
Preface

The ABZ 2025 – 11th International Conference on Rigorous State Based Meth-
ods was held in Düsseldorf, Germany, from June 10 to June 13, 2025.

The ABZ conference series is dedicated to the cross-fertilization of state-based
and machine-based formal methods. Abstract State Machines (ASM), Alloy, B,
TLA, VDM, and Z are examples of these methods. They share a common con-
ceptual foundation and are widely used in both academia and industry for the
rigorous design and analysis of hardware and software systems. The ABZ con-
ferences aim to be a forum for the vital exchange of knowledge and experience
among the research communities around different formal methods.

ABZ 2025, which this volume is dedicated to, follows the success of the nine
ABZ conferences from its first edition organized in London (UK) in 2008, where
the acronym ABZ was invented to merge, into a single event, the ASM, B and
Z conference series.
The Alloy community joined the event at the second ABZ 2010 conference that
was held in Orford (Canada).
The VDM community joined the event at ABZ 2012, which was held in Pisa
(Italy). The ABZ 2014, held in Toulouse (France),
brought the inclusion of the \tlaplus{} community and the idea of proposing at
each ABZ an industrial case study as a common problem for the application of
different formal methods.
The ABZ 2016 conference was held in Linz, Austria, and the ABZ 2018 in
Southampton, UK.
In 2018 the steering committee decided to retain the acronym ABZ and add the
subtitle ‘International Conference on Rigorous State-Based Methods’ to make
more explicit the intention to include all state-based formal methods. The two
successive
ABZ events have been organized in Ulm (Germany) as virtual events, while ABZ
2023 was held in Nancy, France and ABZ 2024 in Bergamo, Italy.

ABZ 2025 received 33 submissions. At least three program committee mem-
bers reviewed each submission, and 21 papers were accepted for publication in
this volume and presentation at the conference: 10 long papers covering a broad
spectrum of research, from fundamental to applied work, 4 short papers of work
in progress, industrial experience reports and tool development, 2 papers of PhD
students working on topics related to state-based formal methods, and 5 papers
on the case ABZ 2025 case study, which was dedicated to the specification and
analysis of how to control autonomous vehicles on a highway.
A paper in this volume is dedicated to describing the case study.

The ABZ program included three invited talks: Michael Butler, Thierry
Lecomte and Nils Jansen.

The ABZ 2025 hosted two workshops, one on the Rodin Platform, an Eclipse-
based toolset for Event-B, and the other, and one formal modelling for UAVs.

Organizing and running this event required a lot of effort from several people.
We are grateful to all the authors who submitted their work to ABZ 2025. We
wish to thank all members of the Program Committee and all the additional

v

reviewers for their precise, careful evaluation of the papers, and for their avail-
ability during the discussion period which considered each paper’s acceptance.
Furthermore, we thank Claudia Kiometzis for the local organization,
Fabian Vu for managing the case study for ABZ 2025,
Jan Gruteser and Fabian Vu for their valuable work in advertising this event
and managing the conference website,
Alexander Raschke for setting up the ABZ conference web sites,
Asieh Fathabadi and Philipp Körner for taking care of the doctoral symposium
and Elvinia Riccobene for useful advice on difficult issues.

We wish to express our deepest gratitude to the Heinrich-Heine University
of Düsseldorf, which provided organizational support.

For readers of these proceedings, we hope that you find these proceedings
useful, interesting, and challenging for future research.

April 14, 2025
Düsseldorf

Michael Leuschel
Fuyuki Ishikawa

vi

Table of Contents

An Invited Talk about B . 1

Michael Butler

Neurosymbolic Learning Systems: Artificial Intelligence and Formal
Methods . 2

Nils Jansen

Mathematical Proofs and Moving Trains: The Double Life of Atelier B . . . 4

Thierry Lecomte

Behavioural Theory of Reflective Parallel Algorithms 13

Klaus-Dieter Schewe and Flavio Ferrarotti

Using Symbolic Model Execution to Detect Vulnerabilities of Smart
Contracts . 31

Chiara Braghin, Giuseppe Del Castillo, Elvinia Riccobene and Simone
Valentini

Safely Encoding B Proof Obligations in SMT-LIB . 51

Vincent Trélat

On Writing Alloy Models: Metrics and a new Dataset 69

Soaibuzzaman, Salar Kalantari and Jan Oliver Ringert

On Quantitative Solution Iteration in QAlloy . 87

Pedro Silva, Nuno Macedo and José N. Oliveira

Proof Semantics of Railway Interlocking . 105

Linas Laibinis, Alexei Iliasov and Alexander Romanovsky

Translating Event-B models and development proofs to TLA 123

Anne Grieu, Jean-Paul Bodeveix and Mamoun Filali-Amine

The Proved Construction of a Protocol with an Example 141

Dominique Cansell and Jean-Raymond Abrial

Insider Threat Simulation Through Ant Colonies and ProB 158

Akram Idani, Aurélien Pepin and Mariem Triki

Developing safe exception recovery mechanisms for CHERI capability
hardware using UML-B formal analysis . 176

Colin Snook, Asieh Salehi Fathabadi, Thai Son Hoang, Robert Thor-
burn, Michael Butler, Leonardo Aniello and Vladimiro Sassone

Case Study: Safety Controller for Autonomous Driving on Highways 194

Michael Leuschel, Fabian Vu and Kristin Rutenkolk

vii

Safety enforcement for autonomous driving on a simulated highway
using Asmeta models@run.time . 203

Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini, Nico Pellegrinelli
and Patrizia Scandurra

Enhancing Decision-making Safety in Autonomous Driving Through
Online Model Checking . 222

Duong Dinh Tran, Akira Hasegawa, Peter Riviere, Takashi Tomita and
Toshiaki Aoki

Polychronous RSS in a Process-Algebraic Framework - A Case Study
in Autonomous Driving Safety . 240

Paolo Crisafulli, Adrien Durier, Benjamin Puyobro and Burkhart Wolff

On The Road Again (Safely): Modelling and Analysis of Autonomous
Driving with \textsc{Stark} . 259

Sebastian Betancourt and Valentina Castiglioni

Modelling and Verification of Highway Car Control with KeYmaera X . . . 278
Enguerrand Prebet, Samuel Teuber and André Platzer

State-Based Modelling with a Concept DSL . 297
Nikolaj Jakobsen

Towards an End-to-End Tool Chain for Traceable and Verifiable
Railway Signalling Specifications . 307

Frederic Reiter, Roman Wetenkamp, Robert Schmid, Richard Kret-
zschmar and Lukas Iffländer

A reasoning and explicit algebraic theory for BBSL in Event-B:
EB4BBSL framework . 315

Peter Riviere, Duong Dinh Tran, Takashi Tomita and Toshiaki Aoki

Model-Based Testing of Non-Deterministic Systems 324
Alexander Onofrei, Marc Frappier and Émilie Bernard

Weakening Goals in Logical Specifications . 332
Ben M. Andrew

Formal modelling and reasoning on Assurance Cases expressed with
GSN in Event-B . 337

Christophe Chen

viii

Program Committee

Yamine Ait Ameur IRIT/INPT-ENSEEIHT
Toshiaki Aoki JAIST
Paolo Arcaini National Institute of Informatics
Richard Banach University of Manchester
Silvia Bonfanti University of Bergamo
Chiara Braghin Università degli Studi di Milano, Dipartimento di

Informatica
Maximiliano Cristia CIFASIS-UNR
Alcino Cunha University of Minho
Catherine Dubois ENSIIE-Samovar
Guillaume Dupont Institut de Recherche en Informatique de Toulouse
Marie Farrell The University of Manchester
Flavio Ferrarotti Software Competence Centre Hagenberg
Marc Frappier Université de Sherbrooke
Angelo Gargantini University of Bergamo
Uwe Glässer Simon Fraser University
Stefan Hallerstede Aarhus University
Thai Son Hoang University of Southampton
Akram Idani Laboratoire d’Informatique de Grenoble
Fuyuki Ishikawa National Institute of Informatics, Tokyo, Japan
Eunsuk Kang Carnegie Mellon University
Tsutomu Kobayashi Japan Aerospace Exploration Agency
Philipp Koerner Institut für Informatik, Heinrich-Heine-Universität

Düsseldorf
Igor Konnov Informal Systems Austria
Regine Laleau Paris Est Creteil University
Thierry Lecomte CLEARSY
Michael Leuschel University of Düsseldorf
Frederic Mallet Universite Nice Sophia-Antipolis
Atif Mashkoor Johannes Kepler University, Linz, Austria
Dominique Mery Université de Lorraine, LORIA
Stephan Merz Inria Nancy
Alexander Raschke Ulm University
Elvinia Riccobene Computer Science Dept., University of Milan
Asieh Salehi Fathabadi University of Southampton
Patrizia Scandurra University of Bergamo (Italy)
Gerhard Schellhorn Universitaet Augsburg
Klaus-Dieter Schewe KDS
Emil Sekerinski McMaster University
Neeraj Kumar Singh INPT-ENSEEIHT / IRIT, University of Toulouse,

France
Maurice ter Beek CNR
Laurent Voisin Systerel

ix

Fabian Vu Heinrich Heine University
Hillel Wayne Windy Coast Consulting

x

Additional Reviewers

B
Börger, Egon
D
Dinh Tran, Duong
R
Riviere, Peter
Rodrigue Ndouna, Alex
Y
Yaghoubi Shahir, Amir

xi

Author Index

A
Abrial, Jean-Raymond 141
Andrew, Ben M. 332
Aniello, Leonardo 176
Aoki, Toshiaki 222, 315
B

Bernard, Émilie 324
Betancourt, Sebastian 259
Bodeveix, Jean-Paul 123
Bombarda, Andrea 203
Bonfanti, Silvia 203
Braghin, Chiara 31
Butler, Michael 1, 176
C
Cansell, Dominique 141
Castiglioni, Valentina 259
Chen, Christophe 337
Crisafulli, Paolo 240
D
Del Castillo, Giuseppe 31
Dinh Tran, Duong 222, 315
Durier, Adrien 240
F
Ferrarotti, Flavio 13
Filali-Amine, Mamoun 123
Frappier, Marc 324
G
Gargantini, Angelo 203
Grieu, Anne 123
H
Hasegawa, Akira 222
Hoang, Thai Son 176
I
Idani, Akram 158
Iffländer, Lukas 307
Iliasov, Alexei 105
J
Jakobsen, Nikolaj 297
Jansen, Nils 2
K
Kalantari, Salar 69
Kretzschmar, Richard 307

L
Laibinis, Linas 105
Lecomte, Thierry 4
Leuschel, Michael 194
M
Macedo, Nuno 87
N
N. Oliveira, José 87
O
Onofrei, Alexander 324
P
Pellegrinelli, Nico 203
Pepin, Aurélien 158
Platzer, André 278
Prebet, Enguerrand 278
Puyobro, Benjamin 240
R
Reiter, Frederic 307
Riccobene, Elvinia 31
Ringert, Jan Oliver 69
Riviere, Peter 222, 315
Romanovsky, Alexander 105
Rutenkolk, Kristin 194
S
Salehi Fathabadi, Asieh 176
Sassone, Vladimiro 176
Scandurra, Patrizia 203
Schewe, Klaus-Dieter 13
Schmid, Robert 307
Silva, Pedro 87
Snook, Colin 176
Soaibuzzaman, 69
T
Teuber, Samuel 278
Thorburn, Robert 176
Tomita, Takashi 222, 315
Triki, Mariem 158
Trélat, Vincent 51
V
Valentini, Simone 31
Vu, Fabian 194
W
Wetenkamp, Roman 307
Wolff, Burkhart 240

The role of abstraction and refinement in safety
of intelligent systems

Michael Butler[0000−0003−4642−5373]

University of Southampton, UK

Abstract. Rapid developments in artificial intelligence (AI) and robotics
pose challenges to conventional methods of safety assurance. Machine
learning is a very different programming approach to algorithm design,
and notions of correctness for machine learning systems are still evolv-
ing. Increasing levels of autonomy being deployed in robotic systems
means weaker concepts of control and predictability, increasing risk of
accidents, and challenging conventional safety assurance methods. The
role of abstraction/refinement formal methods, such as Event-B, is quite
well established for traditional safety-critical systems, but it remains an
open question whether and how such methods are applicable to systems
with autonomy and learning-based control.
Recent ideas on guaranteed safe AI from leading formal methods re-
searchers propose the use of three components to ensure safe AI systems:
a safety specification, a world model, and a verifier. At a high level this
represents a systems approach to safety analysis which aligns well with
common usage of Event-B in conventional system design. Constructing
specifications and world (or environment) models for complex systems re-
mains challenging, and abstraction and refinement approaches are aimed
at addressing system complexity through incremental modelling and ver-
ification. Systematic approaches to analysis of (informal) requirements
and of safety hazards also play in important role. We explore how exist-
ing work on hierarchical analysis and verification could be extended and
relaxed to deal with autonomy and machine learning. The focus is on
physical safety rather than broader issues of influences of AI on human
behaviours and ethics.
The ideas are influenced by collaboration with Asieh Salehi Fathabadi,
Colin Snook, Dana Dghaym, Fahad Alotaibi, Haider Al-Shareefy, and
Thai Son Hoang.

Neurosymbolic Learning Systems:
Artificial Intelligence and Formal Methods

Nils Jansen1[0000−0003−1318−8973]

Ruhr-University Bochum, Germany,
Chair of Artificial Intelligence and Formal Methods

n.jansen@rub.de
https://nilsjansen.org

Abstract. Artificial Intelligence (AI) has emerged as a disruptive force
in our society. Increasing applications in healthcare, transport, military,
and other fields underscore the critical need for a comprehensive under-
standing and the robustness of an AI’s decision-making process. Neu-
rosymbolic AI aims to create robust AI systems by integrating neural
and symbolic AI techniques. We highlight the role of formal methods
in such techniques, serving as a rigorous and structured backbone for
symbolic AI methods.
Moreover, as a specific machine learning technique, we look at deep rein-
forcement learning (RL) with the promise that autonomous systems can
learn to operate in unfamiliar environments with minimal human inter-
vention. However, why haven’t most autonomous systems implemented
RL yet? The answer is simple: there are significant unsolved challenges.
One of the most important ones is obvious: Autonomous systems operate
in unfamiliar, unknown environments. This lack of knowledge is called
uncertainty. This talk will explore why making decisions that account
for this uncertainty is essential to achieving trustworthiness, reliability,
and safety in RL.

Keywords: Artificial Intelligence · Formal Methods · Machine Learning
· Formal Verification · Markov Decision Process · Decision-Making Under
Uncertainty

References

1. Badings, T., Junges, S., Marandi, A., Topcu, U., Nils Jansen: Efficient sensitivity
analysis for parametric robust markov chains. In: CAV (2023)

2. Badings, T., Simão, T.D., Suilen, M., Jansen, N.: Decisionmaking under uncer-
tainty: beyond probabilities. Challenges and Perspectives. Int. J. Softw. Tools
Technol. Transf. (STTT) (2023)

3. Badings, T.S., Romao, L., Abate, A., Parker, D., Poonawala, H.A., Stoelinga, M.,
Jansen, N.: Robust control for dynamical systems with nongaussian noise via for-
mal abstractions. Journal of Artificial Intelligence Resesarch 76, 341–391
(2023)

4. Bovy, E., Suilen, M., Junges, S., Nils Jansen: Imprecise probabilities meet partial
observability: Game semantics for robust pomdps. In: IJCAI (2024)

2 Nils Jansen

5. Köprülü, C., Simão, T.D., Jansen, N., Topcu, U.: Safety-prioritizing curricula for
constrained reinforcement learning. In: ICLR (2025), to appear

6. Krale, M., Simão, T.D., Tumova, J., Jansen, N.: Robust active measuring under
model uncertainty. In: AAAI (2024)

7. Suilen, M., Badings, T.S., Bovy, E.M., Parker, D., Nils Jansen: Robust markov
decision processes: A place where AI and formal methods meet. In: Principles of
Verification (2025)

8. Suilen, M., Simao, T.D., Parker, D., Jansen, N.: Robust anytime learning of markov
decision processes. In: NeurIPS (2022)

9. Wienhöft, P., Suilen, M., Simão, T.D., Dubslaff, C., Baier, C., Nils Jansen: More
for less: Safe policy improvement with stronger performance guarantees. In: IJCAI
(2023)

10. Zubia, M., Simão, T.D., Jansen, N.: Robust transfer of safety-constrained
reinforcement learning agents. In: ICLR (2025), to appear

Mathematical Proofs and Moving Trains: The
Double Life of Atelier B

Thierry Lecomte

CLEARSY, Aix en Provence, France,
thierry.lecomte@clearsy.com

Abstract. Atelier B has played a crucial role in ensuring the safety of
critical systems for more than three decades. This presentation explores
the recent evolution of Atelier B, from the last keynote in 2016 in Linz
to its current, expanded role in system engineering across industries. We
will revisit key milestones, such as the modeling of complex systems, the
development and programming of the CLEARSY Safety Platform, and
its use in educating students and engineers. The session will also showcase
how the versatility of Atelier B has been harnessed to model, prove, and
implement robust systems - from automated metros to industrial control.
Through these advancements, Atelier B continues to shape the landscape
of high-integrity software development, merging mathematical rigor with
practical, real-world applications.

