
ANY ∆t
WHERE
grd1: state = l1
grd2: ∆t ∈ N ∧ v − b × ∆t > 0
THEN
act1: v :| v′ = v − b × ∆t
END

stop
WHERE
grd1: v = 0
THEN
act1: state := l2
END

Event-B supports refinement: gradual inclusion of details while
preserving properties (hence correctness by construction)

5/31

Theory extension

Event-B is based on first order logic and set theory
⇒ expressive but low-level, lack of reusable higher order constructs
Solution: the theory component [BM13]

Theory = algebraic/axiomatic datatypes + operators and properties

THEORY Th
IMPORT Th1, ...
TYPE PARAMETERS E, F , ...
DATATYPES
Type1(E, ...)
constructors cstr1(p1: T1, ...), ...

OPERATORS
Op1 <nature> (p1: T1, ...)
well-definedness WD(p1, ...)
direct definition D1

AXIOMATIC DEFINITIONS
TYPES A1, ...
OPERATORS
AOp2 <nature> (p1: T1, ...): Tr
well-definedness WD(p1, ...)

AXIOMS A1, ...
THEOREMS T1, ...
PROOF RULES
...

END

⇒ theories used to formalise mathematical concepts (continuous
functions, diff. eq.) and domain knowledge (trains, cars)

6/31

Outline

1 Introduction
Context
Event-B and theories

2 Designing hybrid systems
Continuous behaviours in Event-B
Formal framework: principle and overview
Architectural patterns
Behavioural patterns
Co-verification, co-validation

3 Conclusion and Future Work

7/31

Outline

1 Introduction
Context
Event-B and theories

2 Designing hybrid systems
Continuous behaviours in Event-B
Formal framework: principle and overview
Architectural patterns
Behavioural patterns
Co-verification, co-validation

3 Conclusion and Future Work

8/31

Modelling HS: How?
We want in the same model:
▶ discrete behaviours [easy!]
▶ continuous dynamics: “dense” time, continuous functions, diff.

equations
Idea: try to elaborate a general HS schema

Continuous state variables = functions of time (∈ R 7→ S)
⇒ continuous evolution as CBAP

CBAP(t, t′, xp, x
′
p,P, H) ≡ xp:|t→t′P(xp, x

′
p)&H ≡

[0, t[◁x′p = [0, t[◁xp (Past Preservation)

∧P([0, t]◁ xp, [t, t
′]◁ x′p) (Predicate)

∧∀t∗ ∈ [t, t′], xp(t
∗) ∈ H (Evolution Dom.)

Note: shorthand for differential equations:

xp:∼t→t′E&H ≡ xp :|t→t′ solutionOf([t, t′], E , x′p) &H

9/31

Modelling HS: How?
We want in the same model:
▶ discrete behaviours [easy!]
▶ continuous dynamics: “dense” time, continuous functions, diff.

equations
Idea: try to elaborate a general HS schema

Continuous state variables = functions of time (∈ R 7→ S)
⇒ continuous evolution as CBAP

CBAP(t, t′, xp, x
′
p,P, H) ≡ xp:|t→t′P(xp, x

′
p)&H ≡

[0, t[◁x′p = [0, t[◁xp (Past Preservation)

∧P([0, t]◁ xp, [t, t
′]◁ x′p) (Predicate)

∧∀t∗ ∈ [t, t′], xp(t
∗) ∈ H (Evolution Dom.)

Note: shorthand for differential equations:

xp:∼t→t′E&H ≡ xp :|t→t′ solutionOf([t, t′], E , x′p) &H

9/31

Continuous Assignment – Properties
CBAP associated to particular proved meta-theorems:

▶ Well-Definedness: assignment is well-defined iff

1. t < t′ (time progression)
2. ∀u, v · P(u, v) ⇒ u ∈ R+ 7→ S ∧ v ∈ R+ 7→ S

∧[0, t[⊆ dom(u) ∧ [t, t′] ⊆ dom(v) (type/domain coherence)

▶ Feasibility: there exists x0p ∈ R 7→ S with [t, t′] ⊆ dom(x0p) s.t.:

1. P([0, t]◁ xp, x
0
p) (predicate holds)

2. ∀t∗ ∈ [t, t′], x0
p(t

∗) ∈ H (evolution domain holds)
⇒ reachibility of next state t′

▶ Invariant preservation (continuous induction): for establishing
invariant I ⊆ S on [0, t′], it is sufficient that:

