
Sharper Specs for Smarter Drones:
Formalising Requirements with FRET

Oiśın Sheridan1 Leandro Buss Becker2 Marie Farrell3 Matt Luckcuck4

Rosemary Monahan1

1Department of Computer Science, Maynooth University/Hamilton Institute, Maynooth, Ireland

2Automation and Systems Department, Federal University of Santa Catarina, Florianópolis, Brazil

3Department of Computer Science, The University of Manchester, Manchester, UK

4School of Computer Science, University of Nottingham, Nottingham, UK

June 10, 2025
Marie Farrell Sharper Specs for Smarter Drones 1/28



Overview

▶ Formalise natural-language requirements for the ProVANT
Emergentia tilt-rotor autonomous drone using FRET.

▶ Present 4 distinct iterations of requirements set.

▶ Provide guidance for requirements elicitation and formalisation with
FRET.

Marie Farrell Sharper Specs for Smarter Drones 2/28



Case Study: ProVANT Emergentia Tilt-Rotor Autonomous Drone

▶ Collaboration between Federal University of Minas Gerais and Federal University of Santa
Catarina (Brazil), and University of Seville (Spain).

Marie Farrell Sharper Specs for Smarter Drones 3/28



Case Study: ProVANT Emergentia Tilt-Rotor Autonomous Drone

▶ Performs hovering and Vertical Take-off and Landing (VTOL) manoeuvres, as well as
cruise flight as a fixed-wing aircraft.

▶ Requirements include aspects related to:

1 operation features present during simulations and during real executions
2 remote monitoring configurations
3 timing constraints associated with the control loop
4 operation modes under failure conditions

Marie Farrell Sharper Specs for Smarter Drones 4/28



Case Study: Architecture

Raspberry Pi: Gathers sensor data and communicates with the Ground Control Station.

Jetson: Processes sensor data and runs the control algorithm.

Nucleos: Active nucleo interfaces with the drone’s actuators and some sensors.

Can run a backup control algorithm in the case of a failure.

There are two nucleos for reliability.

Marie Farrell Sharper Specs for Smarter Drones 5/28



Formalisation with FRET

Marie Farrell Sharper Specs for Smarter Drones 6/28



The Formal Requirements Elicitation Tool (FRET)

Marie Farrell Sharper Specs for Smarter Drones 7/28



The Formal Requirements Elicitation Tool (FRET)

FRET
▶ An open-source requirements engineering tool

developed by NASA

▶ Requirements are written in a structured
natural-language called FRETish

▶ FRET automatically translates fretish into
temporal logic
▶ Unambiguous semantics
▶ Enables requirement verification

▶ Formalised requirements are indicated in green,
while those in white have not been formalised

Marie Farrell Sharper Specs for Smarter Drones 8/28



Marie Farrell Sharper Specs for Smarter Drones 9/28



Formalising the Requirements

Marie Farrell Sharper Specs for Smarter Drones 10/28



Our 3-Phase Methodology

Natural 
Language 

Requirements

Use FRET

FRETish 
Requriements

Phase 2: Concrete Timing and Relationships

Phase 1: Natural Language to FRETish

What is the 
timing?

What do 
specific phrases 

mean?

How are the 
requirements 

related?

Should the 
response always hold 

or is it in a specific 
mode only?

Phase 3: Refinement

Elicitation Formalisation

FRETish 
Requriements

FRETish 
Requriements

FRETish 
Requirements

Are there 
missing 
details?

Marie Farrell Sharper Specs for Smarter Drones 11/28



From Natural-Language to fretish

ID Natural-Language Requirement

REQ001 Allow failure simulations between nucleo/jetson and nucleo/nucleo

REQ013 Send references

REQ016 Run each simulation loop within 10ms

REQ018 Present the total time spent

REQ019 Present the time spent in the control algorithm

REQ024 Work on any operational system

REQ033 Monitor linear velocities (ground speed and relative wind speed)

▶ 66 natural-language requirements.
▶ Each requirement has an ID number, short description, and metadata:

▶ Category (Functional/Non-Functional)
▶ Feasibility (Feasible/Unknown/Unfeasible)
▶ Group (e.g. Data Monitoring, Failure Analysis, etc)

Marie Farrell Sharper Specs for Smarter Drones 12/28



The First Iteration – fretish Version 1

▶ One-to-one mapping from natural-language to fretish.

▶ Many had a simple form:“System shall always/eventually satisfy [variableName]”

▶ 20 of the 66 requirements were not translated in this initial set.

