

University of Nottingham UK I CHINA I MALAYSIA

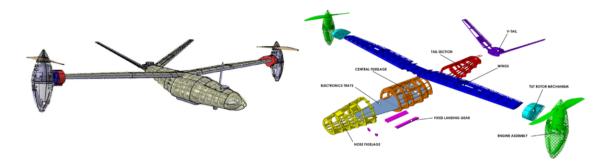
Sharper Specs for Smarter Drones: Formalising Requirements with FRET

$\begin{array}{ccc} {\rm Oisin\ Sheridan^1 } & {\rm Leandro\ Buss\ Becker^2 } & \underline{{\rm Marie\ Farrell^3}} & {\rm Matt\ Luckcuck^4} \\ & {\rm Rosemary\ Monahan^1} \end{array}$

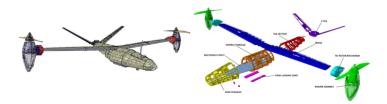
¹Department of Computer Science, Maynooth University/Hamilton Institute, Maynooth, Ireland

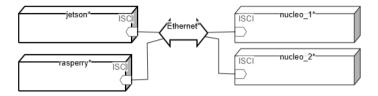
²Automation and Systems Department, Federal University of Santa Catarina, Florianópolis, Brazil

³Department of Computer Science, The University of Manchester, Manchester, UK


⁴School of Computer Science, University of Nottingham, Nottingham, UK

- Formalise natural-language requirements for the ProVANT Emergentia tilt-rotor autonomous drone using FRET.
- Present 4 distinct iterations of requirements set.
- Provide guidance for requirements elicitation and formalisation with FRET.

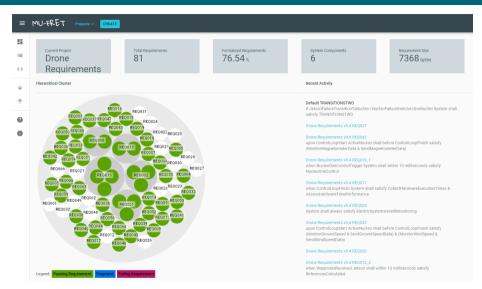

Case Study: ProVANT Emergentia Tilt-Rotor Autonomous Drone


 Collaboration between Federal University of Minas Gerais and Federal University of Santa Catarina (Brazil), and University of Seville (Spain).

Case Study: ProVANT Emergentia Tilt-Rotor Autonomous Drone

- Performs hovering and Vertical Take-off and Landing (VTOL) manoeuvres, as well as cruise flight as a fixed-wing aircraft.
- Requirements include aspects related to:
 - 1 operation features present during simulations and during real executions
 - **2** remote monitoring configurations
 - 3 timing constraints associated with the control loop
 - **4** operation modes under failure conditions

Case Study: Architecture


Raspberry Pi: Gathers sensor data and communicates with the Ground Control Station.

Jetson: Processes sensor data and runs the control algorithm.

Nucleos: Active nucleo interfaces with the drone's actuators and some sensors. Can run a backup control algorithm in the case of a failure. There are two nucleos for reliability.

Formalisation with FRET

The Formal Requirements Elicitation Tool (FRET)


Sharper Specs for Smarter Drones

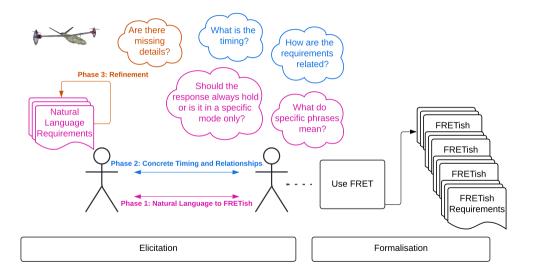
7/28

The Formal Requirements Elicitation Tool (FRET)

FRET

- An open-source requirements engineering tool developed by NASA
- Requirements are written in a structured natural-language called FRETish
- FRET automatically translates FRETISH into temporal logic
 - Unambiguous semantics
 - Enables requirement verification
- Formalised requirements are indicated in green, while those in white have not been formalised