1. ∀t∗ ∈ [0, t[, xp(t
∗) ∈ I

2. CBAP(t, t′, xp, x
′
p,P, H ∩ I)

⇒ instantiated to discharge POs for continuous events

10/31

Continuous Assignment – Properties
CBAP associated to particular proved meta-theorems:
▶ Well-Definedness: assignment is well-defined iff

1. t < t′ (time progression)
2. ∀u, v · P(u, v) ⇒ u ∈ R+ 7→ S ∧ v ∈ R+ 7→ S

∧[0, t[⊆ dom(u) ∧ [t, t′] ⊆ dom(v) (type/domain coherence)

▶ Feasibility: there exists x0p ∈ R 7→ S with [t, t′] ⊆ dom(x0p) s.t.:

1. P([0, t]◁ xp, x
0
p) (predicate holds)

2. ∀t∗ ∈ [t, t′], x0
p(t

∗) ∈ H (evolution domain holds)
⇒ reachibility of next state t′

▶ Invariant preservation (continuous induction): for establishing
invariant I ⊆ S on [0, t′], it is sufficient that:

1. ∀t∗ ∈ [0, t[, xp(t
∗) ∈ I

2. CBAP(t, t′, xp, x
′
p,P, H ∩ I)

⇒ instantiated to discharge POs for continuous events

10/31

Continuous Assignment – Properties
CBAP associated to particular proved meta-theorems:
▶ Well-Definedness: assignment is well-defined iff

1. t < t′ (time progression)
2. ∀u, v · P(u, v) ⇒ u ∈ R+ 7→ S ∧ v ∈ R+ 7→ S

∧[0, t[⊆ dom(u) ∧ [t, t′] ⊆ dom(v) (type/domain coherence)

▶ Feasibility: there exists x0p ∈ R 7→ S with [t, t′] ⊆ dom(x0p) s.t.:
1. P([0, t]◁ xp, x

0
p) (predicate holds)

2. ∀t∗ ∈ [t, t′], x0
p(t

∗) ∈ H (evolution domain holds)
⇒ reachibility of next state t′

▶ Invariant preservation (continuous induction): for establishing
invariant I ⊆ S on [0, t′], it is sufficient that:

1. ∀t∗ ∈ [0, t[, xp(t
∗) ∈ I

2. CBAP(t, t′, xp, x
′
p,P, H ∩ I)

⇒ instantiated to discharge POs for continuous events

10/31

Continuous Assignment – Properties
CBAP associated to particular proved meta-theorems:
▶ Well-Definedness: assignment is well-defined iff

1. t < t′ (time progression)
2. ∀u, v · P(u, v) ⇒ u ∈ R+ 7→ S ∧ v ∈ R+ 7→ S

∧[0, t[⊆ dom(u) ∧ [t, t′] ⊆ dom(v) (type/domain coherence)

▶ Feasibility: there exists x0p ∈ R 7→ S with [t, t′] ⊆ dom(x0p) s.t.:
1. P([0, t]◁ xp, x

0
p) (predicate holds)

2. ∀t∗ ∈ [t, t′], x0
p(t

∗) ∈ H (evolution domain holds)
⇒ reachibility of next state t′

▶ Invariant preservation (continuous induction): for establishing
invariant I ⊆ S on [0, t′], it is sufficient that:

1. ∀t∗ ∈ [0, t[, xp(t
∗) ∈ I

2. CBAP(t, t′, xp, x
′
p,P, H ∩ I)

⇒ instantiated to discharge POs for continuous events

10/31

Continuous Assignment – Properties
CBAP associated to particular proved meta-theorems:
▶ Well-Definedness: assignment is well-defined iff

1. t < t′ (time progression)
2. ∀u, v · P(u, v) ⇒ u ∈ R+ 7→ S ∧ v ∈ R+ 7→ S

∧[0, t[⊆ dom(u) ∧ [t, t′] ⊆ dom(v) (type/domain coherence)

▶ Feasibility: there exists x0p ∈ R 7→ S with [t, t′] ⊆ dom(x0p) s.t.:
1. P([0, t]◁ xp, x

0
p) (predicate holds)