Keywords: Formal proof, Safety critical, B

1 Introduction

Atelier B will soon be celebrating its 30th anniversary. The keynote ”Atelier B
has turned 20”, presented in Linz for ABZ 2016, summarised the work carried
out in Atelier B in support of the B Method and Event-B since his first public ap-
pearance. These 20 years have been synonymous with technical and application
wandering. For example:

– B has been extended to real and floating-point numbers to prove code em-
bedded in the inertial units of airliners.

– Event-driven B generates proof obligations specific to the modelling of mi-
croelectronic components.

– B models without refinement have been used to generate maintenance doc-
umentation and for multiplexed vehicle diagnostics.

Over the last 10 years, a certain maturity has been reached, as development
work and applications have found a framework for use that benefits the vast
majority of the human community. In some cases, the state of the art has ad-
vanced. The aspects that were part of the keynote perspectives for ABZ 2016
have materialised or are in the process of materialising. This article presents
the main aspects that have taken on real scientific or industrial substance. The

remainder of this paper is organised as follows. Section 2 presents the use of
Atelier B for software and system modeling. Section 3 describes the CLEARSY
Safety Platform. Section 4 presents the formal data validation with B and ProB,
before concluding.

2 Atelier B for Software and System Modeling

Software and system modeling are supported by three versions of Atelier B.
For each version, we indicate the specific features, the work carried out and the
practical applications.

2.1 Atelier B Community Edition

It is a fully functional version of Atelier B, updated every 2 years, developed in
C/C++ and with Qt framework. It can be downloaded free of charge 1 and is free
to use. During the last academic year, it has been downloaded more than 10,000
times from all continents. It supports Windows, Linux and MacOS operating
systems, even if last years we have been meeting portability issues with Qt for
the Apple platform.

Fig. 1: Proof information integrated with B model editor.

Proof It is a tool for formally developing and proving software. The integration
of proof information within the B model editor (Fig. 1) provides immediate
feedback on the complexity and provability of models.

The improvement of the proof performances is a never ending subject. The
connection with external provers has been added over the time [2].

1 https://www.atelierb.eu

The Atelier Main Prover is also packaged as a plugin for the Rodin platform,
to improve proof performances of this platform.

An open proof obligation database is available for benchmark on GitHub 2.
It contains a very large number of proof obligations stored in POG files, and
a translation to SMTLib-2.6 of these proof obbligations, stored as SMTLIB-2.6
files.

Research and Development Improving proof performance has been studied in
several French and European collaborative research projects:

– ICSPA (Interoperable and Confident Set-based Proof Assistants) focuses on
the set-based specification formalisms B, Event-B, and TLA+ that have
been adopted for industrial development projects, for applications where
correctness is critical. It aims at reinforcing the confidence in proofs carried
out mechanically using them.

– BLaSST (Enhancing B Language Reasoners with SAT and SMT Techniques)
targets bridging combinational and symbolic techniques in automatic theo-
rem proving and validating the results for proof obligations generated from B
models. Work is carried out on SAT-based encodings and optimized resolu-
tion techniques for proof, model generation, and lemma suggestion, as well as
on encoding and reasoning techniques for expressive SMT-based formalisms.

– DISCONT (Correct Integration of DIScrete and CONTinous models) was
aimed at providing efficient and easy to use refinement and proof-based tech-
niques and tools that scale to complex systems and offer more convenient
and automatic proof platforms centered around B and Event-B, with Atelier-
B and Rodin. The main theoretical challenge is in how to better formalize
the verification of the transition from the real to the discrete models, using
refinement.

– AIDOaRt (AI-augmented automation supporting modelling, coding, test-
ing, monitoring and continuous development in Cyber-Physical Systems)
was aimed at using AIOps to automate proof activity by pre-selecting best
proof tool during automatic proof and by suggesting proof tactics during
interactive proof.

Code Generation The generic C code generator offers the possibility of translat-
ing most of the syntactic constructs of B0, B’s implementation language. The
production of ACSL assertions from B models is being studied at IMD (UFRN,
Brazil) for the verification with Frama-C of generated C code. Assertions are
produced from specifications. This feature would improve the level of confidence
in the generated code for applications below SIL3 when there is no application
redundancy.

A Rust code generator has recently been added experimentally to extend the
range of target languages.

2 https://github.com/CLEARSY/apero

Education A Workbook on B is under construction. It will be freely available
on the CLEARSY GitHub from the start of the 2025-2026 academic year (i.e. in
September 2025). It is covering formal modelling with B, mathematical proofs
and their automation, code generation (C, Rust) and integration with other
programs and libraries, animation of B models using ProB 3. It is aimed at
helping everyone develop and enhance their skills in formal methods [4], while
demonstrating how the B Method (and its support in Atelier B) can be applied
to increasingly complex, real-world examples.

2.2 Atelier B Professional Edition

Compared to the Community Edition, it is updated several times per year and
includes exclusive features such as an Ada translator, a Project Checker, and
tools to prove mathematical rules. It can be used in industrial settings requiring
close support, as well as in academic environments. It is available on request
through a maintenance contract.

Software Development For years, Alstom and Siemens have been using Atelier B
Professional Edition for their most safety-critical software [1] [3]. Their product
lines, respectively Urbalis and Trainguard equip more than 100 metros in the
world, representing 1250 km of lines and 30 % of the CBTC market (Radio
communication based train control). In particular, B has been used for some of
the automated safety systems on Paris’s automatic metro lines, i.e. L1, L4, L13,
and L14 (which has been extended for the 2024 Olympics).

Systerel has developed an open-source Safe and Secure Open Platform Com-
munications (S2OPC) solution for OPC UA (standard for industrial communica-
tions). This development incorporates B modelling of dynamic memory manage-
ment, including memory allocation, deallocation and pointer validity. This OPC
UA implementation confirms that software development using the B method
with EAL4 and SIL2 certification capabilities is feasible and well-founded.

Event-B System Modeling Since the early 2000s, Atelier B and Event-B have
been used to demonstrate that the security policy for smart cards is correct
by modelling the hardware and software elements of components such as MPUs
(Memory Protection Units). This proven modelling is mandatory for EAL6+ cer-
tification according to the Common Criteria, which is currently the only stan-
dard to impose the use of formal methods beyond a certain level of security.
Over the last 10 years, several Event-B models, reaching up to twenty levels of
refinement, have been produced for certification by ANSSI, the French agency
for information systems security, of microcircuits from different brands.

The Formal Proof of System Level Specification is here an approach to ob-
tain a formal proof for the main safety properties of the system which are in the
railways synonymous of ”no collision and no over-speeding”. The methodology
is in two steps and mixes natural language and formal modelling in Event-B. It

3 https://prob.hhu.de/

is not a structural model containing all parts and associated behaviours. It is
a model of the safety reasoning used to design the system. Atelier B is used to
validate the model. The model is usually compact, without refinement, and con-
tains up to 1000 proof obligations in total. The methodology for ensuring good
correspondence between Event-B models and the ”natural language proof” relies
on checking mathematical objects for each notion used in the proof precursor,
and checking events for each possible evolution of these notions.

This approach has been used to build the safety proof [8] of the OCTYS
CBTC deployed in Paris on metro lines L3, L5, L9, L6, and L11. With the
project Haute performance Marseille Vintimille (HPMV), the Marseille - Ven-
timiglia line will be the pilot project for the deployment of ERTMS Level 3
Hybrid on the conventional network. It will implement ERTMS level 3 Hybrid
for the first time in Europe on a conventional line, without any other signalling,
without any cohabitation phase between the old and new systems, and on a
line in dense operation that it will only be possible to close for migration for a
very short time. The French railways (SNCF) have decided to apply the formal
proof of system level specification to demonstrate irrefutably that the Control-
Command-Signalling system meets its safety requirements, based on the guar-
antees expected of the various sub-systems: new signalling stations ARGOS and
MISTRAL, a new RBC, new generation axle counters, a high-performance GSM-
R, and fibre-optic telecommunications network architecture with high-resilience
redundancy. This activity will be a complementary element of the evidence to
be produced by the HPMV Project for certification by the body in charge of
qualification, and will enable the French Railway Safety Authority (EPSF) to
agree to the direct switchover between the two railway signalling worlds.

2.3 Atelier B T2 Certified Edition

With its T2 certification jointly obtained by CLEARSY, Alstom, RATP and
Siemens Mobility, it enables the development of critical software compliant with
EN 50128 and the validation of system properties compliant with EN 50129 for
SIL4 applications. A replay tool, Certifier, guarantees that projects developed
with a recent Atelier B comply with standards. It is available on request for
industrial applications and offers the same exclusive features as the Atelier B
Professional Edition.

It should soon be used for the first time for an on-board application to ensure
train safety.

3 CLEARSY Safety Platform

The CLEARSY Academic Safety Platform 4 is a simplified version of the indus-
trial platform 5, allowing the development and deployment of critical applications

4 Safety refers to the control of recognized hazards to achieve an acceptable level of
risk.

5 Certified as SIL4 T3, with applications for platform screen-doors, braking systems,
and autonomous trains, https://www.clearsy.com/en/tools/clearsy-safety-platform/

up to SIL4 level. It provides an introduction to formal modeling and program-
ming for the control of critical functions within a simplified framework suitable
for a training session of about ten hours.

The CLEARSY Academic Safety Platform [7] is a fail-safe computer capable
of performing a self-assessment to check if it can safely complete its mission. The
self-assessment is based on various hardware and software features to detect, for
example, memory corruption, clock drift, or leakage current.

Fig. 2: CLEARSY Safety Platform architecture.

The main architecture (Fig. 2) relies on 2 microcontrollers executing the same
program while regularly checking that they can communicate with each other.
Digital outputs are electrical relays requiring both microcontrollers to agree to
activate. If the self-assessment fails, the computer deactivates its outputs and
enters an infinite loop doing nothing. The executed program consists of two
parts:

– One part developed in C and MIPS assembly language, called non-replicated
code, containing the main loop, interrupt processing, and some non-safety-
related functions.

– One part developed with B (specification and implementation), called repli-
cated code, which contains the critical application.

Binary codes are produced from the B implementation using two different
code generators (C + gcc on one hand, an in-house B to binary compiler on the
other). During each iteration of the main loop, the two binaries are executed
in sequence, and their memory spaces containing the safety variables must have
exactly the same content. Verifications are programmed once and for all in the

safety library provided with Atelier B. The safety properties of the platform are
out of the developer’s reach and cannot be altered.

The Atelier B CSP Educational Version is a special version of the Atelier
B Community Edition, which allows you to program the CLEARSY Safety
Platform integrated into a demonstration circuit board. Developed during the
COVID, a simulator version allows to program and verify the functional as-
pects of the modeling. It is being used for teaching formal methods [6] in several
universities and engineering schools in Belgium, Brazil, France, Italy, and UK.
Recently the Atelier B CSP Educational Version was manipulated by hundred
students for a firefighting drone case-study during a robotic summer-school 6

organized with Robostar 7.

4 Formal Data Validation

In the railways, safety critical software applications are usually developed and
validated independently from the parameters or constant data that fine-tune
their behavior. For example, the track topology, signal and point positions, kilo-
meter points, etc. are constant data used by an automatic pilot to compute
braking curves and to determine when to trigger the emergency brake. So, each
part must be safe at the same level, i.e. SIL4. Data validation process consists in
ensuring that the data set is correct. For example: in ERTMS standard, tracks
are equipped with signals and beacons. Rules to verify are related to the topol-
ogy: each signal should have an associated beacon group, distance between signal
and its beacon group should be less than 2 meters, beacons should be less than 2
meters apart from each other’s. Other rules to verify are related to the content of
the messages sent by the beacons to the trains (distances, gradients, speeds. . .).
Manual data validation process used to be entirely human, leading to painful,
error-prone, long-term activities (requiring several months to check manually up
to 100,000 items of data against 1,000 rules).

Formal data validation process (Fig. 3) is the natural evolution of this human-
based process into a secure one. A formal DSL has been defined to specify the
constant data model. This data model is instantiated with the constant values
and saved as a B machine. The ProB model-checker [5] is applied to verify
that the model is correct. If not, all the counterexamples are listed. The tool,
CLEARSY Data Solver 8, has been applied and specialized to several projects
for both metros and mainlines (including ERTMS) for Alstom, Atkins, RATP,
Siemens SNCF, and Thales.

6 Robotics Applications and Innovation 2025, Third Summer School on Robotic Mis-
sion Engineering, https://rome.gesaduece.com.br/

7 Centre of excellence dedicated to research and technology transfer in the area of
Software Engineering for Robotics, https://robostar.cs.york.ac.uk/

8 https://www.clearsy.com/en/tools/data-solver/

Fig. 3: Formal Data Validation Process.

5 Conclusion and Perspectives

The last 10 years have confirmed the value of B and Atelier B for the development
and verification of critical applications, mainly in the rail sector. The use of B
for the future automation of the metro lines L15, L16, L17 and L18 in Paris is
a perfect example.

Atelier B is a living product that is regularly enriched with scientific results
and new techniques, helping to advance the state of the art. The formal validation
of data and the formalisation of safety reasoning, unknown 20 years ago, are now
regularly mentioned in call for tenders.

The CLEARSY Safety Platform, programmable with B, is a generic tool
to formally solve industrial control and command problems. The educational
version makes the use of formal methods more concrete and allows them to be
learned by a wider audience. Work to develop the educational tools, including
the addition of remote inputs/outputs, should make it possible to tackle themes
other than command control, such as cryptography, and other areas such as
autonomous mobility on land, at sea and in the air.

Acknowledgements

The work and results described in this article were partly funded by:

–
– ECSEL JU under the framework H2020. as part of the project AIDOaRt (AI-

augmented automation supporting modelling, coding, testing, monitoring
and continuous development in Cyber-Physical Systems).

– ANR under the framework “appel à projets générique 2020”. as part of the
projects ICSPA (Interoperable and Confident Set-based Proof Assistants)
and BLaSST (Enhancing B Language Reasoners with SAT and SMT Tech-
niques).

References

1. ter Beek, M.H., Chapman, R., Cleaveland, R., Garavel, H., Gu, R., ter Horst, I.,
Keiren, J.J.A., Lecomte, T., Leuschel, M., Rozier, K.Y., Sampaio, A., Seceleanu,
C., Thomas, M., Willemse, T.A.C., Zhang, L.: Formal methods in industry. Form.
Asp. Comput. 37(1) (Dec 2024), https://doi.org/10.1145/3689374

2. Burdy, L., Deharbe, D., Prun, E.: Interfacing automatic proof agents in atelier b:
Introducing iapa. Electronic Proceedings in Theoretical Computer Science 240 (01
2017)

3. Butler, M., Körner, P., Krings, S., Lecomte, T., Leuschel, M., Mejia, L.F., Voisin,
L.: The first twenty-five years of industrial use of the b-method. In: ter Beek, M.H.,
Ničković, D. (eds.) Formal Methods for Industrial Critical Systems. pp. 189–209.
Springer International Publishing, Cham (2020)

4. Carvalho, G.: Teaching formal methods for 10 years: Reflections on theories, tools,
materials, and communities. In: Sekerinski, E., Ribeiro, L. (eds.) Formal Methods
Teaching. pp. 58–74. Springer Nature Switzerland, Cham (2024)

5. Hansen, D., Schneider, D., Leuschel, M.: Using B and prob for data validation
projects. In: Butler, M.J., Schewe, K., Mashkoor, A., Biró, M. (eds.) Abstract State
Machines, Alloy, B, TLA, VDM, and Z - 5th Int’l Conf., ABZ 2016, Linz, Austria,
May 23-27, 2016, Proc. LNCS, vol. 9675, pp. 167–182. Springer (2016)

6. Lecomte, T.: Teaching and training in formalisation with b. In: Dubois, C.,
San Pietro, P. (eds.) Formal Methods Teaching. pp. 82–95. Springer Nature Switzer-
land, Cham (2023)

7. Lecomte, T., Déharbe, D., Sabatier, D., Prun, E., Péronne, P., Chailloux, E.,
Varoumas, S., Susungi, A., Conchon, S.: Low Cost High Integrity Platform. In:
ERTS 2020 - 10th European Congress on Embedded Real Time Systems. Toulouse,
France (Jan 2020), https://hal.archives-ouvertes.fr/hal-02446132

8. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) Reliability, Safety,
and Security of Railway Systems. Modelling, Analysis, Verification, and Certifica-
tion - 1st Int’l Conf., RSSRail 2016, Paris, France, June 28-30, 2016, Proc. LNCS,
vol. 9707, pp. 20–31. Springer (2016)

https://doi.org/10.1145/3689374
https://hal.archives-ouvertes.fr/hal-02446132

Behavioural Theory of Reflective Parallel
Algorithms⋆

Klaus-Dieter Schewe1, Flavio Ferrarotti2

1 Linz, Austria, kd.schewe@gmail.com
2 Software Competence Center Hagenberg, Hagenberg, Austria,

flavio.ferrarotti@scch.at

Abstract. We develop a behavioural theory of reflective parallel algo-
rithms (RAs), i.e. synchronous parallel algorithms that can modify their
own behaviour. The theory comprises a set of postulates defining the
class of RAs, an abstract machine model, and the proof that all RAs
are captured by this machine model. RAs are sequential-time, parallel
algorithms, where every state includes a representation of the algorithm
in that state, thus enabling linguistic reflection. Bounded exploration is
preserved using multiset comprehension terms as values. The abstract
machine model is defined by reflective abstract state machines (rASMs),
which extend ASMs using extended states that include an updatable
representation of the main ASM rule to be executed by the machine in
that state.