ID fretish First Iteration

REQ001 System shall always satisfy AllowNucleoJetsonSimulation &

AllowNucleoNucleoSimulation

REQ016 when SimulationLoopStart System shall within 10 milliseconds

satisfy SimulationLoopFinish

REQ033 System shall always satisfy MonitorGroundSpeed & MonitorWindSpeed

Marie Farrell Sharper Specs for Smarter Drones 13/28



The Second Iteration – fretish Version 2

▶ We discussed the ambiguities that we found and consulted with the use case provider for
additional detail, leading to a number of updates.

▶ The largest update was a distinction between running the system in simulation versus in
the real world. We created a SimulationMode scope variable in 9 requirements.

▶ 27 requirements gained a scope of “while MonitoringEnabled”, so that Data
Monitoring would be optional when running the system.

▶ We added the first child requirements to the set: REQ008 1 & 2, and REQ010 1 & 2.

ID fretish Second Iteration

REQ001 in SimulationMode System shall eventually satisfy

NucleoJetsonFailure|NucleoNucleoFailure

REQ033 while MonitoringEnabled System shall always satisfy

MonitorGroundSpeed & MonitorWindSpeed

Marie Farrell Sharper Specs for Smarter Drones 14/28



The Second Iteration – fretish Version 2

Child requirements

▶ Child requirements express how a requirement should apply to different components or in
different situations.

▶ REQ008 1: Raspberry Pi should transmit the data to the ground station and REQ008 2:
Jetson should save the data and send it to the active Nucleo for evaluation

ID fretish Second Iteration

REQ008
Save any desired simulation data
after SimulationMode System shall within 100 ticks satisfy

SimulationDataSaved

REQ008 1 after SimulationMode Raspberry shall within 100 ticks satisfy

GroundStationReceivedData

REQ008 2 after SimulationMode Jetson shall within 100 ticks satisfy

SimulationDataRecorded & NucleoReceivedData

Marie Farrell Sharper Specs for Smarter Drones 15/28



The Third Iteration – fretish Version 3

▶ We found that the “in SimulationMode” scope didn’t fully capture the intention of
testing a specific response, so we added Conditions for this.

▶ 9 new child requirements specify additional behaviour.

ID fretish Third Iteration

REQ001 in SimulationMode whenever SimulateFailureTransitions System

shall eventually satisfy JetsonFailureTransitionToNucleo |

NucleoFailureSwitchActiveNucleo

REQ001 1 when JetsonControl & JetsonFailureTransitionToNucleoFailure

System shall within 100 ticks satisfy !JetsonControl &

NucleoControl

REQ001 2 when NucleoOneControl & NucleoFailureSwitchActiveNucleo

System shall within 100 ticks satisfy !NucleoOneControl &

NucleoTwoControl

Marie Farrell Sharper Specs for Smarter Drones 16/28



The Third Iteration – fretish Version 3

▶ The biggest change in this iteration: we decided to update two of the natural-language
requirements - REQ018 and REQ019 - to capture new information.

▶ Elicitation discussions highlighted details about timing of control loop and control
algorithm, which we added to the fretish requirements

Iteration Natural-language and fretish for REQ018

Version 1
Present the total time spent
System shall always satisfy DisplayTotalTimeSpent

Version 3
The control loop will complete within 12 milliseconds
upon ControlLoopStart System shall within 12 milliseconds satisfy

ControlLoopFinish

Marie Farrell Sharper Specs for Smarter Drones 17/28



The Fourth Iteration – fretish Version 4

▶ We returned to the Data Monitoring requirements and found that the idea of the system
being run with or without monitoring was incorrect; the system should always monitor
these values and transmit the data back to the GCS.

▶ We used the previous updates to REQ018 to update 23 monitoring requirements from a
simple always timing to a more detailed structure.