2. ∀t∗ ∈ [t, t′], x0
p(t

∗) ∈ H (evolution domain holds)
⇒ reachibility of next state t′

▶ Invariant preservation (continuous induction): for establishing
invariant I ⊆ S on [0, t′], it is sufficient that:

1. ∀t∗ ∈ [0, t[, xp(t
∗) ∈ I

2. CBAP(t, t′, xp, x
′
p,P, H ∩ I)

⇒ instantiated to discharge POs for continuous events
10/31

Modelling Features

THEORY DiffEq IMPORT Functions
TYPE PARAMETERS E, F
DATATYPES
DE(F) constructors ode(f, η0, t0), ...
OPERATORS
solutionOf predicate (D : P(R), η : R 7→ F , E : DE(F)) ...
Solvable predicate (D : P(R), E : DE(F)) ...

CBAP predicate (t, t′ : R+, xp, x
′
p : R 7→ F , P : P((R 7→ F) × (R 7→ F)), H : P(F)) ...

:∼ predicate (t, t′ : R+, xp, x
′
p : R 7→ F , E : DE(F), H : P(F))

well-definedness condition Solvable([t, t′], E)
direct definition solutionOf([t, t′], x′

p, E) ∧ . . .

...
AXIOMS
CauchyLipschitz: -- external

∀E, D,DF · E ∈ DE(F) ∧ . . . ⇒ Solvable(D, E)
...
THEOREMS
CBAPINV:

∀t, t′, η, η′,P, H,I · t, t′ ∈ R ∧ η, η′ ∈ R 7→ F ∧ . . . ⇒ (∀t∗ · t∗ ∈ [0, t′] ⇒ η′(t∗) ∈ I)
...

▶ use of theories to integrate continuous features
⇒ e.g. continuous behaviour using differential equations

▶ exploit WD to ensure correct use of operators/theorems

11/31

Modelling Features

THEORY DiffEq IMPORT Functions
TYPE PARAMETERS E, F
DATATYPES
DE(F) constructors ode(f, η0, t0), ...
OPERATORS
solutionOf predicate (D : P(R), η : R 7→ F , E : DE(F)) ...
Solvable predicate (D : P(R), E : DE(F)) ...

CBAP predicate (t, t′ : R+, xp, x
′
p : R 7→ F , P : P((R 7→ F) × (R 7→ F)), H : P(F)) ...

:∼ predicate (t, t′ : R+, xp, x
′
p : R 7→ F , E : DE(F), H : P(F))

well-definedness condition Solvable([t, t′], E)
direct definition solutionOf([t, t′], x′

p, E) ∧ . . .

...
AXIOMS
CauchyLipschitz: -- external

∀E, D,DF · E ∈ DE(F) ∧ . . . ⇒ Solvable(D, E)
...
THEOREMS
CBAPINV:

∀t, t′, η, η′,P, H,I · t, t′ ∈ R ∧ η, η′ ∈ R 7→ F ∧ . . . ⇒ (∀t∗ · t∗ ∈ [0, t′] ⇒ η′(t∗) ∈ I)
...

▶ use of theories to integrate continuous features
⇒ e.g. continuous behaviour using differential equations

▶ exploit WD to ensure correct use of operators/theorems

11/31

Event-B “Hybridation”

Ctrl Plant

sense

actuate
environmentcommand

Generic schema for HS
▶ discrete controller (program)
▶ continuous “plant” (physical)
▶ sensing and actuation events

▶ Dense time t ∈ R
▶ Discrete: discrete variables xs + BAP
▶ Continuous: continues continuous xp +

CBAP

MACHINE Generic
VARIABLES t, xs, xp
INVARIANTS

inv1: t ∈ R+

inv2: xs ∈ STATES
inv3: xp ∈ R 7→ S
inv4: [0, t] ⊆ dom(xp)

12/31

Event-B “Hybridation”

Ctrl Plant

sense

actuate
environmentcommand

Generic schema for HS
▶ discrete controller (program)
▶ continuous “plant” (physical)
▶ sensing and actuation events

▶ Dense time t ∈ R
▶ Discrete: discrete variables xs + BAP
▶ Continuous: continues continuous xp +

CBAP

MACHINE Generic
VARIABLES t, xs, xp
INVARIANTS

inv1: t ∈ R+

inv2: xs ∈ STATES
inv3: xp ∈ R 7→ S
inv4: [0, t] ⊆ dom(xp)