Keywords: adaptivity; abstract state machine; linguistic reflection; be-
havioural theory; tree algebra

We dedicate this article to our former colleague, collaborator and friend
Qing Wang (1972-2025). She will live on in our memories and our sincere
appreciation for her personality and her inspiring research contributions.

1 Introduction

A behavioural theory in general comprises an axiomatic definition of a
class of algorithms or systems by means of a set of characterising postu-
lates, and an abstract machine model together with the proof that the
abstract machine model captures the given class of algorithms or sys-
tems. The proof comprises two parts, one showing that every instance

⋆ The research of Flavio Ferrarotti has been funded by the Federal Ministry for Cli-
mate Action, Environment, Energy, Mobility, Innovation and Technology (BMK),
the Federal Ministry for Digital and Economic Affairs (BMDW), and the State of
Upper Austria in the frame of the COMET Module Dependable Production Envi-
ronments with Software Security (DEPS) within the COMET - Competence Centers
for Excellent Technologies Programme managed by Austrian Research Promotion
Agency FFG.

of the abstract machine model satisfies the postulates (plausibility), and
another one showing that all algorithms stipulated by the postulates can
be step-by-step simulated by an abstract machine model instance (char-
acterisation).

The ur-instance of a behavioural theory is Gurevich’s sequential ASM
thesis [11], which clarifies what a sequential algorithm is, and proves that
sequential algorithms are captured by sequential Abstract State Machines
(ASMs). Extensions of this thesis are the behavioural theories of paral-
lel, recursive and concurrent algorithms [8, 6, 5] and further variations of
these.

Adaptivity refers to the ability of a system to change its own be-
haviour. In the context of programming this concept is known as (lin-
guistic) reflection since the 1950s. A brief survey of the development of
reflection over the decades is contained in [14]. The recently increased
interest in adaptive systems raises the question of their theoretical foun-
dations. Such foundations are needed to achieve a common understanding
of what can be gained by reflection, what the limitations of reflection are,
and how reflection can be captured by state-based rigorous methods. This
also constitutes the basis for the verification of properties of adaptive sys-
tems.

A first step towards answering this question was made by means of a
behavioural theory of reflective sequential algorithms [12] and an exten-
sion of the logic of ASMs to a logic for reflective ASMs [14]. This the-
ory provides the axiomatic definition of reflective sequential algorithms
(RSAs), the proof that RSAs are not yet captured by Gurevich’s pos-
tulates for sequential ASMs, the definition of reflective sequential ASMs
(rsASMs), by means of which RSAs can be specified, and the proof that
RSAs are captured by rsASMs, i.e. rsASMs satisfy the postulates of the
axiomatisation, and any RSA stipulated by the axiomatisation can be
defined by a behaviourally equivalent rsASM.

This article is dedicated to an extension of the theory to a behavioural
theory of reflective, parallel algorithms (RAs), so the starting point is the
(simplified) parallel ASM thesis developed in [8]. Concerning the postu-
lates it is crucial that abstract states of RAs must contain a represen-
tation of the algorithm itself, which can be interpreted as an executable
rule that is to be used to define the successor state. This gives rise to gen-
eralised sequential time and abstract state postulates analogous to those
for reflective sequential algorithms [12].

Concerning a modified bounded exploration postulate we claim that
while there cannot exist a fixed set of terms determining update sets in

all states by simple interpretation, there is nonetheless a finite bounded
exploration witness, provided a double interpretation is used: the first
interpretation may result in multiset comprehension terms over the stan-
dard subsignature, which then can again be interpreted to define the
values needed in the updates. Phrased differently, the first interpretation
can be seen as resulting in a bounded exploration witness for the repre-
sented algorithm, and we obtain the terms that determine update sets
by interpretation of (generalised) terms. Finally, these postulates involve
some assumptions about the background, which are made explicit in a
background postulate analogous to all other behavioural theories.

Concerning the definition of rASMs, this is straightforward, as only
a concrete representation of a (parallel) ASM is required, for which we
can choose a self-representation by means of trees and exploit the tree
algebra from [15] to manipulate tree values as well as partial updates [16]
to minimise clashes. The self-description comprising signature and rule
can be stored in a dedicated location pgm. Instead of defining update sets
for a fixed rule, the rule to be considered is obtained by raising the value
stored in the state representing the rule into an executable rule.

For the plausibility and characterisation proofs the former one requires
a rather straightforward construction of a bounded exploration witness
from an rASM, for which the representation using pgm is essential, while
the latter one will be accomplished by a sequence of lemmata, the key
problem being that there is a theoretically unbounded number of different
algorithms that nonetheless have to be handled uniformly. In essence we
have to integrate the parallel ASM thesis [8] and the reflective sequential
ASM thesis [12].

The remainder of this article is organised as follows. Section 2 is ded-
icated to the first part of the behavioural theory, the axiomatic defini-
tion of RAs. The key problems concern the self-representation in abstract
states and the extension of bounded exploration. In Section 3 we intro-
duce rASMs, which are based on ASMs with the differences discussed
above and a background structure capturing tree structures and tree al-
gebra operations. In Section 4 we first sketch that rASMs satisfy our
postulates, thus they define RAs, then we outline the more difficult part
of the theory, the proof that every RA as stipulated by the postulates can
be modelled by a behaviourally equivalent rASM. In this article we focus
on the motivation of the postulates and the definition of rASMs. Due to
length restrictions detailed proofs have been omitted; they are available
in [13]. We conclude with a summary and outlook in Section 5.

2 Axiomatisation of Reflective Algorithms

We assume familiarity with the basic concepts of ASMs [7] and partial
updates [16]. We will modify the postulates of (synchronous) parallel
algorithms [8] to capture the requirements of linguistic reflection.

2.1 Sequential Time and Abstract States

Reflective algorithms proceed in sequential time, though in every step
the behaviour of the algorithm may change. As argued in [12] it is always
possible to have a finite representation of a sequential algorithm, which
follows from the sequential ASM thesis in [11]. This does not change, if
parallel algorithms (as defined in [8]) are considered, which is a conse-
quence of any of the parallel ASM theses [1, 2, 8], so the crucial feature
of reflection can be subsumed in the notion of state, while the sequential
time postulate can remain unchanged.

Postulate 1 (Sequential Time Postulate). A reflective algorithm (RA)
comprises a set S of states, a subset I ⊆ S of initial states, and a one-step
transition function τ : S → S. Whenever τ(S) = S′ holds, the state S′ is
called the successor state of the state S.

A run of a reflective algorithmA is then given by a sequence S0, S1, . . .
of states Si ∈ S with an initial state S0 ∈ I and Si+1 = τ(Si).

A signature Σ is a finite set of function symbols, and each f ∈ Σ is
associated with an arity ar(f) ∈ N. A structure over Σ comprises a base
set B and an interpretation of the function symbols f ∈ Σ by functions
fS : Bar(f) → B. An isomorphism σ between two structures is given by a
bijective mapping σ : B → B′ between the base sets that is extended to
the functions by σ(fB)(σ(a1), . . . , σ(an)) = σ(fB(a1, . . . , an)) for all ai ∈
B and n = ar(f). For convenience to capture partial functions we assume
that base sets contain a constant undef and that each isomorphism σ
maps undef to itself. Note that an isomorphism also extends naturally to
terms defined over Σ.

In order to capture reflection it will be necessary to modify the ab-
stract state postulate such that we capture the self-representation of the
algorithm by a subsignature and the signature is allowed to change. Fur-
thermore, we need to be able to store terms as values, so the base sets
need to be extended as well. For initial states we apply restrictions to
ensure that the algorithm represented in an initial state is always the
same. This gives rise to the following modification of the abstract state
postulate.

Postulate 2 (Abstract State Postulate). States of an RA A must
satisfy the following conditions:

(i) Each state S ∈ S of A is a structure over some finite signature ΣS ,
and an extended base set Bext. The extended base set Bext contains
at least a standard base set B and all terms defined over ΣS and B.

(ii) The sets S and I of states and initial states of A, respectively, are
closed under isomorphisms.

(iii) Whenever τ(S) = S′ holds, then ΣS ⊆ Στ(S), the states S and S′ of A
have the same standard base set, and if σ is an isomorphism defined
on S, then also τ(σ(S)) = σ(τ(S)) holds.

(iv) For every state S of A there exists a subsignature Σalg,S ⊆ ΣS for all
S and a function that maps the restriction of S to Σalg,S to a parallel
algorithm A(S) with signature ΣS , such that τ(S) = S + ∆A(S)(S)
holds for the successor state τ(S).

(v) For all initial states S0, S
′
0 ∈ I we have A(S0) = A(S′

0).

Condition (iv) makes use of the unique consistent update set ∆(S)
defined by the algorithm in state S. This requires some explanation. A
location ℓ in state S is a pair (f, (v1, . . . , vn)) with a function symbol
f ∈ ΣS of arity n and values v1, . . . , vn in the (extended) base set. If
the interpretation defines fS(v1, . . . , vn) = v0, then the value v0 ∈ Bext is
called the value of location ℓ in S, which we denote as valS(ℓ). An update is
a pair (ℓ, v) comprising a location and a value. An update set is a set ∆ of
updates. An update set is consistent iff (ℓ, v1) ∈ ∆ and (ℓ, v2) ∈ ∆ imply
v1 = v2. We define the state S′ = S +∆ resulting from the application of
a consistent ∆ to S by valS′(ℓ) = v for (ℓ, v) ∈ ∆ and valS′(ℓ) = valS(ℓ)
else. For inconsistent ∆ we set S +∆ = S.

Concerning a state S and its successor τ(S) we obtain a set Diff =
{ℓ | valτ(S)(ℓ) ̸= valS(ℓ)} of those locations, where the states differ. Then
∆(S) = {(ℓ, v) | ℓ ∈ Diff ∧ v = valτ(S)(ℓ)} is a consistent update set with
S +∆(S) = τ(S) and furthermore, ∆(S) is minimal with this property.

2.2 Background

We need to formulate minimum requirements for the background, which
concern the reserve, truth values, tuples, as well as functions raise and
drop, but they leave open how algorithms are represented by structures
over Σalg,S .

As backgrounds are defined by background structures, it is no problem
to request that the set D of base sets contains an infinite set reserve of

reserve values and the set B = {true, false} of truth values. As we need
to define arities for function symbols, D must further contain the set N
of natural numbers. Note that truth values and natural numbers can be
defined by hereditarily finite sets as in [3]. Then the usual connectives on
truth values need to be present as background function symbols.

Furthermore, as in the parallel ASM thesis the background must con-
tain constructors for tuples and multisets and the usual functions on
them. As we leave the specific way of representing algorithms open, there
may be further constructors and functions in the background, but they
are not fixed.

We emphasised that we must be able to store terms as values, so
instead of using an arbitrary base set B we need an extended base set.
For a state S we denote by Bext the union of the universe U defined by
the background class K using B, N, B, and a subset of the reserve, and
the set of all terms defined over ΣS . We further denote by TS the set of all
terms defined over ΣS . Note that with the presence of tuple and multiset
cobstructors the set TS contains also multiset comprehension terms as
used in the parallel ASM thesis [8]. These are essential for obtaining
bounded exploration witnesses.

In doing so we can treat a term in TS as a term that can be evaluated
in the state S or simply as a value in Bext. We use a function drop :
TS → Bext that turns a term into a value of the extended base set, and a
partial function raise : Bext → TS turning a value (representing a term)
into a term that can be evaluated. In the same way we get a function
drop : PS → Bext that turns an algorithm that can be executed in state
S into a value in the extended base set Bext. Again, raise : Bext → PS

denotes the (partial) inverse. We overload the function drop to also turn
function symbols into values, i.e. we have drop : ΣS → Bext, for which
raise : Bext → ΣS denotes again the (partial) inverse. The presence of
functions raise and drop is essential for linguistic reflection [17].

Postulate 3 (Background Postulate). The background of a RA is de-
fined by a background class K over a background signature VK . It must
contain an infinite set reserve of reserve values, the equality predicate,
the undefinedness value undef, truth values and their connectives, tuples
and projection operations on them, multisets with union and comprehen-
sion operators on them, natural numbers and operations on them, and
constructors and operators that permit the representation and update of
parallel algorithms.

The background must further provide partial functions: drop : TS ∪
PS ∪ΣS → Bext and raise : Bext → TS ∪PS ∪ΣS for each base set B and

extended base set Bext, and an extraction function β : TS → T̄, which
assigns to each term defined over a signature ΣS and the extended base
set Bext a set of terms in T̄, which is defined over B, ΣS −Σalg and the
tuple and multiset operators.

For instance, constructors for trees as well as operations on trees,
e.g. for the extraction of subtrees or the composition of new trees must
be defined in the background structures. We also need a set of con-
stants such as if, forall, par, let, assign and partial by means
of which we can label nodes in trees. Then expressions such as tr =
⟨par, ⟨assign, c, term⟨f, t⟩⟩, t2⟩ are elements of Bext as well as executable
algorithms in PS . While tr itself is just a value, raise(tr) is a rule that
can be executed on the state S. In this case β(tr) is the set of multiset
terms defined by the terms c, f(t), t occurring in the value tr.

2.3 Bounded Exploration

Finally, we need a generalisation of the bounded exploration postulate. As
in every state S we have a representation of the actual parallel algorithm
A(S), this algorithm possesses a bounded exploration witness WS , i.e. a
finite set of multiset comprehension terms in T̄ such that ∆A(S)(S1) =
∆A(S)(S2) holds, whenever states S1 and S2 coincide on WS . We can
always assume that WS just contains terms that must be evaluated in a
state to determine the update set in that state. Thus, though WS is not
unique we may assume that WS is contained in the finite representation
of A(S). This implies that the terms in WS result by interpretation from
terms that appear in this representation, i.e.WS can be obtained using the
extraction function β. Consequently, there must exist a finite set of terms
W such that its interpretation in a state yields both values and terms,
and the latter ones represent WS . We will continue to call W a bounded
exploration witness. Then the interpretation of W and the interpretation
of the extracted terms in any state suffice to determine the update set in
that state. This leads to our bounded exploration postulate for RAs.

If S, S′ are states of an RA and W is a set of multiset comprehension
terms over the common signature ΣS∩ΣS′ , we say that S and S′ strongly
coincide over W iff the following holds:

– For every t ∈W we have valS(t) = valS′(t).

– For every t ∈W with valS(t) ∈ TS and valS′(t) ∈ TS′ we have
valS(β(t)) = valS′(β(t)).

We may further assume that the complex values representing an al-
gorithm are updated by several operations in one step, i.e. shared up-
dates defined by an operator and arguments [16] may be used to de-
fine updates. If operators are compatible [16], such shared updates are
merged into a single update. In order to capture this merging we ex-
tend the bounded exploration witness W as follows: A term indicating
a shared update takes the form op(f(t1, . . . , tn), t

′
1, . . . , t

′
m), where op is

the operator that is to be applied, f(t1, . . . , tn) evaluates in every state
S to a value valS(ℓ) of some location ℓ = (f, (valS(t1), . . . , valS(tn))),
and t′1, . . . , t

′
m evaluate to the other arguments of the shared update.

If op1(f(t1, . . . , tn), t
′
11, . . . , t

′
1m1

), . . . , opk(f(t1, . . . , tn), t
′
k1, . . . , t

′
kmk

) are
several terms occurring in W or in β(W), then the term

op1(. . . (opk(f(t1, . . . , tn), t
′
k1, . . . , t

′
kmk

), . . . , t′21, . . . , t
′
2m2

), t′11, . . . , t
′
1m1

)

will be called an aggregation term over f(t1, . . . , tn), and the tuple (valS(t̂),
valS(t1), . . . , valS(tn)) will be called an aggregation tuple. Then we can al-
ways assume that the update set ∆A(S) is the result of collapsing an
update multiset ∆̈A(S).

Postulate 4 (Bounded Exploration Postulate). For every RA A
there is a finite setW of multiset comprehension terms such that ∆̈A(S) =
∆̈A(S

′) holds (hence also ∆A(S) = ∆A(S
′)) whenever the states S and

S′ strongly coincide over W .
Furthermore, ∆̈A(res(S,Σalg)) = ∆̈A(res(S

′, Σalg)) holds (and conse-
quently also ∆A(res(S,Σalg)) = ∆A(res(S

′, Σalg))) whenever the states S
and S′ coincide over W . Here, res(S,Σalg) is the structure resulting from
S by restriction of the signature to Σalg.

Any set W of terms as in the bounded exploration postulate 4 will be
called a (reflective) bounded exploration witness (R-witness) for A. The
four postulates capturing sequential time, abstract states, background
and bounded exploration together provide an axiomatic definition of the
notion of a reflective algorithm.

2.4 Behavioural Equivalence

According to the definitions in [11, 1] two algorithms are behaviourally
equivalent iff they have the same sets of states and initial states and the
same transition function τ . If we adopted without change this definition of
behavioural equivalence from [11], then the substructure over Σalg would
be required to be exactly the same in corresponding states. However, the

way how to realise such a representation was deliberately left open in the
axiomatisation. Therefore, instead of claiming identical states it suffices
to only require identity for the restriction to ΣS −Σalg, while structures
over Σalg only need to define behaviourally equivalent algorithms.