Update Requirement		l	*	ASSISTANT	TEMPLATES	GLOSSARY
Requirement ID REQ033 Rationale and Comments	Parent Requirement ID	Project Drone Requirements	v4 ¥	ENFORCED: in the interval point in the interval if (Cont interval where (ControlLoo for every trigger, RES must the stop condition holds. If 1 RES does not need to hold, requirement is not satisfied.	rolLoopStart) is true and pStart) becomes true (fr hold at least once strictly he stop condition never	d any point in the rom false). REQUIRES: y before the state where occurs in the interval,
information on a field format, click or	tructure displayed below, where fields its corresponding bubble. DITTONS COMPONENT* SHALL* (are optional unless indicated wi	th ***. For	MonitorGroundSpee	TC SC art), SC = (ControlLoop d & SendGroundSpeed S SendVindSpeedData	Data) & (
	reNucleo shall before ControlLo dGroundSpeedData) & (Monito			Diagram Semantics		~
		5	SEMANTICS	Formalizations		
				Future Time LTL		~


Marie Farrell

Sharper Specs for Smarter Drones

Formalising the Requirements

Our 3-Phase Methodology

From Natural-Language to FRETISH

ID	Natural-Language Requirement
REQ001	Allow failure simulations between nucleo/jetson and nucleo/nucleo
REQ013	Send references
REQ016	Run each simulation loop within 10ms
REQ018	Present the total time spent
REQ019	Present the time spent in the control algorithm
REQ024	Work on any operational system
REQ033	Monitor linear velocities (ground speed and relative wind speed)

▶ 66 natural-language requirements.

Each requirement has an ID number, short description, and metadata:

- Category (Functional/Non-Functional)
- Feasibility (Feasible/Unknown/Unfeasible)
- Group (e.g. Data Monitoring, Failure Analysis, etc)

- ▶ One-to-one mapping from natural-language to FRETISH.
- Many had a simple form: "System shall always/eventually satisfy [variableName]"
- ▶ 20 of the 66 requirements were not translated in this initial set.

ID	FRETISH First Iteration		
REQ001	System shall always satisfy AllowNucleoJetsonSimulation &		
	AllowNucleoNucleoSimulation		
REQ016	when SimulationLoopStart System shall within 10 milliseconds		
	satisfy SimulationLoopFinish		
REQ033	System shall always satisfy MonitorGroundSpeed & MonitorWindSpeed		

The Second Iteration – FRETISH Version 2

- We discussed the ambiguities that we found and consulted with the use case provider for additional detail, leading to a number of updates.
- The largest update was a distinction between running the system in simulation versus in the real world. We created a <u>SimulationMode</u> scope variable in 9 requirements.
- 27 requirements gained a scope of "while MonitoringEnabled", so that Data Monitoring would be optional when running the system.
- ▶ We added the first child requirements to the set: REQ008_1 & _2, and REQ010_1 & _2.

ID	FRETISH Second Iteration	
REQ001	in SimulationMode System shall eventually a	satisfy
	NucleoJetsonFailure NucleoNucleoFailure	
REQ033	while MonitoringEnabled System shall always s	satisfy
	MonitorGroundSpeed & MonitorWindSpeed	

The Second Iteration – FRETISH Version 2

Child requirements

- Child requirements express how a requirement should apply to different components or in different situations.
- REQ008_1: Raspberry Pi should transmit the data to the ground station and REQ008_2: Jetson should save the data and send it to the active Nucleo for evaluation

ID	FRETISH Second Iteration	
REQ008	Save any desired simulation data	
	after SimulationMode System shall within 100 ticks satisfy	
	SimulationDataSaved	
REQ008_1	after SimulationMode Raspberry shall within 100 ticks satisfy	
	GroundStationReceivedData	
REQ008_2	after SimulationMode Jetson shall within 100 ticks satisfy	
	SimulationDataRecorded & NucleoReceivedData	

The Third Iteration – FRETISH Version 3

- We found that the "in SimulationMode" scope didn't fully capture the intention of testing a specific response, so we added Conditions for this.
- ▶ 9 new child requirements specify additional behaviour.