12/31

Generic Model (Cont’d)

▶ Event parameters for
genericity

▶ Sensing with guard on
continuous state and discrete
state (grd3)

Sense
ANY s, p
WHERE
grd1: s ∈ P1(STATES)
grd2: p ∈ P(STATES × R × S)
grd3: (xs 7→ t 7→ xp(t)) ∈ p

THEN
act1: xs :∈ s

END

Actuate
ANY P, s, H, t′

WHERE
grd0: t′ > t

grd1: P ∈ (R+ 7→ S) × (R+ 7→ S)
grd2: Feasible([t, t′], xp,P, H)
grd3: s ⊆ STATES
grd4: xs ∈ s
grd5: H ⊆ S
grd6: xp(t) ∈ H

THEN
act1: xp :|t→t′ P(xp, x

′
p) & H

END

▶ Model plant’s behaviour
▶ Continuous event based on CBAP

⇒ generic continuous behaviour P
▶ Feasibility: Feasible guard
▶ Associated discrete state
▶ Constrained by evolution domain

13/31

Generic Model (Cont’d)

▶ Event parameters for
genericity

▶ Sensing with guard on
continuous state and discrete
state (grd3)

Sense
ANY s, p
WHERE
grd1: s ∈ P1(STATES)
grd2: p ∈ P(STATES × R × S)
grd3: (xs 7→ t 7→ xp(t)) ∈ p

THEN
act1: xs :∈ s

END

Actuate
ANY P, s, H, t′

WHERE
grd0: t′ > t

grd1: P ∈ (R+ 7→ S) × (R+ 7→ S)
grd2: Feasible([t, t′], xp,P, H)
grd3: s ⊆ STATES
grd4: xs ∈ s
grd5: H ⊆ S
grd6: xp(t) ∈ H

THEN
act1: xp :|t→t′ P(xp, x

′
p) & H

END

▶ Model plant’s behaviour
▶ Continuous event based on CBAP

⇒ generic continuous behaviour P
▶ Feasibility: Feasible guard
▶ Associated discrete state
▶ Constrained by evolution domain

13/31

Example: Stopping Car
MACHINE Car REFINES Generic
VARIABLES t, xs, p, v
INVARIANTS
inv31-32: p ∈ R 7→ S, v ∈ R 7→ S
inv41-42: [0, t] ⊆ dom(p),[0, t] ⊆ dom(v)

inv5: xp = [v p]⊤

inv6: ∀t∗ · tast ∈ [0, t] ⇒ p(t) ≤ SP

sense_close REFINES Sense
WHERE grd1: xs = l0

grd2: p(t) + v(t)2/2 ≥ SP
WITH s : s = {l1}

p : p = {p∗, v∗ | p∗ + v∗2/2 ≥ SP}
THEN act1: xs := l1
END

actuate_move REFINES Actuate
ANY t′

WHERE grd0: t′ > t
grd1: xs = l0
grd2: p(t) + v(t)2/2 < SP

WITH eq : eq = ode(fmove , [v(t) p(t)]⊤ , t)
s : s = {l0}
x′
p : x′

p =
[
v′ p′

]⊤
H : H = {v∗, p∗ | p∗ + v∗2/2 ≥ SP}

THEN act1: v, p:∼t→t′
ode(fmove , [v(t) p(t)]⊤ , t)

&{v∗, p∗ | p∗ + v∗2/2 ≥ SP}

▶ Instantiation = refinement
⇒ witnesses (WITH) and gluing
invariant (inv5) provided

▶ Continuous behaviour = ODE
⇒ ODE solvability required by
WD of :∼t→t′ ⇒ by GS:

solvability ⇒ Feasible

14/31

Example: Stopping Car
MACHINE Car REFINES Generic
VARIABLES t, xs, p, v
INVARIANTS
inv31-32: p ∈ R 7→ S, v ∈ R 7→ S
inv41-42: [0, t] ⊆ dom(p),[0, t] ⊆ dom(v)