However, this is still too restrictive, as behavioural equivalence ofA(S)
and A(S′) would still imply identical changes to the self-representation.
Therefore, we can also restrict our attention to the behaviour of the al-
gorithms A(S) on states over ΣS −Σalg. If A(S) and A(S′) produce sig-
nificantly different changes to the represented algorithm, the next state
in a run of the reflective algorithm will reveal this.

Therefore, two RAs A and A′ are behaviourally equivalent iff there
exists a bijection Φ between runs of A and those of A′ such that for every
run S0, S1, . . . of A we have that for all states Si and Φ(Si)

(i) their restrictions to ΣSi −Σalg are the same, and
(ii) the restrictions of A(Si) and A′(Φ(Si)) to ΣSi − Σalg represent be-

haviourally equivalent algorithms.

3 Reflective Abstract State Machines

In this section we define a model of reflective ASMs, which uses a self
representation of an ASM as a particular tree value that is assigned to a
location pgm. For basic operations on this tree we exploit the tree algebra
from [12]. Then in every step the update set will be built using the rule
in this representation, for which we exploit raise and drop as in [17].

3.1 Tree Structures

We now provide the details of the tree structures and the tree algebra.
An unranked tree structure is a structure (O,≺c,≺s) consisting of a finite,
non-empty set O of node identifiers, called tree domain, and irreflexive
relations ≺c (child relation) and ≺s (sibling relation) over O satisfying
the following conditions:

– there exists a unique, distinguished node or ∈ O (root) such that for
all o ∈ O − {or} there is exactly one o′ ∈ O with o′ ≺c o, and

– whenever o1 ≺s o2 holds, then there is some o ∈ O with o ≺c oi for
i = 1, 2 and vice versa.

For x1 ≺c x2 we say that x1 is the parent of x2 and x2 is a child of
x1. For x1 ≺s x2 we say that x2 is the next sibling of x1, and x1 is the

previous sibling of x2. In order to obtain trees from this, we add labels
and assign values to the leaves. For this we fix a finite, non-empty set L
of labels, and a finite family {τi}i∈I of data types. Each data type τi is
associated with a value domain dom(τi). The corresponding universe U
contains all possible values of these data types, i.e. U =

⋃
i∈I dom(τi).

A tree t over the set of labels L with values in the universe U comprises
an unranked tree structure γt = (Ot,≺c,≺s), a total label function ωt :
Ot → L, and a partial value function υt : Ot → U that is defined on the
leaves in γt.

Let TL denote the set of all trees with labels in L, and let root(t)
denote the root node of a tree t. A sequence t1, ..., tk of trees is called a
hedge, and a multiset {{t1, ..., tk}} of trees is called a forest. Let ϵ denote
the empty hedge, and let HL denote the set of all hedges with labels in L.
A tree t1 is a subtree of t2 (notation t1 ⊑ t2) iff the following properties
are satisfied:

(i) Ot1 ⊆ Ot2 ,
(ii) o1 ≺c o2 holds in t1 for o1, o2 ∈ Ot1 iff it holds in t2,
(iii) o1 ≺s o2 holds in t1 for o1, o2 ∈ Ot1 iff it holds in t2,
(iv) ωt1(o

′) = ωt2(o
′) holds for all o′ ∈ Ot1 , and

(v) for all leaves o′ ∈ Ot1 we have υt1(o
′) = υt2(o

′).

t1 is the largest subtree of t2 (denoted as ô) at node o iff t1 ⊑ t2
with root(t1) = o and there is no tree t3 with t1 ̸= t3 ̸= t2 such that
t1 ⊑ t3 ⊑ t2.

The set of contexts CL over L is the set TL∪{ξ} of trees with labels in
L ∪ {ξ} (ξ /∈ L) such that for each tree t ∈ CL exactly one leaf node is
labelled with ξ and the value assigned to this leaf is undef . The context
with a single node labelled ξ is called trivial and is simply denoted as ξ.
Contexts allow us to define substitution operations that replace a subtree
of a tree or context by a new tree or context. This leads to the following
four kinds of substitutions:

Tree-to-tree substitution. For a tree t1 ∈ TL1 , a node o ∈ Ot1 and a
tree t2 ∈ TL2 the result substtt(t1, o, t2) = t1[ô 7→ t2] of substituting t2
for the subtree rooted at o is a tree in TL1∪L2 .

Tree-to-context substitution. For a tree t1 ∈ TL1 , a node o ∈ Ot1 the
result substtc(t1, o, ξ) = t1[ô 7→ ξ] of substituting the trivial context
for the subtree rooted at o is a context in CL1 .

Context-to-context substitution. For contexts c1 ∈ CL1 and c2 ∈
CL2 the result substcc(c1, c2) = c1[ξ 7→ c2] of substituting c2 for the
leaf labelled by ξ in c1 is a context in CL1∪L2 .

Context-to-tree substitution. For a context c1 ∈ CL1 and a tree t2 ∈
TL2 the result substct(c1, t2) = c1[ξ 7→ t2] of substituting t2 for the leaf
labelled by ξ in c1 is a tree in TL1∪L2 .

As a shortcut we write substtc(t1, o, c2) for substcc(substtc(t1, o, ξ), c2),
which is a context in CL1∪L2 .

To provide manipulation operations over trees at a level higher than
individual nodes and edges, we need constructs to select arbitrary tree
portions. For this we provide two selector constructs, which result in
subtrees and contexts, respectively. For a tree t = (γt, ωt, υt) ∈ TL these
constructs are defined as follows:

– context : Ot×Ot → CL is a partial function on pairs (o1, o2) of nodes
with o1 ≺+

c o2 and context(o1, o2) = subst tc(ô1, o2, ξ) = ô1[ô2 7→ ξ],
where ≺+

c denotes the transitive closure of ≺c.

– subtree : Ot → TL is a function defined by subtree(o) = ô.

The set T of tree algebra terms over L ∪ {ϵ, ξ} comprises label terms,
hedge terms, and context terms, i.e. T = L ∪ Th ∪ Tc, which are defined
as follows:

– The set Th is the smallest set with TL ⊆ Th such that (1) ϵ ∈ Th, (2)
a⟨h⟩ ∈ Th for a ∈ L and h ∈ Th, and (3) t1 . . . tn ∈ Th for ti ∈ Th

(i = 1, . . . , n).

– The set of context terms Tc is the smallest set with (1) ξ ∈ Tc and
(2) a⟨t1, . . . , tn⟩ ∈ Tc for a ∈ L and terms t1, . . . , tn ∈ Th ∪ Tc, such
that exactly one ti is a context term in Tc.

With these we now define the operators of our tree algebra as follows
(see [12]):

label hedge. The operator label hedge turns a hedge into a tree with a
new added root, i.e. label hedge(a, t1 . . . tn) = a⟨t1, . . . , tn⟩.

label context. Similarly, the operator label context turns a context into
a context with a new added root, i.e. label context(a, c) = a⟨c⟩.

left extend. The operator left extend integrates the trees in a hedge into
a context extending it on the left, i.e. left extend(t1 . . . tn, a⟨t′1, . . . , t′m⟩)
= a⟨t1, . . . , tn, t′1, . . . , t′m⟩.

right extend. Likewise, the operator right extend integrates the trees
in a hedge into a context extending it on the right, i.e.
right extend(t1 . . . tn, a⟨t′1, . . . , t′m⟩) = a⟨t′1, . . . , t′m, t1, . . . , tn⟩.

concat. The operator concat simply concatenates two hedges, i.e.
concat(t1 . . . tn, t

′
1 . . . t

′
m) = t1 . . . tnt

′
1 . . . t

′
m.

inject hedge. The operator inject hedge turns a context into a tree
by substituting a hedge for ξ, i.e. inject hedge(c, t1 . . . tn) = c[ξ 7→
t1 . . . tn].

inject context. The operator inject context substitutes a context for ξ,
i.e. inject context(c1, c2) = c1[ξ 7→ c2].

3.2 Self Representation Using Trees

For the dedicated location storing the self-representation of an ASM it is
sufficient to use a single function symbol pgm of arity 0. Then in every
state S the value valS(pgm) is a complex tree comprising two subtrees
for the representation of the signature and the rule, respectively. The
signature is just a list of function symbols, each having a name and an
arity. The rule can be represented by a syntax tree.

Thus, for the tree structure we have a root node o labelled by pgm

with exactly two successor nodes, say o0 and o1, labelled by signature

and rule, respectively. So we have o ≺c o0, o0 ≺s o1 and o ≺c o1. The
subtree rooted at o0 has as many children o00, . . . , o0k as there are function
symbols in the signature, each labelled by func. Each of the subtrees
rooted at o0i takes the form func⟨name⟨f⟩ arity⟨n⟩⟩ with a function
name f and a natural number n. The subtree rooted at o1 represents the
rule as a tree. Trees representing rules are inductively defined as follows:

– An assignment rule f(t1, . . . , tn) = t0 is represented by a tree of the
form label hedge(update, func⟨f⟩term⟨t1 . . . tn⟩term⟨t0⟩).

– A partial assignment rule f(t1, . . . , tn) ⇔op t′1, . . . , t
′
m is represented

by a tree of the form
label hedge(partial, func⟨f⟩func⟨op⟩term⟨t1 . . . tn⟩term⟨t′1 . . . t′m⟩).

– A branching rule IF φ THEN r1 ELSE r2 ENDIF is represented by a
tree of the form label hedge(if, bool⟨φ⟩rule⟨t1⟩rule⟨t2⟩), where ti
(for i = 1, 2) is the tree representing the rule ri.

– A forall rule FORALL x WITH φ DO r ENDDO is represented by a tree
of the form label hedge(forall, term⟨x⟩, bool⟨φ⟩, rule⟨t⟩), where t is
the tree representing the rule r.

– A parallel rule PAR r1 . . . rk ENDPAR is represented by a tree of the form
label hedge(par, rule⟨t1⟩ . . . rule⟨tk⟩), where ti (for i = 1, . . . , k) is
the tree representing the rule ri.

– A let rule LET x = t IN r is represented by a tree of the form
label hedge(let, term⟨x⟩term⟨t⟩rule⟨t′⟩), where t′ is the tree repre-
senting the rule r.

– An import rule IMPORT x DO r (which imports a fresh element from the
reserve) is represented by a tree of the form label hedge(import, term⟨x⟩
rule⟨t⟩), where t is the tree representing the rule r.

3.3 The Background of an rASM

Let us draw some consequences from this tree representation. As function
names in the signature appear in the tree representation, these are values.
Furthermore, we may in every step enlarge the signature, so there must
be an infinite reserve of such function names. Since ASMs have an infinite
reserve of values, new function names can naturally be imported from this
reserve. Likewise we require natural numbers in the background for the
arity assigned to function symbols, though operations on natural numbers
are optional. Terms built over the signature and a base set B must also
become values. This includes tuple and multiset terms. Concerning the
subtree capturing the rule, the keywords for the different rules become
labels, so we obtain the set of labels

L ={pgm, signature, rule, func, name, arity, update, term, if,
bool, forall, par, let, partial, import}.

Consequently, we must extend a base set B by such terms, i.e. terms
will become values. For this let Σ be a signature and let B be the base
set of a structure of signature Σ. An extended base set is the smallest set
Bext that includes all elements of B, all elements in the reserve, all natural
numbers, all terms ti of signature Σ ∪Σext such that Σext is some finite
subset of {raise(vi) | vi is an element of the reserve} and each function
symbol of Σext has some arbitrary fixed arity, and all terms of the tree
algebra over all possible signatures Σext with labels in L as defined above.
As B is closed under the operators in the background, also tuples and
multisets are included in B and hence in Bext .

In an extended base set terms are treated as values and thus can
appear as values of some locations in a state. This implies that terms
now have a dual character. When appearing in an ASM rule, e.g. on
the right-hand side of an assignment, they are interpreted in the current
state to determine an update. However, if they are to be treated as a
value, they have to be interpreted by themselves. Therefore, we require a
function drop turning a term into a value, and inversely a function raise
turning a value into a term. Over elements of the (non-extended) base
set B, elements imported from the reserve and natural numbers, i.e. over
elements that do not represent terms, both functions can be thought of

as the identity. Thus, if we raise an element a of B, then the result is a
nullary function symbol named a. Such a function symbol a can be seen
as a constant in the sense that it is always interpreted by itself, i.e. by
a ∈ B. As discussed in [17], functions drop and raise capture the essence
of linguistic reflection.

For instance, when evaluating pgm in a state S the result should be a
tree value, to which we may apply some tree operators to extract a rule
associated with some subtree. As this subtree is a value in B (and thus
in Bext) we may apply raise to it to obtain the ASM rule, which could be
executed to determine an update set and to update the state. Analogously,
when assigning a new term (e.g. a Boolean term in a branching rule) to
a subtree of pgm the value on the right-hand side must be the result of
the function drop, otherwise the term would be evaluated and a Boolean
value would be assigned instead.

The functions drop and raise can be applied to function names as
well, so they can be used as values stored within pgm and used as function
symbols in rules. In particular, if O denotes the set of nodes of a tree,
then each o ∈ O is a value in the base set, but raise(o) denotes a nullary
function symbol that is bound in a state to the subtree ô. However, as
it is always clear from the context, when a function name f is used as a
value, i.e. as drop(f), this subtle distinction can be blurred.

Finally, the self-representation as defined above involves several non-
logical constants such as the keywords for the rules, which are labels in
L. For a theoretical analysis it is important to extract from the repre-
sentation the decisive terms defined over Σ and B. That is, we further
require an extraction function β : Text → T̄, which assigns to each term
included in the extended base set Bext a tuple of terms in T̄ defined over
Σ, B and the background operators. This extraction function β on rule
terms is easily defined as follows:

β(label hedge(update, func⟨f⟩term⟨t1 . . . tn⟩term⟨t0⟩)) =
({{t0, t1, . . . , tn | true}})

β(label hedge(partial, func⟨f⟩func⟨op⟩term⟨t1 . . . tn⟩term⟨t′1 . . . t′m⟩)) =
({{(t1, . . . , tn, op(f(t1, . . . , tn), t′1, . . . , t′m)) | true}})

β(label hedge(par, rule⟨t1⟩ . . . rule⟨tk⟩)) =
(t11, . . . , t

n1
1 , . . . , t

1
k, . . . , t

nk
k)

for β(ti) = (t1i , . . . , t
ni
i) (1 ≤ i ≤ k)

β(label hedge(if, bool⟨φ⟩rule⟨t1⟩rule⟨t2⟩)) =
({{φ, | true}}, . . . , {{(t1i,1, . . . , t1i,ni

) | φi ∧ φ}}, . . . ,
. . . , {{(t2j,1, . . . , t2j,n′

j
) | ψj ∧ ¬φ}}, . . .)

for β(t1) = (. . . {{(t1i,1, . . . , t1i,ni
) | φi}}, . . .) (1 ≤ i ≤ m1)

and β(t2) = (. . . {{(t2j,1, . . . , t2j,n′
j
) | ψj}}, . . .) (1 ≤ j ≤ m2)

β(label hedge(forall, term⟨x⟩, bool⟨φ⟩, rule⟨t⟩)) =
(. . . , {{(ti,1, . . . , ti,ni) | φi ∧ φ}}, . . . ,

. . . , {{(ti,1, . . . , ti,ni) | φi ∧ ¬φ}}, . . .)
for β(t) = (. . . {{(ti,1, . . . , ti,ni) | φi}}, . . .) (1 ≤ i ≤ k)

β(label hedge(let, term⟨x⟩term⟨t⟩rule⟨t′⟩)) =
(t, t1, . . . , tn) for β(t

′[x 7→ t]) = (t1, . . . , tn)

β(label hedge(import, term⟨x⟩rule⟨t⟩)) = β(t)

Then the background of an rASM is defined by a background class K
over a background signature VK . It must contain an infinite set reserve of
reserve values, the equality predicate, the undefinedness value undef, and
a set of labels L = {pgm, signature, rule, func, name, arity, update, if,
term, bool, forall, par, let, partial, import}.

The background class must further define truth values and their con-
nectives, tuples and projection operations on them, multisets with union
and comprehension operators natural numbers and operations on them,
trees in TL and tree operations, and the function I, where Ix.φ denotes
the unique x satisfying condition φ.

The background must further provide functions: drop : T̂ext → Bext

and raise : Bext → T̂ext for each base set B and extended base set Bext,
as well as the derived extraction function β defined above.

In the previous definition we use T̂ext to denote the union of:

(i) The set Text of all terms included in Bext;
(ii) The set of all ASM rules which can be formed together with the terms

included in Bext;
(iii) The set of all possible signatures of the form signature Σ ∪Σext such

that Σext is a finite subset of {raise(vi) | vi in the reserve} and each
function symbol of Σext has some arbitrary fixed arity.

3.4 Reflective ASMs

A reflective ASM (rASM) M comprises an (initial) signature Σ con-
taining a 0-ary function symbol pgm, a background as defined above,

and a set I of initial states over Σ closed under isomorphisms such that
any two states I1, I2 ∈ I coincide on pgm. If S is an initial state, then
the signature ΣS = raise(signature(valS(pgm))) must coincide with Σ.
Furthermore, M comprises a state transition function τ(S) on states
over the (extended) signature ΣS with τ(S) = S + ∆rS (S), where the
rule rS is defined as raise(rule(valS(pgm))) over the signature ΣS =
raise(signature(valS(pgm))).