ID	FRETISH Third Iteration		
REQ001	in SimulationMode whenever SimulateFailureTransitions System		
	<pre>shall eventually satisfy JetsonFailureTransitionToNucleo </pre>		
	NucleoFailureSwitchActiveNucleo		
REQ001_1	when JetsonControl & JetsonFailureTransitionToNucleoFailure		
	System shall within 100 ticks satisfy !JetsonControl &		
	NucleoControl		
REQ001_2	when NucleoOneControl & NucleoFailureSwitchActiveNucleo		
	System shall within 100 ticks satisfy !NucleoOneControl &		
	NucleoTwoControl		

- The biggest change in this iteration: we decided to update two of the natural-language requirements - REQ018 and REQ019 - to capture new information.
- Elicitation discussions highlighted details about timing of control loop and control algorithm, which we added to the FRETISH requirements

Iteration	Natural-language and FRETISH for REQ018		
Version 1	Present the total time spent		
	System shall always satisfy DisplayTotalTimeSpent		
Version 3	The control loop will complete within 12 milliseconds		
	upon ControlLoopStart System shall within 12 milliseconds satisfy		
	ControlLoopFinish		

- We returned to the Data Monitoring requirements and found that the idea of the system being run with or without monitoring was incorrect; the system should always monitor these values and transmit the data back to the GCS.
- We used the previous updates to REQ018 to update 23 monitoring requirements from a simple always timing to a more detailed structure.

REQ060	Monitor current consumption in each voltage bus		
FRETISH	while MonitoringEnabled System shall always satisfy	7	
v2	MonitorVoltageBusConsumption		
FRETISH	upon ControlLoopStart ActiveNucleo shall before	3	
v4	ControlLoopFinish satisfy MonitorVoltageBusConsumption &	3	
	SendVoltageBusConsumptionData		

FRETISH Requirements

ID	Final FRETISH Requirements		
REQ001	Allow failure simulations between nucleo/jetson and nucleo/nucleo		
ILC001	in SimulationMode whenever SimulateFailureTransitions System		
	<pre>shall eventually satisfy JetsonFailureTransitionToNucleo </pre>		
	NucleoFailureSwitchActiveNucleo		
REQ018	The control loop will complete within 12 milliseconds		
KEQ010	upon ControlLoopStart System shall within 12 milliseconds satisfy		
	ControlLoopFinish		
REQ019	The control algorithm will complete within 6 milliseconds		
ILCQ019	upon ControlAlgorithmStart System shall within 6 milliseconds		
	satisfy ControlAlgorithmFinish		
REQ033	Monitor linear velocities (ground speed and relative wind speed)		
NEQ033	upon ControlLoopStart ActiveNucleo shall before ControlLoopFinish		
	satisfy (MonitorGroundSpeed & SendGroundSpeedData) &		
	(MonitorWindSpeed & SendWindSpeedData)		

null = 47, in/during = 6, while = 5, after = 4		
null = 17, trigger(when/if) = 39, continual(whenever) = 6		
null/eventually = 4, always = 15, next = 1, within = 18, before = 24		
28 child requirements were assigned a parent requirement		
66 natural-language requirements, of which 47 are expressed in FRETISH.		
An additional 15 child requirements were created, for a total of 81 requirements in FRET.		

Requirement Metrics for Final Version

- ▶ We counted which keywords used for FRETISH scope, condition, and timing fields
- The scope field was not often used, as the natural-language requirements did not specify any system modes. scope was mostly used for the SimulationMode.
- Conversely, almost every requirement in the final requirement set has a defined timing, with the few that don't being unchanged from earlier versions of the requirements set.