inv5: xp = [v p]⊤

inv6: ∀t∗ · tast ∈ [0, t] ⇒ p(t) ≤ SP

sense_close REFINES Sense
WHERE grd1: xs = l0

grd2: p(t) + v(t)2/2 ≥ SP
WITH s : s = {l1}

p : p = {p∗, v∗ | p∗ + v∗2/2 ≥ SP}
THEN act1: xs := l1
END

actuate_move REFINES Actuate
ANY t′

WHERE grd0: t′ > t
grd1: xs = l0
grd2: p(t) + v(t)2/2 < SP

WITH eq : eq = ode(fmove , [v(t) p(t)]⊤ , t)
s : s = {l0}
x′
p : x′

p =
[
v′ p′

]⊤
H : H = {v∗, p∗ | p∗ + v∗2/2 ≥ SP}

THEN act1: v, p:∼t→t′
ode(fmove , [v(t) p(t)]⊤ , t)

&{v∗, p∗ | p∗ + v∗2/2 ≥ SP}

▶ Instantiation = refinement
⇒ witnesses (WITH) and gluing
invariant (inv5) provided

▶ Continuous behaviour = ODE
⇒ ODE solvability required by
WD of :∼t→t′ ⇒ by GS:

solvability ⇒ Feasible

14/31

Outline

1 Introduction
Context
Event-B and theories

2 Designing hybrid systems
Continuous behaviours in Event-B
Formal framework: principle and overview
Architectural patterns
Behavioural patterns
Co-verification, co-validation

3 Conclusion and Future Work

15/31

Towards a formal framework

Idea:
▶ use algebraic theories to extend Event-B

⇒ CBAP, diff. eq. + formal properties
▶ define a parameterised generic model of hybrid systems

⇒ refinement-instantiation to derive any HS
▶ parameterised refinement of generic model = applicable to any HS

⇒ definition of formal design patterns

In a nutshell, designing a hybrid system involves a refinement chain
stemming from the generic model and consisting of design pattern
application

16/31

Towards a formal framework

Idea:
▶ use algebraic theories to extend Event-B

⇒ CBAP, diff. eq. + formal properties
▶ define a parameterised generic model of hybrid systems

⇒ refinement-instantiation to derive any HS
▶ parameterised refinement of generic model = applicable to any HS

⇒ definition of formal design patterns

In a nutshell, designing a hybrid system involves a refinement chain
stemming from the generic model and consisting of design pattern
application

16/31

Framework – Overview

Set Theory
and FOL

Continuous Maths
Diff. Equations

Approximation

Generic Model

Approximated Single-to-Single Single-to-Many Many-to-Many

Domain Theories

Generic Instance Instance Instance

uses uses uses

extension

extension

extension

importation

importation

importation

based on

Generic models

System-specific models

General theories

Domain theories

17/31

Outline

1 Introduction
Context
Event-B and theories

2 Designing hybrid systems
Continuous behaviours in Event-B
Formal framework: principle and overview
Architectural patterns
Behavioural patterns
Co-verification, co-validation

3 Conclusion and Future Work

18/31

Architectural patterns

Decompose HS in multiple interacting components:
▶ one controller + one plant (“single-to-single”)

⇒ generic model
▶ one controller + multiple plants (“single-to-many”)

⇒ centralised control of multiple components
▶ multiple controllers + multiple plants (“many-to-many”)

⇒ distributed HS, cyber-physical system

Idea: introduce architecture with a pattern
⇒ challenge: link global state to local state

19/31

Architectural patterns

Decompose HS in multiple interacting components:
▶ one controller + one plant (“single-to-single”)

⇒ generic model
▶ one controller + multiple plants (“single-to-many”)

⇒ centralised control of multiple components
▶ multiple controllers + multiple plants (“many-to-many”)

⇒ distributed HS, cyber-physical system

Idea: introduce architecture with a pattern
⇒ challenge: link global state to local state

19/31

S2M, Centralised control (Example)

⇒

▶ Abstract tank, volume V (t)

▶ Controller state xs
(Filling, Emptying, ...)
⇒ control In/Out pumps

▶ Safety: Vlow ≤ V ≤ Vhigh

▶ 2 cylindrical tanks (Bi)
▶ Sensing height (hi)

⇒ V (t) = B1h1(t) +B2h2(t)

▶ Centralised controller + policy
⇒ P (xs, In1,Out1, In2,Out2)

20/31

S2M, Centralised control (Example)

⇒

▶ Abstract tank, volume V (t)