Here we use extraction functions rule and signature defined on the
tree representation of a parallel ASM in pgm. These are simply defined
as signature(t) = subtree(Io.root(t) ≺c o ∧ label(o) = signature) and
rule(t) = subtree(Io.root(t) ≺c o ∧ label(o) = rule).

4 The Reflective Parallel ASM Thesis

Our first main result is that each rASM satisfies the defining postulates,
i.e. each rASM defines an RA. This constitutes the plausibility part of
our reflective parallel ASM thesis. A full proof is given in [13].

Theorem 1. Every reflective ASM M defines a RA.

Proof (sketch). In every initial state S0 ∈ I we have a unique rule rS0 =
raise(rule(valS0(pgm))) using the rule extraction function rule defined in
Subsection 3.2. Furthermore, the state transition function is built into the
definition of an rASM. This easy implies the satisfaction of the sequential
time postulate. As the background requirements are also built into the
definition of an rASM, we easily get the satisfaction of the background
postulate.

Concerning the abstract state postulate all required conditions except
(iv) are easily verified, and for (iv) we have Σalg = {pgm}, so the restric-
tion of a state S is simply given by valS(pgm). Applying the functions
rule and signature from Subsection 3.2 to this tree value yield the rule rS
and the signature ΣS , which define the algorithm A(S) with the desired
properties.

This leaves the task to show the satisfaction of the bounded explo-
ration postulate, for which we can take W = {pgm}. If S and S′ are two
states that strongly coincide onW , we have rS = raise(rule(valS(pgm))) =
rS′ with signature ΣS = raise(signature(valS(pgm))) = ΣS′ . Also, apply-
ing the extraction function β gives β(valS(pgm)) = β(valS′(pgm)). If this
tuple of terms is (t1, . . . , tn), {t1, . . . , tn} is a bounded exploration witness
for the ASM defined by ΣS and rS , hence valS(raise(ti)) = valS′(raise(ti))
holds for all i = 1, . . . , n, so the states S and S′ coincide on a bounded

exploration witness, and further ∆̈A(S) = ∆̈rS (S) = ∆̈rS′ (S
′) = ∆̈A(S

′)
must hold, which shows the satisfaction of the bounded exploration pos-
tulate. ⊓⊔

Our second main result is the converse of Theorem 1, i.e. every RA
A can be step-by-step simulated by a behaviourally equivalent rASM M.
Hence rASMs capture all RAs regardless how algorithms are represented
by terms. This constitutes the characterisation part of the reflective par-
allel ASM thesis. A full proof, which is longer than this whole article, is
given in [13].

Theorem 2. For every RA A there is a behaviourally equivalent rASM
M.

5 Conclusion

In this article we investigated a behavioural theory for reflective parallel
algorithms (RAs) extending our previous work on reflective sequential
algorithms (RSAs) in [12]. Grounded in related work concerning a be-
havioural theory for (synchronous) parallel algorithms [8] we developed a
set of abstract postulates defining RAs, extended ASMs to reflective ab-
stract state machines (rASMs), and sketched that any RA as stipulated
by the postulates can be step-by-step simulated by an rASM. The key
contributions are the axiomatic definition of RAs and the proof that RAs
are captured by rASMs. Full proofs are given in [13].

With this behavioural theory we lay the foundations for rigorous de-
velopment of reflective algorithms and thus adaptive systems. So far the
theory covers only reflective sequential and parallel algorithms, but not
non-deterministic algorithms nor (asynchronous) concurrent algorithms.
So in view of the behavioural theory for concurrent algorithms the next
step of the research is to extend also this theory to capture reflection.
We envision a part III on reflective concurrent algorithms. The latter
one would then lay the foundations for the specification of distributed
adaptive systems in general.

Concerning non-determinism, however, there is not yet a behavioural
theory available, except for the case of bounded non-determinism in con-
nection with bounded parallelism, which is a simple add-on to the sequen-
tial ASM thesis [11, 7]. Therefore, first such a theory has to be developed
before thinking about an extension covering reflection.

Furthermore, for rigorous development extensions to the refinement
method for ASMs [4] and to the logic used for verification [9, 10] will be
necessary. These will also be addressed in follow-on research.

References

1. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms.
ACM Trans. Computational Logic, 4(4):578–651, 2003.

2. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms:
Correction and extension. ACM Trans. Comp. Logic, 9(3), 2008.

3. A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of Pure
and Applied Logic, 100:141–187, 1999.

4. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–
257, 2003.

5. E. Börger and K.-D. Schewe. Concurrent Abstract State Machines. Acta Infor-
matica, 53(5):469–492, 2016.

6. E. Börger and K.-D. Schewe. A behavioural theory of recursive algorithms. Fun-
damenta Informaticae, 177(1):1–37, 2020.

7. E. Börger and R. Stärk. Abstract State Machines. Springer-Verlag, Berlin Heidel-
berg New York, 2003.

8. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A new thesis concerning syn-
chronised parallel computing – simplified parallel ASM thesis. Theor. Comp. Sci.,
649:25–53, 2016.

9. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A complete logic for Database
Abstract State Machines. The Logic Journal of the IGPL, 25(5):700–740, 2017.

10. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A unifying logic for non-
deterministic, parallel and concurrent Abstract State Machines. Ann. Math. Artif.
Intell., 83(3-4):321–349, 2018.

11. Y. Gurevich. Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comp. Logic, 1(1):77–111, 2000.

12. K.-D. Schewe and F. Ferrarotti. Behavioural theory of reflective algorithms I:
Reflective sequential algorithms. Sci. Comput. Program., 223:102864, 2022.

13. K.-D. Schewe and F. Ferrarotti. Behavioural theory of reflective algorithms II:
Reflective parallel algorithms, 2025. available soon on arxiv.org.

14. K.-D. Schewe, F. Ferrarotti, and S. González. A logic for reflective ASMs. Sci.
Comput. Program., 210:102691, 2021.

15. K.-D. Schewe and Q. Wang. XML database transformations. J. UCS, 16(20):3043–
3072, 2010.

16. K.-D. Schewe and Q. Wang. Partial updates in complex-value databases. In
A. Heimbürger et al., editors, Information and Knowledge Bases XXII, volume
225 of Frontiers in Artificial Intelligence and Applications, pages 37–56. IOS Press,
2011.

17. D. Stemple, L. Fegaras, R. Stanton, T. Sheard, P. Philbrow, R. Cooper, M. Atkin-
son, R. Morrison, G. Kirby, R. Connor, and S. Alagic. Type-safe linguistic reflec-
tion: A generator technology. In M. Atkinson and R. Welland, editors, Fully Inte-
grated Data Environments, Esprit Basic Research Series, pages 158–188. Springer
Berlin Heidelberg, 2000.

Using Symbolic Model Execution to Detect
Vulnerabilities of Smart Contracts ⋆

Chiara Braghin1[0000−0002−9756−4675], Giuseppe Del
Castillo2[0009−0005−7020−6607], Elvinia Riccobene1[0000−0002−1400−1026], and

Simone Valentini1[0009−0005−5956−3945]

1 Computer Science Department,
Università degli Studi di Milano, via Celoria 18, Milan, Italy

{chiara.braghin,elvinia.riccobene,simone.valentini}@unimi.it
2 Munich, Germany

giuseppedelcastillo@acm.org

Abstract. Smart contracts are programs that automate agreements
between parties without the need for intermediaries. Embedded in a
blockchain, they ensure transparency, immutability, and trustworthiness.
While efficient, their immutable nature and reliance on internet-connected
nodes make them susceptible to attacks. Identifying vulnerabilities before
deployment is critical to mitigate risks, prevent catastrophic events, and
avoid significant financial losses. This paper introduces a method for de-
tecting vulnerabilities in smart contracts written in Solidity and deployed
on the Ethereum blockchain. The approach models a smart contract as an
Abstract State Machine (ASM), where the absence of specific vulnerabil-
ities is encoded as invariants. An existing symbolic execution technique
for ASM models was extended and improved to enable the processing
of the ASM models of the smart contracts. By symbolically executing
the ASM, the method identifies faulty execution paths that violate these
invariants, exposing potential vulnerabilities in the contract’s behavior.
Vulnerable execution scenarios of the smart contract can be generated
using the symbolic execution results.
As a proof of concept, we show the approach on a running case study, the
Auction smart contract. Furthermore, we discuss the results of applying
the technique to a number of Solidity smart contracts.

Keywords: Blockchain · Ethereum · Solidity · Smart contract vulnera-
bilities · Abstract State Machines · Symbolic execution.

1 Introduction

Blockchain technology has emerged as a fundamental component in applications
ranging from finance to supply chain management and beyond, enabling se-
cure, transparent, and decentralized transaction management without the need

⋆ This work was partially supported by project SERICS (PE00000014) under the MUR
National Recovery and Resilience Plan funded by the European Union - NextGen-
erationEU.

2 C. Braghin, G. Del Castillo, E. Riccobene, S. Valentini

for trusted intermediaries. Through cryptographic techniques and distributed
consensus mechanisms, it ensures data integrity and trust. In addition, the in-
troduction of smart contracts has made it possible to automate agreements be-
tween parties without intermediaries, enhancing efficiency and reducing costs.
However, despite their benefits, they remain vulnerable to attacks, as they are
publicly accessible to all network nodes and often handle significant amounts
of cryptocurrency. For instance, the notorious DAO hack [27] on the Ethereum
blockchain [31] resulted in the loss of $70 million worth of Ether due to a vulnera-
ble smart contract that lacked proper verification [25]. Addressing vulnerabilities
before (permanent) deployment is essential for mitigating risks, preventing catas-
trophic incidents, and avoiding substantial financial losses. Moreover, high-cost
vulnerabilities and exploits can severely impact the trust and acceptance of the
blockchain ecosystem.

Formal verification can play a crucial role in advancing the maturity and
adoption of blockchain technology by providing a rigorous approach to ensuring
the accuracy and reliability of smart contracts. However, while formal verifi-
cation for smart contracts has made significant advancements [19,29], several
challenges remain. Existing tools have notable limitations: (a) bytecode-based
tools generate results that are challenging to trace back to code-level vulner-
abilities; (b) tools operating at a higher level, rely on complex notations that
require a strong mathematical background, making them less accessible to many
developers, and (c) some tools produce vulnerability reports that are difficult to
interpret, often failing to accurately locate the exact code segment containing
the issue or clearly identify the type of vulnerability detected [24].

In [10,11], we explored the potential of using the Abstract State Machines
(ASMs) [7,8] to model Ethereum smart contracts written in Solidity. Thanks
to the pseudo-code format of an ASM model, which allows for an easy compre-
hension by practitioners and not-experts, and the tool support of this formal
method [6], our long-term vision [30] is to develop a practical verification frame-
work, leveraging ASMs as the foundational formalism for specifying and ana-
lyzing smart contract vulnerabilities. Thus, we formalized the Ethereum Virtual
Machine (EVM) and introduced key language primitives that enable a straight-
forward translation of Solidity smart contracts into ASMETA models. ASMETA
provides a toolset for model editing, validation, and verification, including a
translator to the NuSMV model checker for formal verification. However, as
model size increases, we encountered the state space explosion problem, a com-
mon challenge in model checking. To address this, in this paper, we explore the
potential of a recently developed symbolic execution tool [14] for ASMs. Unlike
model checking, symbolic execution does not require exhaustive state searching,
mitigating state explosion and allowing it to manage infinite domains more effec-
tively. While model checking is better suited for exhaustively proving correctness
properties, symbolic execution excels in detecting concrete bugs and vulnerabil-
ities. On the other hand, compared to traditional testing approaches, symbolic
execution offers significant advantages in vulnerability detection by systemati-
cally exploring execution paths and achieving higher coverage than random or

Symbolic Model Execution for Smart Contracts 3

manually designed test cases. Additionally, it identifies exact inputs that trig-
ger bugs, whereas fuzzing often detects crashes without providing precise failure
conditions.

In our approach, we express the absence of specific vulnerabilities as model
invariants within an ASMETA smart contract model. The symbolic execution
engine is then employed to uncover faulty execution paths that lead to invariant
violations. To achieve this, we significantly enhanced the symbolic executor,
adapting it to ASMETA models and improving its ability to detect invariant
violations. The insights provided by the symbolic execution tool can also be used
to generate execution scenarios, helping to identify and analyze vulnerabilities
within the smart contract. We demonstrate our approach using a case study, the
Auction smart contract, and discuss the results of applying our vulnerability
detection method to a good broad set of Solidity smart contracts.

The rest of the paper is organized as follows: in Sect. 2, we provide a back-
ground description of Ethereum smart contracts, and we introduce the Auction
smart contract. In Sect. 3, we briefly present the ASM-based modeling of the
Ethereum virtual machine and of smart contracts. In Sect. 4, we present the
tool for symbolic execution of ASMETA models, its improvement and features.
In Sect. 5, we show the application of our vulnerability detection strategy to the
running example, while in Sect. 6 we report results to evince the effectiveness
of the approach and discuss the potential limitations and threats of our con-
tribution. In Sect. 7, we compare our results with existing approaches. Sect. 8
concludes the paper and outlines future research directions.

2 Blockchain and Solidity Smart Contracts

A blockchain is a decentralized and distributed ledger that records transactions
across a network of computers. It comprises data blocks, each containing a set
of transactions, a unique cryptographic hash of the previous block, and a time-
stamp. These blocks are linked together, forming an immutable chain: once a
block is added, its contents cannot be altered without modifying all subsequent
blocks, making retroactive tampering virtually impossible.

Ethereum [31] is an open-source blockchain platform designed for developers
to create and deploy decentralized applications. It offers the Ethereum Virtual
Machine (EVM) as a decentralized runtime environment for executing smart
contracts, self-executing programs that automate agreements with the terms
directly coded into them. They are written in high-level languages like Solidity
and compiled into bytecode that the EVM can run.

The EVM operates on every node within the Ethereum network, guaranteeing
decentralized execution of smart contracts. Additionally, it upholds the state
of the Ethereum blockchain, encompassing account balances, smart contract
code, and storage. Two types of accounts have an Ether (ETH) balance and can
interact with the blockchain by sending transactions on the chain: externally
owned accounts (EOA) and smart contract accounts. EOA are humans-managed
accounts identified by a public key, which serves as the account address, and

4 C. Braghin, G. Del Castillo, E. Riccobene, S. Valentini

controlled by a corresponding private key. These accounts use the private key
to sign transactions, proving ownership and authorization through an elliptic
curve digital signature algorithm. Contract accounts, on the other hand, are
special accounts that contain associated code and data storage. They have unique
addresses but do not have private keys. When a smart contract transaction is
initiated, the EVM processes the bytecode linked to the contract and executes
it. This execution modifies the blockchain’s state by updating account balances
or storage values. A special global variable called msg is employed to capture
transaction-related information, including msg.sender representing the address
that initiated the function call, and msg.value yielding the liquidity sent with
the message.

2.1 Running case study

The code in Listing 2.1 reports the Auction smart contract written in Solidity [9].
This contract is commonly encountered in real-world blockchain applications to
guarantee greater transparency and avoid cheating auctioneers.

1 contract Auction {

2 address currentFrontrunner;

3 address owner;

4 uint currentBid;

5
6 function destroy () {

7 selfdestruct(owner);

8 }

9 function bid() payable {

10 require(msg.value > currentBid);

11 if (currentFrontrunner != 0) {

12 require(currentFrontrunner.send(currentBid));

13 }

14 currentFrontrunner = msg.sender;

15 currentBid = msg.value;

16 }

17 }

Listing 2.1: Solidity code of the Auction smart contract

The contract keeps track of the current highest bidder (currentFrontrunner)
and the highest bid amount (currentBid). Participants can submit bids through
the bid() function, which takes payment in Ether. The function requires that
(1) the submitted bid value (msg.value) is greater than the current highest bid,
and that (2) if there is an existing highest bidder (currentFrontrunner != 0),
the contract must refund his/her bid amount before assigning the new bid. The
payable keyword is required for a function to receive Ether. In Solidity, the
send function, used as address.send(amount), returns true if the transfer to
the specified address succeeds; otherwise, it returns false.

The contract also defines a destroy function, which invokes Solidity’s built-
in selfdestruct(recipientAddress) function to terminate the contract and
transfer any remaining Ether to a specified recipient. This function reveals a
vulnerability that falls under the category of unprotected function vulnerability,

Symbolic Model Execution for Smart Contracts 5

where a smart contract exposes a critical functionality without enforcing access
control, thus allowing unauthorized users to execute sensitive operations. In this
case, without a restriction ensuring that only the contract owner can disable
the contract and withdraw its remaining balance, an attacker could exploit the
function to force the contract to self-destruct, resulting in a denial-of-service
(DoS) attack.

3 Modeling Solidity Smart Contracts

In [11,30], we demonstrated how to model the EVM and Solidity smart contracts
in ASMETA [4]. Our approach supports all the core features of smart contracts,
except for the gas mechanism.3 In the sequel, regarding the used formalism and
notation, we refer the non-expert reader to [6,8,7] for a very short introduction.