- Requirements elicitation and formalisation is best performed as an incremental process, where all parties involved regularly re-examine the requirements in the context of newly-elicited details and newly-uncovered questions.
- 2 Useful to maintain a system where distinct "versions" of the requirements set were created and then analysed, rather than a more continuous development process.
- We encourage requirements engineers to maintain detailed records of prior versions of requirements and the updates made to them, to inform discussions on future development as well as for traceability.

- At the time, tracking multiple iterations of a FRETISH requirements set was difficult, as the tool did not directly support renaming or cloning projects. The development team have since added cloning functionality.
- Parameterised requirements which would allow the user to apply a single requirement structure to a number of different variables - would have reduced duplication for the 23 Data Monitoring requirements.
- FRET currently supports adding comments and rationale to requirements, but there is no way to add comments to a project as a whole. This would be useful to precisely define the meanings of variables and reduce reliance on external notes.

The University of Manchester

University of Nottingham

Sharper Specs for Smarter Drones: Formalising Requirements with FRET

Conclusion

- ▶ We have formalised the requirements for a tilt-rotor UAV drone using FRET.
- ▶ These requirements can now be used for runtime verification of the system code.
- From this experience we have compiled recommendations for requirements engineers and tool developers.
- All of our requirements, collected both in spreadsheets and in FRET-compatible JSONs, are available on GitHub at https://github.com/oisinsheridan/refsq2025.

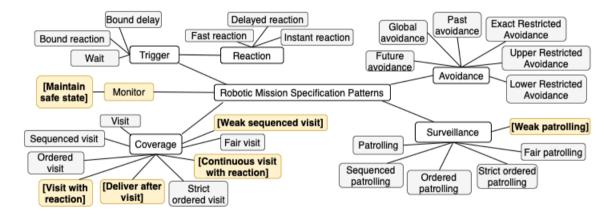
The University of Manchester

Robotics: A New Mission for FRET Requirements

$\begin{array}{ccc} {\rm Gricel} \ V{\rm \acute{a}zquez^1} & {\rm Anastasia} \ {\rm Mavridou^2} & {\rm Marie} \ {\rm Farrell^3} & {\rm Tom} \ {\rm Pressburger^4} \\ {\rm Radu} \ {\rm Calinescu^1} \end{array}$

¹Department of Computer Science, University of York, York, UK

²KBR Inc., NASA Ames Research Center, Moffett Field, USA


³Department of Computer Science, The University of Manchester, Manchester, UK

⁴NASA Ames Research Center, Moffett Field, USA

- A set of 6 newly identified robotic mission specification patterns that were derived from a systematic literature review.
- The specification using FRET of both previously identified patterns and our newly identified patterns.
- A study of the expressibility and applicability of FRET for robotic missions.

Questions?

The 20th International Conference on Integrated Formal Methods (IFM 2025) will take place on 19– 21 November 2025 at Imria Paris, France, with co-located workshops scheduled for 17-18 November 2025.

Important Dates (AoE)

Abstract Submission	30 May 2025 13 June 2025
Paper Submission	6 June 2025 20 June 2025
Author Notification	08 Aug 2025
Artifact Registration	15 Aug 2025
Artifact Submission	22 Aug 2025
Artifact Notification	24 Sep 2025
Camera-Ready Papers	26 Sep 2025

7th International Workshop on Formal Methods for Autonomous Systems

- Submission: 22nd of August 2025 (AOE)
- Notification: 6th of October 2025
- Workshop: 17th 19th November 2025

Topics related to autonomous systems:

- 1. Applicable, tool-supported Formal Methods;
- 2. Runtime Verification and other approaches to bridge the reality gap:
- 3. Verification against safety assurance arguments or standards;
- 4. Formal specification and requirements engineering for autonomous systems;
- 5. Case Studies on challenges in applying formal methods to autonomous systems;
- 6. Experience Reports with guidance on using formal methods or tools;
- 7. Discussions on future directions of the field.

@iFM 2025, Paris, France, 17th - 19th Nov 2025