▶ Controller state xs
(Filling, Emptying, ...)
⇒ control In/Out pumps

▶ Safety: Vlow ≤ V ≤ Vhigh

▶ 2 cylindrical tanks (Bi)
▶ Sensing height (hi)

⇒ V (t) = B1h1(t) +B2h2(t)

▶ Centralised controller + policy
⇒ P (xs, In1,Out1, In2,Out2)

20/31

M2M, Distributed HS (Example)

⇒

▶ Same situation but independant HS (xs,1, h1 et xs,2, h2)
⇒ still V (t) = B1h1(t) +B2h2(t)
⇒ policy between discrete states P (xs, xs,1, xs,2)

▶ Imperfect communication = imprecision, no global state
▶ each component estimates the others ⇒ hsim

i
▶ precision ∆sim : |hi − hsim

i | ≤ ∆sim

▶ predicate strengthening:
V ≤ Vhigh → B1h1 +B2h

sim
2 ≤ Vhigh −∆sim

21/31

M2M, Distributed HS (Example)

⇒

▶ Same situation but independant HS (xs,1, h1 et xs,2, h2)
⇒ still V (t) = B1h1(t) +B2h2(t)
⇒ policy between discrete states P (xs, xs,1, xs,2)

▶ Imperfect communication = imprecision, no global state
▶ each component estimates the others ⇒ hsim

i
▶ precision ∆sim : |hi − hsim

i | ≤ ∆sim

▶ predicate strengthening:
V ≤ Vhigh → B1h1 +B2h

sim
2 ≤ Vhigh −∆sim

21/31

Outline

1 Introduction
Context
Event-B and theories

2 Designing hybrid systems
Continuous behaviours in Event-B
Formal framework: principle and overview
Architectural patterns
Behavioural patterns
Co-verification, co-validation

3 Conclusion and Future Work

22/31

Approximation pattern

HS usually involve complex dynamics, hard to handle
⇒ engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour ⇒ formalise approximation as a refinement

Continuous refinement: xAp = f(xCp)

⇒ Let’s "loosen" equality: x
δ
≈ y ≡ d(x, y) ≤ δ

⇒ Approximate refinement: xAp
δ
≈ f(xCp)

Property: xAp ∈ S
⇒ Need to be strengthened to be preserved by
approximation
⇒ xAp ∈ S ∧∀x̂ /∈ S,d(xA

p , x̂) > δ (shrinking Sδ(S))

xA
p

xC
p

f

23/31

Approximation pattern

HS usually involve complex dynamics, hard to handle
⇒ engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour ⇒ formalise approximation as a refinement

Continuous refinement: xAp = f(xCp)

⇒ Let’s "loosen" equality: x
δ
≈ y ≡ d(x, y) ≤ δ

⇒ Approximate refinement: xAp
δ
≈ f(xCp)

Property: xAp ∈ S
⇒ Need to be strengthened to be preserved by
approximation
⇒ xAp ∈ S ∧∀x̂ /∈ S,d(xA

p , x̂) > δ (shrinking Sδ(S))

xA
p

xC
p

f

23/31

Approximation pattern

HS usually involve complex dynamics, hard to handle
⇒ engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour ⇒ formalise approximation as a refinement

Continuous refinement: xAp = f(xCp)

⇒ Let’s "loosen" equality: x
δ
≈ y ≡ d(x, y) ≤ δ

⇒ Approximate refinement: xAp
δ
≈ f(xCp)

Property: xAp ∈ S
⇒ Need to be strengthened to be preserved by
approximation
⇒ xAp ∈ S ∧∀x̂ /∈ S,d(xA

p , x̂) > δ (shrinking Sδ(S))

xA
p

xC
p

f

23/31

Approximation pattern

HS usually involve complex dynamics, hard to handle
⇒ engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour ⇒ formalise approximation as a refinement

Continuous refinement: xAp = f(xCp)

⇒ Let’s "loosen" equality: x
δ
≈ y ≡ d(x, y) ≤ δ

⇒ Approximate refinement: xAp
δ
≈ f(xCp)

Property: xAp ∈ S
⇒ Need to be strengthened to be preserved by
approximation
⇒ xAp ∈ S ∧∀x̂ /∈ S,d(xA

p , x̂) > δ (shrinking Sδ(S))

xA
p

xC
p

f

δ

23/31

Approximation pattern

HS usually involve complex dynamics, hard to handle
⇒ engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour ⇒ formalise approximation as a refinement