An ASMETA library, EVMlibrary, provides functions and rules to model
both the EVM behaviour and Ethereum accounts. Specifically, the library de-
fines the EVM stack structure, representing the execution stack through the
StackLayer domain and the current layer function, which tracks the stack
frame of the method currently being executed (i.e., the top of the stack). To man-
age execution flow, the library includes functions such as executing function

and instruction pointer, which track the currently running function and the
instruction being executed. Each stack layer is enriched with additional func-
tions - sender, receiver, amount - that store essential transaction details, in-
cluding the initiating account’s address, the recipient, and the amount of ether
transferred. Two library rules, r Transaction and r Ret are defined to move
along the stack. The rule r Transaction simulates a transaction execution with
an Ether transfer (due to a call to either a send or transfer function); it
increases the stack size and stores relevant execution details within the stack
layer, such as the executing contract and instruction pointer; it also updates the
caller’s instruction pointer accordingly. The rule r Ret stops the execution by
decreasing the stack size and restoring the previous execution frame. Addition-
ally, the library provides rules corresponding to predefined Solidity functions.
Specifically, require is modeled by the r Require rule, which increments the
instruction pointer on the true value of a given condition, or stops the ex-
ecution otherwise; selfdestruct is modeled by the r Selfdestruct rule, which
stops the execution and sends the whole contract balance to the User (passed as
parameter). Table 1 presents a structured mapping of Solidity smart contracts
to ASMETA models, written in AsmetaL, the model editing textual notation of
the ASMETA toolset.

In addition to the special global variables msg.sender and msg.value, which
are defined in the EVMlibrary, a Solidity contract includes two main types of
variables: state variables, which are permanently stored in the contract’s stor-
age, and local variables, which exist only during the execution of a function.

3 Gas is the unit used to measure computational effort in Ethereum: each operation in
the EVM consumes a certain amount of gas, and users must pay gas fees to execute
transactions and smart contracts.

6 C. Braghin, G. Del Castillo, E. Riccobene, S. Valentini

Solidity contract ASMETA model

contract SCName create a model asm SCName and add scname

to domain User to identify the contract
for each state variable type p add a function p: Type
for each local variable type v add a function v: StackLayer → Type
for each mapping state variable add a function

mapping(keyType => valueType) p: KeyType → ValueType
for each mapping local variable add a function

mapping(keyType => valueType) p: StackLayer x KeyType → ValueType
for each function f() add static f: Function and a rule r F[]
for the body of function f() add the body of the rule r F[]
if the fallback function is present add a corresponding rule r fallback
if the fallback function is absent add the default rule r fallback
if the contract is executed in isolation add the rule r main calling in parallel all

rules r F[] and set the initial state
if two or more contracts are co-executed add the rule r main orchestrating the rules

r contractNamei of all the contracts and
set the initial state

Table 1: Schema for mapping a Solidity contract to an ASMETA model

Furthermore, Solidity provides the mapping keyword, a reference type used to
store data as key-value pairs.

In the mapping schema, particular attention deserves the translation of a
Solidity function into an ASMETA rule. The latter mainly consists of a case

rule on the value of the instruction pointer(current layer), which refers to the
Solidity instruction within the function body, and allows the instruction pointer
to jump to a specific instruction when needed.

A special handling applies to the Solidity fallback function, which is exe-
cuted when a contract receives Ether with a call to a function that does not exist
in the contract, or when no data is provided in the transaction. While including
a fallback function is generally recommended, it is not mandatory. If absent,
the contract raises an exception and halts execution. To model this behavior,
we introduce a default version of the r Fallback rule. If no contract function is
invoked, this rule calls r Require with a false value to raise an exception, followed
by r Ret to handle termination. A version of this r Fallback rule for the Auction
contract is shown in Listing 3.2.

3.1 Model of the Auction contract

Based on the Solidity contract code in Listing 2.1, we define the corresponding
ASMETA model Auction.asm following the mapping schema outlined in Table 1.
The complete model is available at [12].

Listing 3.1 presents the functions that model the contract’s state variables.
Additionally, constants are added to the predefined library domains User and
Function to include the contract-specific functions and users.

Symbolic Model Execution for Smart Contracts 7

1 signature:

2 /* contract’s arguments */

3 dynamic controlled owner : User

4 dynamic controlled currentFrontrunner : User

5 dynamic controlled currentBid : MoneyAmount

6
7 /* initializing library domains for the specific contract*/

8 static auction : User

9 static bid : Function

10 static destroy : Function

Listing 3.1: Signature of the ASMETA Auction Model

Listing 3.2 reports the specification of the three rules corresponding to the
three functions of the contract. The rule r Bid is triggered when bid() is the
currently executing function in the current layer. The switch statement in the
rule manages the execution flow based on the instruction pointer’s value in the
current layer. Initially, in case 0, the rule ensures that the amount specified in
current layer exceeds the currentBid. Next, in case 1, if the current front-runner for
the bid is defined, the instruction pointer increments to the next case; otherwise,
it jumps to case 4. In case 2, a transaction is initiated, sending the current bid to
the current front-runner.4 After the transaction is performed, case 3 requires that
the response from the previous transaction is successful. Cases 4 and 5 update
the current front-runner with the transaction sender and the current bid with
the transaction amount. The last case invokes the rule r Ret since the execution
of function bid() terminates.

Listing 3.2 also includes the rule for the Auction function destroy(), which
calls the r Selfdestruct rule from the library (not shown here) on the con-
tract owner. This rule mirrors the behavior of Solidity selfdestruct function
by setting a predefined boolean variable, disabled to true. Defined within the
Users domain, this variable indicates whether the user associated with the given
contract has been disabled.

4 Symbolic execution of ASMETA Models

The ASE Tool To symbolically execute the smart contract models, the proto-
type ASM symbolic execution tool (“ASE tool”) presented in [14] and available
at [16] was used. The main feature of the ASE tool is the ability to transform
a sequential composition of ASM rules into a semantically equivalent parallel
ASM rule that has a simpler structure and is easier to reason about. Such a
rule is essentially a decision tree, i.e. a rule consisting of nested conditionals
(inner nodes of the decision tree) and blocks of parallel updates of individual,
unambiguously identified locations (leaves of the decision tree). The running ex-
ample throughout the other sections shows examples of these rules and how the

4 The argument none in the r Transaction rule is because the function bid() implies
money transfer and no nested function calls.

8 C. Braghin, G. Del Castillo, E. Riccobene, S. Valentini

1 rule r Bid =

2 if executing function(current layer) = bid then

3 switch instruction pointer(current layer)

4 case 0 :

5 r Require[amount(current layer) > currentBid]

6 case 1 :

7 if currentFrontrunner != undef then

8 instruction pointer(current layer) := instruction pointer(current layer) + 1

9 else

10 instruction pointer(current layer) := 4

11 endif

12 case 2 :

13 r Transaction[auction, currentFrontrunner, currentBid, none]

14 case 3 :

15 r Require[exception]

16 case 4 :

17 par

18 currentFrontrunner := sender(current layer)

19 instruction pointer(current layer) := instruction pointer(current layer) + 1

20 endpar

21 case 5 :

22 par

23 currentBid := amount(current layer)

24 instruction pointer(current layer) := instruction pointer(current layer) + 1

25 endpar

26 case 6 :

27 r Ret[]

28 endswitch

29 endif

30
31 rule r Destroy =

32 if executing function(current layer) = destroy then

33 switch instruction pointer(current layer)

34 case 0 :

35 r Selfdestruct[owner]

36 endswitch

37 endif

38
39 rule r Fallback =

40 if executing function(current layer) != bid and executing function(current layer) != destroy then

41 r Require[false]

42 endif

Listing 3.2: Model of the bid(), destroy() and fallback() functions

tool is used. For details on the formal definition of the transformation and its
implementation, see [14,15].

To meet the needs of the vulnerability analysis of the models presented in this
paper, the tool had to be enhanced in various ways. The following subsections
describe these enhancements.

AsmetaL Support The ASE tool had to be made compatible with AsmetaL,
the source language of the ASMETA toolset [4] that was used to specify the
smart contract ASM models (including the Auction example). For this purpose,

Symbolic Model Execution for Smart Contracts 9

an AsmetaL parser was added to the ASE tool and support for symbolic execution
of the required subset of AsmetaL was implemented, including ASM constructs
such as forall that were not implemented in the initial version of the ASE
tool. In particular, the tool has been extended to support enumerated and (non-
dynamic) abstract domains, function definitions and initializations, macro rule
definitions, forall rules and quantifiers over finite domains.

The implementation of these constructs is rather straightforward, mostly
consisting of some form of syntactic expansion followed by symbolic execution.
For example, a universally quantified Boolean term “forall x in A with t”
(where A is a finite set {a1, . . . , an}) is expanded into a term “t[x/a1] ∧ . . . ∧
t[x/an]”, which is then symbolically evaluated. Similarly, a forall rule over the
same set A is expanded into a par rule “R[x/a1] par . . . par R[x/an]”, which
is then symbolically executed according to the rules given in [14] for par.5

Symbolic Execution of Basic ASMs The symbolic execution scheme, which
was introduced in [14] to transform ASM rules including the sequential compo-
sition rules seq and iterate into basic ASM rules, has been adapted to sym-
bolically execute regular sequential ASMs.

The state Sn of a sequential run S0, S1, . . . starting in the initial state S0 can
be seen as S0⊕Pn, where Pn is the main rule (program) P of the ASM iterated n
times. As such iteration can be defined as P 0 := skip, P i+1 := P i seq P (i ≥ 0),
the transformation rules of [14] for seq can be applied repeatedly to obtain Sn.

The ASE tool now provides a -steps n option that constructs an ASM
rule equivalent to Pn using symbolic execution. This rule can be inspected to
understand the system behavior and the root causes of any identified invariant
violation, if it is found that an invariant is violated in state Sn (see “Invariant
Checking” below). In Sect. 6, we show a concrete use of this option for the
Auction contract vulnerability analysis.

Nested Non-Static Functions A limitation of the symbolic execution method
presented in [14] is its inability to process rules containing terms of the form
f(t1, . . . , g(s1, . . . , sm), . . . , tn), m ≥ 0, where f is a non-static function and g
is an uninitialized non-static function6, when no value has yet been assigned to
the relevant location (g, (x1, . . . , xm)) (where x1, . . . , xm are the values of terms

5 A forall Boolean term is used for example in the definition of invariant E3 in the
KotET model. A forall rule is used for example in the r Main rule of the Auction
model, see the GitHub repository [12].

6 Non-static functions are all functions that are not static, i.e. all functions that can
have a different interpretation in different states of an ASM run (such as controlled
and monitored functions). In the Auction model, unary functions executing contract
and balance are examples of (uninitialized) non-static functions; nullary function
current layer, instead, is an initialized non-static function. Even though the only
non-static functions supported by the ASE tool at the time of writing are controlled
functions (no monitored functions), the remarks of this subsection apply in principle
to all nested non-static functions. The essential difference is that static functions

10 C. Braghin, G. Del Castillo, E. Riccobene, S. Valentini

s1, . . . , sm). The problem is that, as the location (g, (x1, . . . , xm)) does not hold
a concrete value, the term f(t1, . . . , g(s1, . . . , sm), . . . , tn) cannot be mapped to
an unambiguously identified location (f, (y1, . . . , yn)).

Due to this limitation, none of the smart contract models presented here
could be symbolically executed using the initial ASE tool introduced in [14].
This problem can be illustrated using the Auction example. For example, the
r Selfdestruct rule contains an update rule

balance(executing contract(current layer)) := 0

While the initialized non-static function current layer always evaluates to a con-
crete value, so that the subterm executing contract(current layer) unambiguously
identifies a location of the executing contract function, this is not the case for
the whole term. Indeed, the uninitialized (i.e., uninterpreted) non-static function
executing contract occurs as an argument of non-static function balance, so that
it is not clear which location of balance is to be updated.

However, it was observed that, in all the smart contract models presented in
this paper, the range of the problematic “inner terms” (such as the g(s1, . . . , sm)
above, or the executing contract(current layer) in the example) is always finite.
Accordingly, terms can be transformed by making a case distinction over the
elements of the range of g:

[[g(s1, . . . , sm)]]S,C ̸= ⟨val x⟩ range(g) = {x1, . . . , xp} f, g not static

[[f(t1, . . . , g(s1, . . . , sm), . . . , tn)]]S,C =
[[if g(s1, . . . , sm) = x1 then f(t1, . . . , x1, . . . , tn)
. . .
else if g(s1, . . . , sm) = xp−1 then f(t1, . . . , xp−1, . . . , tn)
else f(t1, . . . , xp, . . . , tn)]]S,C

The above rule is applied for all subterms ti of f(t1, . . . , tn) that cannot be
fully evaluated to a value ⟨val x⟩. Further transformation rules similar to those
defined in [14] are then applied to the terms and rules that include f(t1, . . . , tn)
to “move out” the introduced conditional terms until the main ASM rule has
been transformed into the “decision tree” form mentioned above.7 A complete
specification of the transformation rules and algorithm is outside the scope of
this paper and may be provided elsewhere, but the basic technique should be
clear from the above explanation in combination with [14].

have a fixed interpretation, while non-static functions can be (at least partially)
uninterpreted.

7 This may appear to be a prohibitively expensive transformation, but in practice
it turned out that in many cases, with the help of the SMT solver and taking
into account the path condition that holds in the given context, the conditionals
generated by the case distinction are simplified (even to a single branch, resulting
in the elimination of the conditional) and/or lead to the generation of further path
conditions for their subrules that cause considerable simplifications in the subrules.

Symbolic Model Execution for Smart Contracts 11

Invariant Checking The last addition to the ASE tool is a feature to check
whether the invariants specified in the ASMETA model are met within the first
n steps of the symbolic ASM run (command line option -invcheck n, which is
shown in action in Sect. 6 on the running example). The invariant checking is
carried out by symbolically evaluating each Boolean term invj defining the j-th
invariant (0 ≤ j ≤ m) in the appropriate state Si (0 ≤ i ≤ n) as follows:

1. each invariant j is checked in the initial state by evaluating [[invj]]S0,∅, where
S0 is the initial state and ∅ is the empty path condition;

2. for each i ∈ {1, . . . , n}:
(a) a decision tree rule equivalent to P i is built using symbolic execution,

as explained in “Symbolic Execution of Basic ASMs” above;
(b) the decision tree rule for P i is traversed and, at each leaf of the tree,

the invariants are checked by evaluating [[invj]]S0⊕U,C , where U is the
symbolic update set found at that leaf (see “The ASE Tool” above)
and C is the path condition corresponding to the path from the root
to the leaf (C is constructed starting with ∅ at the root and adding, at
each inner conditional node with guard G, either G or ¬G depending on
whether the “then” or the “else” branch is taken);

(c) note that there are three possible outcomes for [[invj]]S0⊕U,C :

i. true: the invariant invj is met on the given path;
ii. false: the invariant invj is definitely violated on the given path (by

this terminology we mean that, based on the specification of the
initial state S0, it can be established that the invariant is violated);

iii. a Boolean term ϕj , which is more or less simplified in comparison
to invj , but neither true nor false, and depends on one or more
non-static functions that are uninterpreted in S0: in this case, we
say that invj is possibly violated on the given path, i.e. it is violated
when the relevant locations of those uninterpreted functions have
certain values, specifically the values for which ¬ϕj ∧C is satisfied.8

5 Vulnerabilities detection of Solidity Smart Contracts

Here, we explain our strategy for detecting vulnerabilities in smart contracts
through the symbolic execution of ASMETA models.

Given an ASMETA model of a contract such as the Auction case study,
we define model invariants to represent the absence of vulnerabilities as safety
properties. These invariants are based on either the intended contract behavior
or, as explained in Sect. 6, on known unsafe operations. The vulnerabilities
we consider here relate to contract-intrinsic issues, rather than those arising
from interactions with malicious smart contracts designed to exploit weaknesses.

8 By inspecting the simplified invariant [[invj]]S0⊕U,C = ϕj and the path condition C,
both of which are displayed by the tool, it is possible to identify which values lead to
the invariant violation. A possible future improvement is the automatic generation
of a counterexample with concrete values that lead to the violation of the invariant.

12 C. Braghin, G. Del Castillo, E. Riccobene, S. Valentini

1 // A_1 - The destroy function can only be called by the owner of the contract

2 invariant over sender : (current layer = 0 and executing contract(1) = auction and executing function(1) =
destroy and not exception and destroyed(auction)) implies (sender(1) = owner)

3 // A_2 - If a call is made to the bid function and a current_frontrunner already exists,
the previously deposited money is returned to it

4 invariant over balance : (current layer = 1 and instruction pointer(1) = 6 and executing contract(1) =
auction and executing function(1) = bid and old frontrunner != undef user and not exception and
old frontrunner = user and sender(1) = user) implies (old balance(user) + old bid = balance(user)

5 // A_3 - If the bid function is called with a msg.value greater than current_bid then the
caller become the new current_frontrunner

6 invariant over balance : (current layer = 0 and executing contract(1) = auction and executing function(1) =
bid and amount(1) > old bid and not exception) implies (currentFrontrunner = sender(1))

7 // A_4 - If the destroy function is called, all the money in the contract go to the owner

8 invariant over balance : (current layer = 0 and executing contract(1) = auction and executing function(1) =
destroy and not exception) implies (old balance(user2) + old balance(auction) = balance(user2))

Listing 5.1: Invariant specification for the Auction model

They can result from coding errors, design flaws, or misunderstandings of the
blockchain platform’s functionality. In the models we consider for the purposes
of this paper, we model a slightly simplified exception-handling mechanism with
no full rollback, without affecting the analysis results.