REQ060 Monitor current consumption in each voltage bus

fretish
v2

while MonitoringEnabled System shall always satisfy

MonitorVoltageBusConsumption

fretish
v4

upon ControlLoopStart ActiveNucleo shall before

ControlLoopFinish satisfy MonitorVoltageBusConsumption &

SendVoltageBusConsumptionData

Marie Farrell Sharper Specs for Smarter Drones 18/28



fretish Requirements

ID Final fretish Requirements

REQ001
Allow failure simulations between nucleo/jetson and nucleo/nucleo
in SimulationMode whenever SimulateFailureTransitions System

shall eventually satisfy JetsonFailureTransitionToNucleo |

NucleoFailureSwitchActiveNucleo

REQ018
The control loop will complete within 12 milliseconds
upon ControlLoopStart System shall within 12 milliseconds satisfy

ControlLoopFinish

REQ019
The control algorithm will complete within 6 milliseconds
upon ControlAlgorithmStart System shall within 6 milliseconds

satisfy ControlAlgorithmFinish

REQ033
Monitor linear velocities (ground speed and relative wind speed)
upon ControlLoopStart ActiveNucleo shall before ControlLoopFinish

satisfy (MonitorGroundSpeed & SendGroundSpeedData) &

(MonitorWindSpeed & SendWindSpeedData)

Marie Farrell Sharper Specs for Smarter Drones 19/28



Analysis

scope-option null = 47, in/during = 6, while = 5, after = 4

condition-option null = 17, trigger(when/if) = 39, continual(whenever) = 6

timing-option null/eventually = 4, always = 15, next = 1, within = 18, before = 24

parent-child 28 child requirements were assigned a parent requirement

66 natural-language requirements, of which 47 are expressed in fretish.
An additional 15 child requirements were created, for a total of 81 requirements in FRET.

Requirement Metrics for Final Version

▶ We counted which keywords used for fretish scope, condition, and timing fields

▶ The scope field was not often used, as the natural-language requirements did not specify
any system modes. scope was mostly used for the SimulationMode.

▶ Conversely, almost every requirement in the final requirement set has a defined timing,
with the few that don’t being unchanged from earlier versions of the requirements set.

Marie Farrell Sharper Specs for Smarter Drones 20/28



Recommendations for Formalising Requirements

1 Requirements elicitation and formalisation is best performed as an incremental process,
where all parties involved regularly re-examine the requirements in the context of
newly-elicited details and newly-uncovered questions.

2 Useful to maintain a system where distinct “versions” of the requirements set were
created and then analysed, rather than a more continuous development process.

3 We encourage requirements engineers to maintain detailed records of prior versions of
requirements and the updates made to them, to inform discussions on future development
as well as for traceability.

Marie Farrell Sharper Specs for Smarter Drones 21/28



Improvements to FRET and Other Tools

▶ At the time, tracking multiple iterations of a fretish requirements set was difficult, as
the tool did not directly support renaming or cloning projects. The development team
have since added cloning functionality.

▶ Parameterised requirements - which would allow the user to apply a single requirement
structure to a number of different variables - would have reduced duplication for the 23
Data Monitoring requirements.

▶ FRET currently supports adding comments and rationale to requirements, but there is no
way to add comments to a project as a whole. This would be useful to precisely define
the meanings of variables and reduce reliance on external notes.

Marie Farrell Sharper Specs for Smarter Drones 22/28



Sharper Specs for Smarter Drones:
Formalising Requirements with FRET

Conclusion
▶ We have formalised the requirements for a tilt-rotor UAV drone using FRET.

▶ These requirements can now be used for runtime verification of the system code.

▶ From this experience we have compiled recommendations for requirements engineers and
tool developers.

▶ All of our requirements, collected both in spreadsheets and in FRET-compatible JSONs,
are available on GitHub at https://github.com/oisinsheridan/refsq2025.

Marie Farrell Sharper Specs for Smarter Drones 23/28



Robotics: A New Mission for FRET Requirements

Gricel Vázquez1 Anastasia Mavridou2 Marie Farrell3 Tom Pressburger4

Radu Calinescu1

1Department of Computer Science, University of York, York, UK

2KBR Inc., NASA Ames Research Center, Moffett Field, USA

3Department of Computer Science, The University of Manchester, Manchester, UK

4NASA Ames Research Center, Moffett Field, USA

Marie Farrell Robotics: A New Mission for FRET Requirements 24/28



Overview

▶ A set of 6 newly identified robotic mission specification patterns that
were derived from a systematic literature review.

▶ The specification using FRET of both previously identified patterns
and our newly identified patterns.

▶ A study of the expressibility and applicability of FRET for robotic
missions.

Marie Farrell Robotics: A New Mission for FRET Requirements 25/28



Robotic Mission Patterns

Marie Farrell Robotics: A New Mission for FRET Requirements 26/28



Questions?

Marie Farrell Robotics: A New Mission for FRET Requirements 27/28



Marie Farrell Robotics: A New Mission for FRET Requirements 28/28


	Formalisation with FRET
	Formalising the Requirements
	Questions?