Continuous refinement: xAp = f(xCp)

⇒ Let’s "loosen" equality: x
δ
≈ y ≡ d(x, y) ≤ δ

⇒ Approximate refinement: xAp
δ
≈ f(xCp)

Property: xAp ∈ S

⇒ Need to be strengthened to be preserved by
approximation
⇒ xAp ∈ S ∧∀x̂ /∈ S,d(xA

p , x̂) > δ (shrinking Sδ(S))

xA
p

xC
p

f

δ

23/31

Approximation pattern

HS usually involve complex dynamics, hard to handle
⇒ engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour ⇒ formalise approximation as a refinement

Continuous refinement: xAp = f(xCp)

⇒ Let’s "loosen" equality: x
δ
≈ y ≡ d(x, y) ≤ δ

⇒ Approximate refinement: xAp
δ
≈ f(xCp)

Property: xAp ∈ S
⇒ Need to be strengthened to be preserved by
approximation

⇒ xAp ∈ S ∧∀x̂ /∈ S,d(xA
p , x̂) > δ (shrinking Sδ(S))

xA
p

xC
p

f

δ

23/31

Approximation pattern

HS usually involve complex dynamics, hard to handle
⇒ engineers use approximation

Approximation = substitute a system with a simpler system with a
similar behaviour ⇒ formalise approximation as a refinement

Continuous refinement: xAp = f(xCp)

⇒ Let’s "loosen" equality: x
δ
≈ y ≡ d(x, y) ≤ δ

⇒ Approximate refinement: xAp
δ
≈ f(xCp)

Property: xAp ∈ S
⇒ Need to be strengthened to be preserved by
approximation
⇒ xAp ∈ S ∧∀x̂ /∈ S,d(xA

p , x̂) > δ (shrinking Sδ(S))

xA
p

xC
p

f

δ

23/31

Approximation (Example)

▶ Robot (p, v), visiting targets Ti

▶ Control system (uC , wC)

▶ Remains in area ∥p∥ ≤ A

▶ Controller + motors ⇒ complex DE
v̇C = 1

2u
C −K(pC − wC)− vC

ṗC = vC

ẇC = uC

Idea: approximate system, simpler, pA = uA, with pA
δ
≈ pC

+ Safety : ∥pA∥ ≤ A− δ ⇒ ∥pC∥ ≤ A

Strategy: verified simpler model + correct approximation = preserved
properties on complex model

24/31

Approximation (Example)

▶ Robot (p, v), visiting targets Ti

▶ Control system (uC , wC)

▶ Remains in area ∥p∥ ≤ A

▶ Controller + motors ⇒ complex DE
v̇C = 1

2u
C −K(pC − wC)− vC

ṗC = vC

ẇC = uC

Idea: approximate system, simpler, pA = uA, with pA
δ
≈ pC

+ Safety : ∥pA∥ ≤ A− δ ⇒ ∥pC∥ ≤ A

Strategy: verified simpler model + correct approximation = preserved
properties on complex model

24/31

Approximation (Example)

▶ Robot (p, v), visiting targets Ti

▶ Control system (uC , wC)

▶ Remains in area ∥p∥ ≤ A

▶ Controller + motors ⇒ complex DE
v̇C = 1

2u
C −K(pC − wC)− vC

ṗC = vC

ẇC = uC

Idea: approximate system, simpler, pA = uA, with pA
δ
≈ pC

+ Safety : ∥pA∥ ≤ A− δ ⇒ ∥pC∥ ≤ A

Strategy: verified simpler model + correct approximation = preserved
properties on complex model

24/31

Outline

1 Introduction
Context
Event-B and theories

2 Designing hybrid systems
Continuous behaviours in Event-B
Formal framework: principle and overview
Architectural patterns
Behavioural patterns
Co-verification, co-validation

3 Conclusion and Future Work

25/31

Co-validation – Motivation

Rodin (inc. Pro-B) = adapted to discrete systems, not so much for
continuous...
⇒ we should use adapted tools

In particular, two specific POs:

Γ, I([0, t]◁ xp), CBAP (t, t′, xp, x
′
p,P,H) ⊢ I([t, t′]◁ x′p) (CINV)