For the Auction contract, we defined four invariants, with their informal
descriptions and their ASMETA specification in Listing 5.1. We expect that
two of them, A1 and A4, would be violated, while the other two should hold as
true safety properties. Specifically, A1 checks for the absence of an unprotected
function vulnerability by stating that if the destroy function is executed and the
auction contract is destroyed, then the transaction sender must be the contract
owner. However, this invariant can be violated because the r Selfdestruct rule
is not protected since there is no restriction on the sender(current layer) value.
A4 states that if the destroy function executes successfully (without raising an
exception), all the contract’s funds are transferred to the owner. However, since
the r Selfdestruct rule uses the transaction sender as the recipient instead of the
contract owner, this invariant is likely to be violated. We included them to show
that ASE does not generate false positives within the explored state space (see
Sect. 6).

Note that some invariants compare the correct value of a location with its
value in the previous state; this requires adding, for that specific location, an
auxiliary function declaration recording such previous value. Listing 5.2 presents
the additional auxiliary functions used in the Auction model to evaluate almost
all the invariants in Listing 5.1. Moreover, before executing the ASE tool on the
contract’s model, a slight modification of the model is needed to deal with:

– Monitored functions: ASE does not deal with monitored values, so the trans-
formation monitored foo: D1 → D2 in controlled foo: Integer × D1 → D2 is
required for each monitored function foo of the model signature, and foo(i,d)
yields the monitored value of foo(d) at state i.

– Number of steps: a new function controlled stage: Integer is added to the
model to index the current execution state during the symbolic execution (it

Symbolic Model Execution for Smart Contracts 13

1 signature:

2

3 /* functions to save previos values of contract’s arguments */

4 controlled old frontrunner : User

5 controlled old bid : MoneyAmount

6 controlled old balance : User => MoneyAmount

Listing 5.2: Signature of the ASMETA Auction Model

1 = this path is taken when the following conditions hold in the initial state:

2 not ((random sender (0) = auction))

3 not ((random sender (0) = undef user))

4 (random receiver (0) = auction)

5 not ((random function (0) = bid))

6 ((random amount (0) >= 0) and ((3 >= random amount (0)) and not ((random amount (0) > 0))))

7 (random sender (0) = user)

8 (random function (0) = destroy)

9 ...

10 === S 2 summary:

11 ’ inv 1’: met on 62 paths / definitely violated on 1 paths / possibly violated on 0 paths

12 ’ inv 2’: met on 63 paths / definitely violated on 0 paths / possibly violated on 0 paths

13 ’ inv 3’: met on 63 paths / definitely violated on 0 paths / possibly violated on 0 paths

14 ’ inv 4’: met on 61 paths / definitely violated on 2 paths / possibly violated on 0 paths

Listing 5.3: Faulty path and invariants violation summary for the Auction model

also yields the current depth of the symbolic execution tree). Initialized to
0, it is incremented by 1 in parallel with all the other rules by r main rule.

– Undef value: the current version of ASE does not support the predefined
ASM undef value (while ASMETA does). This requires replacing each occur-
rence of undef with a suitable undef value upon adding to the signature the
declaration static undef value: D, being D the domain of the model function
that could take value undef. For example, the guard in line 7 of Listing 3.2
is replaced with currentFrontrunner != undef user and the declaration static
undef user : User is added to the signature.

These model transformations are currently performed manually but can be au-
tomated, and future tool improvements will incorporate this automation. The
modified version of the Auction model is available at [12]. When the model,
augmented with the four invariants in Listing 5.1, is symbolically executed, ASE
identifies violation of invariants A1 and A4, as shown in Listing 5.3: invariants
are violated in two execution steps (see stage S 2 in line 10), on one out of 62
paths for A1 and two out of 63 paths for A4. At this stage S 2, invariants A2

and A3 are true and are never violated within the state space ASE constructs.
This, of course, does not guarantee their truth at subsequent stages.

Examining ASE’s detailed reports on the violated invariants, consider inv 1,
which corresponds to A1. The report provides information on the initial state
conditions required to trigger the faulty execution path (lines 2-8 of Listing 5.3).
These initial values for the monitored functions can be used to generate an AS-

14 C. Braghin, G. Del Castillo, E. Riccobene, S. Valentini

META scenario, shown in Listing 5.4.9 The scenario begins by assigning values

1 scenario inv 1

2 load ../Auction.asm

3
4 set random sender := user;

5 set random receiver := auction;

6 set random amount := 0;

7 set random function := destroy;

8 step

9 step

Listing 5.4: Generated scenario
violating inv 1 in Auction contract

to the monitored functions (lines 4-
7) ensuring these values adhere to
the conditions outlined in List-
ing 5.3: the value user is assigned
to random sender, as stated by the
condition at line 7; auction is assigned
to random receiver, following the
condition at line 4; random amount is
set to 0, as at line 6; random function

is set to destroy, as in the condition at
line 8. From this initial configuration,

after two model steps, both invariants A1 and A4 are violated.
Based on the model analysis results, we refined the contract model by in-

troducing appropriate rule guards to prevent the violation of invariants A1 and
A4. The symbolic execution of this revised version, Auction v2 in Table 2 and
available at [12], does not violate any invariant, at least within the state space
ASE constructs for the given input stage value.

6 Analysis Results

To assess the effectiveness of our vulnerability detection strategy, we applied the
approach described in Sect. 3 to model a set of smart contracts. Some of these
contracts were inspired by existing repositories [5,20], while others were either
widely used or specifically developed for this evaluation.

For each modeled contract, we defined invariants asserting the absence of
vulnerabilities, either based on the original contract’s repositories or crafted
specifically for the given contract. To rigorously test the tool’s ability to detect
invariant violations and assess false positives or false negatives, all invariants in
this dataset were intentionally designed to be false. A detailed list of the smart
contracts and their corresponding invariants, described in natural language, is
provided in Table 2.

Each smart contract was then slightly modified to enable symbolic execution,
following the method described in Sect. 5 for the Auction contract (all models
are available at [12]). Multiple versions of each contract were produced, with the
same invariants applied across versions. The purpose of these variations was to
stress the tool’s ability to detect invariant violations, particularly as the number
of execution paths and monitored functions increased. This process involved
progressively increasing the contract’s complexity (such as adding more users
or imposing additional conditions on state variables), thereby making symbolic
execution increasingly difficult.

Symbolic execution was conducted on each model, exploring a state space of
up to 30 stages, with a maximum runtime of 3600 seconds. These limits were set

9 set is the command to provide monitored values; step induces a model step.

Symbolic Model Execution for Smart Contracts 15

Contracts Invariants

Auction

A1 The destroy function can only be called by the owner of the contract

A2 If a call is made to the bid function and a current frontrunner

already exists, the previously deposited money is returned to it

A3 If a call is made to the bid function with a msg.value greater than
current bid then the caller becomes the new current frontrunner

A4 If a call is made to the destroy function, all the money in the
contract goes to the owner

StateDao

B1 If there was no exception and the contract is not running, the con-
tract’s state is INITIALSTATE

B2 If a call to deposit is made with a msg.sender value greater than
0 then it does not raise an exception

B3 An exception is not raised even if a call to deposit is made and the
balance of state dao is greater or equal than 12

B4 There is always at least one balance that is greater than the corre-
sponding customer balance

B5 If there was no exception and the contract is not running, the bal-
ance of state dao is less than 12

Airdrop

C1 Even if a call to receive airdrop is made and no exceptions are
raised, the value for msg.sender of received airdrop remains false

C2 If a call to receive airdrop is made from an account with
received airdrop set to 0, an exception is not raised

C3 Not all users received the airdrop

Crowdfund

D1 If a call to donate is made, and no exceptions have been raised, then
donors(msg.sender) is greater than 0

D2 Even if a call to donate is made and the donation phase is over, an
exception is not raised

D3 If a call to withdraw completes without any exceptions being raised,
then the sender was the owner of the contract

D4 After a call to reclaim, if no exceptions are raised, then the value
of donors for the sender is 0

KotET

E1 Every time a user becomes king it must be a different user from the
previous king

E2 It is not possible for the balance of the contract to reach 0

E3 claim price cannot be greater than all user balances

E4 If a call to the Kotet fallback is made with an amount greater than
or equal to claim price an exception is not raised

Baz F1 Not all the states are set to true

Table 2: The list of proposed invariants for each smart contract

using the tool’s -invcheck n parameter and gtimeout command. The results
are summarized in Table 3, which allows for an effective comparison of the tool
performance across different contracts and their versions.

Table 3 is structured into several horizontal sub-tables, each corresponding to
a specific contract and its versions. The first column, labeled Contracts, lists the

16 C. Braghin, G. Del Castillo, E. Riccobene, S. Valentini

Contracts EV FV Invariant Results
A1 s t A2 s t A3 s t A4 s t

Auction v1 2 2 ✓ 2 1.5 × × ✓ 2 1.5
Auction v2 0 0 × × × ×

B1 s t B2 s t B3 s t B4 s t B5 s t
StateDao v1 5 5 ✓ 13 1.0 ∽ 8 0.6 ✓ 4 0.2 ∽ 1 0.1 ✓ 13 1.0
StateDao v2 5 4 × ∽ 8 0.6 ✓ 4 0.2 ∽ 1 0.1 ∽ 7 0.3

C1 s t C2 s t C3 s t
Airdrop v1 3 3 ✓ 5 0.3 ✓ 3 0.2 ✓ 4 0.2
Airdrop v2 3 3 ✓ 5 21 ✓ 3 3.4 ✓ 9 1214

Airdrop v3 3 2 × ✓ 5 25 ✓ 9 1396

D1 s t D2 s t D3 s t D4 s t
Crowdfund v1 4 4 ∽ 5 2.9 ✓ 4 2.0 ✓ 7 6.8 ✓ 10 20
Crowdfund v2 4 4 ∽ 4 1.5 ✓ 4 1.5 ✓ 7 5.6 ∽ 13 62

E1 s t E2 s t E3 s t E4 s t
Kotet v1 4 4 ✓ 12 9.2 ∽ 0 0 ∽ 0 0 ✓ 3 0.3
Kotet v2 4 3 × ∽ 0 0 ∽ 0 0 ✓ 3 1.9

F1 s t
Baz 1 1 ✓ 29 515

Table 3: Symbolic Execution results

contract names and versions. The second column, (EV), represents the number of
expected violations, i.e., the number of invariant violations the tool ideally should
find. The third column, FV, indicates the number of invariant violations actually
found by the tool. Ideally, the FV value should closely match the EV value,
reflecting the tool’s accuracy. The final section of Table 3 presents the aggregated
execution results. Each row in this section corresponds to an individual invariant
and includes three key evaluation metrics: the invariant ID (e.g., A1, . . . ,An),
the stage s at which the invariant was violated (representing the depth of the
state in the execution), and the time t in seconds taken to reach that stage.

While the values for s and t are straightforward, the invariant ID column
may contain one of three different symbols:

– ✓: the tool confirmed that the corresponding invariant is always violated on
at least one path at stage s (“definitely violated”, see Sect. 4, item 2c);

– ∽: the tool found that the corresponding invariant is violated in some cases
on at least one path at stage s (“possibly violated”, see Sect. 4, item 2c);

– ×: the tool did not detect any violation within the defined state space, which
is bounded by the time and stage limits.

Note that, in our context, even if a property is possibly violated, it can be
counted as a violation, since a dangerous system configuration exists. Therefore,
observing the results in Table 3, we note that ASE was able to identify all invari-
ant violations in the initial versions of each contract (i.e., those corresponding to

Symbolic Model Execution for Smart Contracts 17

Solidity deployed contracts), as we expected. Indeed, for these versions, the num-
ber of find violations FV is the same as the number of the expected violations
EV. However, performance tends to decline for later versions, with increased
execution times or failure to detect violations. In these cases, the value of FV is
less than that of EV.

Despite the promising results, the approach suffers from the well-known limi-
tation of symbolic execution path explosion. In the ASE tool, this is exacerbated
by the sequential execution logic of an ASM. This limitation also affects the sym-
bolic execution of multi-agent ASMETA models (not used here, but in [11,10])
useful to model good contracts operating in combination with bad contracts,
namely those that try to exploit the vulnerability to make an attack. Ideas on
how to overcome this limitation are to be addressed in future work.

However, compared to the model checking approach employed in [11,10,30]
to guarantee the safety properties of Solidity contracts, by using the symbolic
execution-based strategy we can deal with infinite domains, and the encoun-
tered path explosion problem is very limited with respect to the state explosion
problem of the model checker.

7 Related Work

Numerous automated tools exist for analyzing, testing, and debugging Ethereum
smart contracts. However, as demonstrated by [32], current tools fail to detect a
significant majority (approximately 80%) of exploitable bugs found in real-world
smart contracts.

An analysis of several surveys and reviews, including [32], [1], and [5], was
conducted to identify some of the most widely used and effective smart contract
analysis tools.

Several tools address the challenge of identifying vulnerable behavior in smart
contracts, employing techniques such as formal methods, theorem proving, model
checking, runtime verification, and fuzzing to specify and verify properties and
invariants. Certora [22] is a commercial tool offering a proprietary cloud-based
platform for verification, where property specifications are separated from the
contract code. Properties are expressed in the Certora Verification Language
(CVL), an extension of Solidity incorporating metaprogramming primitives.
While the verification process is effective, using Certora requires learning CVL
and the tool works as a black box. Similarly, Halmos [3] offers a Certora like
workflow, by exploiting a combination of symbolic execution and testing. It al-
lows to execute Solidity tests providing all possible inputs.

The work presented in [28] utilizes the K-Framework [13], enabling smart
contract analysis through runtime verification of bytecode, rather than Solidity,
subsequently, many other tools try to improve K-Framework usability and effec-
tiveness, like KEVM [21] or Kontrol [26]. Isabelle/HOL is employed to verify the
EVM bytecode of smart contracts. This process involves partitioning contracts
into basic blocks, with the properties of each block proven using Hoare triples.
Similarly TLA+ [23] is used in [17] to analyze different security-critical smart

18 C. Braghin, G. Del Castillo, E. Riccobene, S. Valentini

contracts. They have been able to detect bugs, including reentrancy. These afore-
mentioned approaches often demand a strong mathematical and logical back-
ground, employing complex mathematical notations.

SolCMC [2] is a symbolic model checker integrated into the Solidity com-
piler since 2019. Developers specify properties using assert statements within
the contract code. Similarly, HEVM [18] is a symbolic EVM written in Haskell
language. However, these approaches are limited to the verification of assertions
placed at specific positions in the code.

Finally, Echidna [20] is a Haskell program for fuzzing and property-based test-
ing of Ethereum smart contracts. It automatically generates inputs and verifies
user-defined invariants. However, fuzzing necessitates substantial computational
power and resources.

ASM/ASMETA offers a more accessible alternative for smart contract ver-
ification. Models appear as high-level programs, use a simple notation and ba-
sic control flow constructs, are executable and supported by other lightweight
validation techniques. This allows for immediate feedback on model reliability,
providing a preliminary assessment before resorting to more complex verification
methods. In [10,11,30], we employed the code to model translation schema out-
lined in Sect. 3 and used the NuSMV model checker to verify CTL properties,
facing the classical limitations of state explosion and domain size.

8 Conclusion

In this paper, we presented a new strategy for vulnerability detection in Solid-
ity smart contracts through the symbolic execution of ASMETA models. This
approach required enhancements to the ASE tool, mainly to adapt it to the AS-
META model notation and to deal with model invariant checking. The prelimi-
nary results shown here and obtained on (different versions of) various contracts,
confirm that the method is promising for design-time detection of vulnerabili-
ties. However, the current focus is on contract-intrinsic issues and does not yet
address interactions with other smart contracts. Some work is planned in the
future: (1) optimizing the ASE tool, improving its consistency with ASMETA
(e.g., handling undef values and monitored functions) and developing a more
user-friendly interface; (2) exploring partial order reduction techniques to mit-
igate the path explosion problem in multi-agent models; (3) automating some
key steps, such as mapping Solidity code to ASMETA models, preparing models
for ASE execution, and generating execution scenarios from the initial states
identified in invariant violations; (4) expanding the approach to a broader range
of concrete smart contracts, particularly those with unknown vulnerabilities;
(5) evaluating the method on contract models with a fully specified exception-
handling mechanism.

References

1. Almakhour, M., Sliman, L., Samhat, A.E., Mellouk, A.: Verification of smart
contracts: A survey. Pervasive and Mobile Computing 67, 101227 (2020).