Γ ⊢ ∃t′ · t′ ∈ R+ ∧ t′ > t ∧ Feasible([t, t′], xp,P,Hsaf) (CFIS)

This correspond to a reachability problem

26/31

Co-validation – Motivation

Rodin (inc. Pro-B) = adapted to discrete systems, not so much for
continuous...
⇒ we should use adapted tools

In particular, two specific POs:

Γ, I([0, t]◁ xp), CBAP (t, t′, xp, x
′
p,P,H) ⊢ I([t, t′]◁ x′p) (CINV)

Γ ⊢ ∃t′ · t′ ∈ R+ ∧ t′ > t ∧ Feasible([t, t′], xp,P,Hsaf) (CFIS)

This correspond to a reachability problem

26/31

Co-validation – Motivation

Rodin (inc. Pro-B) = adapted to discrete systems, not so much for
continuous...
⇒ we should use adapted tools

In particular, two specific POs:

Γ, I([0, t]◁ xp), CBAP (t, t′, xp, x
′
p,P,H) ⊢ I([t, t′]◁ x′p) (CINV)

Γ ⊢ ∃t′ · t′ ∈ R+ ∧ t′ > t ∧ Feasible([t, t′], xp,P,Hsaf) (CFIS)

This correspond to a reachability problem

26/31

Principle

Simulation-based analysis
(C)

State-based pivot model
(A)

Reachability analysis
(B)

Model 1

refines

Model 2

Model i

Model n

Simulation
Model

(C.1)
Pivot model
simulation

Validation & Tuning
(C.2)

Reachability
Goal

(B.1)
Continuous specification

(B.2)
Specification witness

27/31

Some results
(case study = railway signaling systems)

▶ using JuliaReach
▶ complex diff. eq.

v̇ = f − (a+ bv + cv2), ṗ = v

w/ invariant:
p+ StoppingDistance ≤ EOA

▶ simulation with Simulink

28/31

Outline

1 Introduction
Context
Event-B and theories

2 Designing hybrid systems
Continuous behaviours in Event-B
Formal framework: principle and overview
Architectural patterns
Behavioural patterns
Co-verification, co-validation

3 Conclusion and Future Work

29/31

Conclusion

A formal framework for designing HS and CPS:
▶ generic and reusable

⇒ generic model + patterns defined once and for all, instantiation
via refinement

▶ integrates discrete and continuous aspects at the same level,
integrates domain knowledge
⇒ thanks to the use of theories

▶ features extensible architectural and behavioural formal design
patterns ⇒ new pattern = refinement of the generic model

▶ support of a general methodology for HS development
⇒ concrete system = sequence of pattern application with generic
model as root

Note: a diversity of case studies available on my website
https://irit.fr/~Guillaume.Dupont/models/

30/31

https://irit.fr/~Guillaume.Dupont/models/

Future work

Include more types of systems:
▶ other architectures, other dynamics
▶ other domains + properties

Possible improvements
▶ easing modelling (models a bit difficult to write...)
▶ helping proof (proof automation, specialised provers)

Bridging the gap with implementation:
▶ discretisation, floating points
▶ event-based > clock-based, heterogeneous times
▶ constraint synthesis

31/31

Part II

Bibliography

32/31

References I

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: System and
Software Engineering. 1st. New York, NY, USA: Cambridge
University Press, 2010. isbn: 9781139637794.

[Alu+95] Rajeev Alur et al. “The algorithmic analysis of hybrid
systems”. In: Theoretical Computer Science 138.1 (1995).
Hybrid Systems, pp. 3–34. issn: 0304-3975.

[BM13] Michael Butler and Issam Maamria. “Practical Theory
Extension in Event-B”. In: Theories of Programming and
Formal Methods. Ed. by Zhiming Liu, Jim Woodcock, and
Huibiao Zhu. Vol. 8051. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, pp. 67–81. isbn:
978-3-642-39697-7.

33/31

	Presentation
	Introduction
	Context
	Event-B and theories

	Designing hybrid systems
	Continuous behaviours in Event-B
	Formal framework: principle and overview
	Architectural patterns
	Behavioural patterns
	Co-verification, co-validation

	Conclusion and Future Work

	Bibliography
	Appendix
	References