Symbolic Model Execution for Smart Contracts 19

https://doi.org/https://doi.org/10.1016/j.pmcj.2020.101227
2. Alt, L., Blicha, M., Hyvärinen, A.E., Sharygina, N.: SolCMC: Solidity Compiler’s

Model Checker. In: 34th Int. Conf. on Computer Aided Verification, CAV 2022. pp.
325–338. Springer-Verlag (2022). https://doi.org/10.1007/978-3-031-13185-1 16

3. Andreessen Horowitz VC: Halmos. https://github.com/a16z/halmos (2025)
4. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process

for engineering a toolset for a formal method. Software: Practice and Experience
41(2), 155–166 (2011). https://doi.org/10.1002/spe.1019

5. Bartoletti, M., Fioravanti, F., Matricardi, G., Pettinau, R., Sainas, F.: Towards
Benchmarking of Solidity Verification Tools. In: 5th Int. Workshop on Formal
Methods for Blockchains (FMBC 2024). Open Access Series in Informatics (OA-
SIcs), vol. 118, pp. 6:1–6:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik
(2024). https://doi.org/10.4230/OASIcs.FMBC.2024.6

6. Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra, P.: AS-
META Tool Set for Rigorous System Design. In: Formal Methods. vol. 14934, pp.
492–517. Springer, Cham (2025). https://doi.org/10.1007/978-3-031-71177-0 28

7. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer
(2018). https://doi.org/10.1007/978-3-662-56641-1

8. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer (2003). https://doi.org/10.1007/978-3-642-18216-7

9. Braghin, C., Cimato, S., Damiani, E., Baronchelli, M.: Designing Smart-Contract
Based Auctions. In: Security with Intelligent Computing and Big-data Ser-
vices, SICBS 2018. pp. 54–64. Springer International Publishing, Cham (2020).
https://doi.org/0.1007/978-3-030-16946-6 5

10. Braghin, C., Riccobene, E., Valentini, S.: An ASM-Based Approach for Security
Assessment of Ethereum Smart Contracts. In: Proc. of the 21st Int. Conf. on
Security and Cryptography, SECRYPT 2024. pp. 334–344. SCITEPRESS (2024).
https://doi.org/10.5220/0012858000003767

11. Braghin, C., Riccobene, E., Valentini, S.: Modeling and verification of smart con-
tracts with Abstract State Machines. In: Proc. of the 39th ACM/SIGAPP Sympo-
sium on Applied Computing, SAC 2024. pp. 1425–1432. Association for Computing
Machinery, New York, NY, USA (2024). https://doi.org/10.1145/3605098.3636040

12. Braghin, C., Riccobene, E., Valentini, S.: Ethereum Via ASM. https://github.
com/smart-contract-verification/ABZ2025 (2025), version used in this paper:
https://github.com/smart-contract-verification/ABZ2025.

13. Ştefănescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-Based Program
Verifiers for All Languages. In: Proc. of the 31th Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2016. pp. 74–91. ACM
(2016). https://doi.org/10.1145/2983990.2984027

14. Del Castillo, G.: Using Symbolic Execution to Transform Turbo Abstract State
Machines into Basic Abstract State Machines. In: 10th Int. Conf. on Rigorous
State-Based Methods, ABZ 2024. Lecture Notes in Computer Science, vol. 14759,
pp. 215–222. Springer (2024). https://doi.org/10.1007/978-3-031-63790-2 15

15. Del Castillo, G.: Using symbolic execution to transform turbo Abstract State
Machines into basic Abstract State Machines (extended version) (2024),
https://github.com/constructum/asm-symbolic-execution/blob/main/doc/

2024--Del-Castillo--extended-version-of-ABZ-2024-paper.pdf
16. Del Castillo, G.: ASM Symbolic Execution. https://github.com/constructum/

asm-symbolic-execution (2025), version used for the experiments presented in
this paper: https://github.com/constructum/asm-symbolic-execution/tree/

32251c45d43b41f39cdbff061ddd64914976c244.

https://doi.org/https://doi.org/10.1016/j.pmcj.2020.101227
https://doi.org/10.1007/978-3-031-13185-1_16
https://github.com/a16z/halmos
https://doi.org/10.1002/spe.1019
https://doi.org/10.4230/OASIcs.FMBC.2024.6
https://doi.org/10.1007/978-3-031-71177-0_28
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/0.1007/978-3-030-16946-6_5
https://doi.org/10.5220/0012858000003767
https://doi.org/10.1145/3605098.3636040
https://github.com/smart-contract-verification/ABZ2025
https://github.com/smart-contract-verification/ABZ2025
https://github.com/smart-contract-verification/ABZ2025
https://doi.org/10.1145/2983990.2984027
https://doi.org/10.1007/978-3-031-63790-2_15
https://github.com/constructum/asm-symbolic-execution/blob/main/doc/2024--Del-Castillo--extended-version-of-ABZ-2024-paper.pdf
https://github.com/constructum/asm-symbolic-execution/blob/main/doc/2024--Del-Castillo--extended-version-of-ABZ-2024-paper.pdf
https://github.com/constructum/asm-symbolic-execution
https://github.com/constructum/asm-symbolic-execution
https://github.com/constructum/asm-symbolic-execution/tree/32251c45d43b41f39cdbff061ddd64914976c244
https://github.com/constructum/asm-symbolic-execution/tree/32251c45d43b41f39cdbff061ddd64914976c244

20 C. Braghin, G. Del Castillo, E. Riccobene, S. Valentini

17. Dfinity: Eliminating smart contract bugs with TLA+ (2023), https://medium.
com/dfinity/eliminating-smart-contract-bugs-with-tla-e986aeb6da24

18. Dxo, Soos, M., Paraskevopoulou, Z., Lundfall, M., Brockman, M.: Hevm, a Fast
Symbolic Execution Framework for EVM Bytecode. In: International Conference
on Computer Aided Verification. pp. 453–465. Springer (2024)

19. Fekih, R.B., Lahami, M., Jmaiel, M., Bradai, S.: Formal Verification of Smart Con-
tracts Based on Model Checking: An Overview. In: IEEE Int. Conf. on Enabling
Technologies: Infrastructure for Collaborative Enterprises, WETICE 2023. pp. 1–6
(2023). https://doi.org/10.1109/WETICE57085.2023.10477834

20. Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A.: Echidna: effective, us-
able, and fast fuzzing for smart contracts. In: Proc. of the 29th ACM SIG-
SOFT Int. symposium on software testing and analysis. pp. 557–560 (2020).
https://doi.org/10.1145/3395363.3404366

21. Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore,
B., Park, D., Zhang, Y., Stefanescu, A., et al.: KEVM: A Complete Formal Se-
mantics of the Ethereum Virtual Machine. In: 2018 IEEE 31st Computer Security
Foundations Symposium (CSF). pp. 204–217. IEEE (2018)

22. Jackson, D., Nandi, C., Sagiv, M.: Certora technology white paper, https://docs.
certora.com/en/latest/docs/whitepaper/index.html

23. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems (TOPLAS) 16(3), 872–923 (1994)

24. Marmsoler, D., Ahmed, A., Brucker, A.D.: Secure Smart Contracts with Isabelle/-
Solidity. In: Madeira, A., Knapp, A. (eds.) Software Engineering and Formal Meth-
ods. pp. 162–181. Springer Nature Switzerland, Cham (2025)

25. New Alchemy: A short history of Smart Contract hacks on Ethereum: A.k.a.
why you need a smart contract security audit. https://medium.com/new-alchemy/
a-short-history-of-smart-contract-hacks-on-ethereum-1a30020b5fd (2018)

26. Runtime Verification Inc.: Kontrol. https://github.com/runtimeverification/
kontrol (2025)

27. Siegel, D.: Understanding The DAO Attack (2016), https://www.coindesk.com/
learn/understanding-the-dao-attack/

28. Sotnichek, M.: Formal verification of smart contracts with
the K framework (2019), https://www.apriorit.com/dev-blog/

592-formal-verification-with-k-framework

29. Tolmach, P., Li, Y., Lin, S.W., Liu, Y., Li, Z.: A survey of smart contract
formal specification and verification. ACM Comput. Surv. 54(7) (Jul 2021).
https://doi.org/10.1145/3464421

30. Valentini, S., Braghin, C., Riccobene, E.: A modeling and verification framework for
ethereum smart contracts. In: 10th Int. Conf. on Rigorous State-Based Methods,
ABZ 2024. Lecture Notes in Computer Science, vol. 14759, pp. 201–207. Springer
(2024). https://doi.org/10.1007/978-3-031-63790-2 13

31. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

32. Zhang, Z., Zhang, B., Xu, W., Lin, Z.: Demystifying exploitable bugs in smart
contracts. In: 2023 IEEE/ACM 45th Int. Conf. on Software Engineering, ICSE.
pp. 615–627. IEEE (2023). https://doi.org/10.1109/ICSE48619.2023.00061

https://medium.com/dfinity/eliminating-smart-contract-bugs-with-tla-e986aeb6da24
https://medium.com/dfinity/eliminating-smart-contract-bugs-with-tla-e986aeb6da24
https://doi.org/10.1109/WETICE57085.2023.10477834
https://doi.org/10.1145/3395363.3404366
https://docs.certora.com/en/latest/docs/whitepaper/index.html
https://docs.certora.com/en/latest/docs/whitepaper/index.html
https://medium.com/new-alchemy/a-short-history-of-smart-contract-hacks-on-ethereum-1a30020b5fd
https://medium.com/new-alchemy/a-short-history-of-smart-contract-hacks-on-ethereum-1a30020b5fd
https://github.com/runtimeverification/kontrol
https://github.com/runtimeverification/kontrol
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://www.apriorit.com/dev-blog/592-formal-verification-with-k-framework
https://www.apriorit.com/dev-blog/592-formal-verification-with-k-framework
https://doi.org/10.1145/3464421
https://doi.org/10.1007/978-3-031-63790-2_13
https://doi.org/10.1109/ICSE48619.2023.00061

Safely Encoding B Proof Obligations in
SMT-LIB⋆

Vincent Trélat[0009−0006−4143−3939]

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
vincent.trelat@inria.fr

Abstract. This paper presents an encoding of B proof obligations in
SMT-LIB 2.7, leveraging the recent extensions of SMT-LIB to higher-
order logic. Our encoding improves upon previous approaches by elim-
inating uninterpreted membership predicates and by avoiding the com-
plexity of encoding functions as relations. Through SMT-LIB’s support
for higher-order constructs, we achieve a more natural representation of
B’s set theory, while ensuring soundness of the translation. Preliminary
experimental results are promising and indicate that our encoding allows
certain proof obligations that previously failed to be discharged.

Keywords: B Proof Obligations · SMT-LIB · Higher-Order Logic · Set
Theory

1 Introduction

Formal specification techniques like the B method [1] have been increasingly used
in the development of high-assurance software systems, particularly in safety-
critical domains such as transportation. Verifying properties of B models has
been facilitated by integrated development environments such as Atelier B [8]
and Rodin [3], which provide a framework for development and verification. Proof
obligations are systematically generated from B components and translated into
machine-verifiable formats to be fed into automated solvers [10]. While auto-
mated theorem proving has made steady progress over the past decades, a small
but significant proportion of applications still require human intervention for ver-
ification in practice. Recent advances in automated reasoning have opened the
door to higher-order logic [4] and have led to the introduction of higher-order
constructs in SMT-LIB 2.7, thus creating new opportunities for the encoding.

This paper presents a novel approach to encoding B proof obligations that
leverages higher-order logic, addressing limitations in previous translation meth-
ods and offering a more natural and computationally efficient encoding. Back-
ground context on B and SMT is provided in Sec. 2, followed by the formalization
of both languages with their respective type systems in Sec. 3 and Sec. 4. Sec-
tion 5 introduces an encoding that leverages SMT-LIB 2.7’s higher-order features
to represent sets and functions. Preliminary experimental results are shown in
Sec. 6.
⋆ This work is supported by the ANR project BLaSST (ANR-21-CE25-0010).

2 Background

This section provides an overview of the B method and SMT-LIB, focusing on
the aspects relevant to the encoding of B proof obligations.

2.1 The B Method

The B Method is a formal approach to software development, enabling the spec-
ification of abstract machines that can be progressively refined into concrete, im-
plementable code while preserving correctness through proof obligations. From
specification to implementation, all artifacts are expressed in a single formalism,
the B language. At its core, the B language uses set theory [18,13], treating all
objects—including relations and functions—as sets.

This theoretical basis enables rigorous reasoning about software properties
while remaining practical for industrial use. Notable applications include various
Communication-Based Train Control (CBTC) systems worldwide such as the
Métro Line 14 in Paris, which generated about 27,800 proof obligations, among
which 2,250 required manual intervention [15].

Atelier B and Rodin provide tools for generating proof obligations from B
components and interacting with external provers [12], which involves translating
proof obligations into machine-verifiable formats such as SMT-LIB. Atelier B’s
Proof Obligation Generator (POG) derives proof obligations from refinement
steps, well-formedness and consistency checks on B components.

Example 1. Refining a set to an array would generate obligations ensuring that
(a) the array bounds can accommodate the maximum set size, (b) array opera-
tions preserve the abstract set’s properties and (c) the invariant linking abstract
and concrete representations is maintained. □

These obligations are stored in an XML-based format [9], essentially repre-
senting B expressions in a structured way.

2.2 Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem extends Boolean satisfiabil-
ity by incorporating background theories such as arithmetic, arrays, and un-
interpreted functions. SMT solvers determine whether a formula is satisfiable
with respect to these theories. Such formulas are written in the SMT-LIB lan-
guage, which provides a standard interface for interacting with SMT solvers.
The expressiveness of SMT-LIB was recently extended from multi-sorted first-
order logic to higher-order logic in version 2.7 [6]. In particular, the introduction
of the arrow type for functions and the lambda binder significantly enhances
the expressiveness of the language, allowing for more direct representations of
higher-order constructs.

Solvers are gradually adapting to these new features. Thanks to recent ad-
vances in higher-order instantiation [4,20,21], the cvc5 solver [5] now provides
partial support for higher-order reasoning, as shown in the following example.

2

Example 2. Consider the following SMT-LIB 2.7 script, which declares a higher-
order predicate P that takes functions from integers to integers as arguments—
notice the directive (set-logic HO_ALL), which enables higher-order reasoning.
The script asks for a satisfiability check of the formula asserting the existence of
a function f such that P(f) is true.

1 (set-logic HO_ALL)
2 (declare-const P (-> (-> Int Int) Bool))
3 (assert (exists ((f (-> Int Int))) (= (P f) true)))
4 (check-sat)

cvc5 returns sat and provides the following model for P:

1 (define-fun P ((f (-> Int Int))) Bool (= (lambda ((x Int)) 0) f))

□

3 Formalizing B Proof Obligations

The following section formalizes the B language and its type system.

3.1 Syntax

The grammar formalized below is intentionally simplified compared to the full
syntax of the B language, though it is not minimal, to avoid overly complex
definitions for simple constructs. Let V represent a collection of variables. A
term t is then defined inductively as one of these constructs:

– literals, where v is a variable in V, n is an integer, and b is a Boolean:

v | n | b | Z | B
– arithmetic operations:

t+B t | t−B t | t ∗B t | t ≤B t | t =B t

– Boolean operations:
t ∧B t | ¬Bt

– set operations:

t 7→B t | t ∈B t | PB(t) | t×B t | t ∩B t | t ∪B t

– partial functions, application, minimum, maximum, and cardinality:

t →| B t | t(t) | min t | max t | |t|B

– binders, where v1, . . . , vn are variables in V:

{v1, . . . , vn ∈ t | t}B | λBv1, . . . , vn · (t | t) | ∀Bv1, . . . , vn ∈ t · t
Additional syntax constructs are defined in terms of these base constructs,

such as disjunction (∨B), implication (⇒B), existential quantifier (∃B), and a
variety of interrelated constructs defining specific classes of functions, encom-
passing all combinations of partial and total functions with injective, surjective
and bijective properties.

3

3.2 Type system

Strictly speaking, the B language does not require a type system to be well-
defined, as it is grounded in set theory. While the B-Book [2] introduces a re-
lation associated with a typing judgment, this relation is fundamentally part
of the language semantics rather than a separate type system layer and should
not be misconstrued as a type system. Its purpose is to ensure well-definedness
of terms and should be understood as a membership constraint forming the
foundation for the generation of proof obligations. Formally, the B language is
therefore untyped since there is no explicit type system provided within the lan-
guage. However, to make the language practical for software specification and
development, it is necessary to introduce facilities for manipulating well-defined
expressions, machine integers and implementable objects that cannot be easily
represented within pure set theory, as illustrated in the following example.

Example 3. If the integer 3 is to be treated as an immediate value, in set theory
it is represented as follows:

3
def
= {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}} (1)

Moreover, even a seemingly simple statement such as 3 = 2 + 1 requires a non-
trivial proof involving extensionality and case analysis. □

That being said, the B language can indeed be equipped with a type system,
which serves to enforce the well-formedness of expressions. Atelier B includes
a well-formedness checker that computes variable domains and verifies that ex-
pressions conform to the well-formedness rules of the B language, as shown in
the following example.

Example 4. In ZFC set theory, the expression 1 + ⊤ is well-formed and defini-
tionally equal to the set B of Booleans, or the natural number 2, but it is not a
valid expression in B. □

The fact that integer and Boolean literals are assigned distinct constructs in
the syntax motivates the introduction of distinct types for integers and Booleans,
as mentioned in the last two examples.

Additional constructs, such as the minimum, maximum, and cardinality func-
tions were included in the syntax. While these could theoretically be defined
using more fundamental constructs, it would complicate the encoding unnec-
essarily. Contrary to the rules presented in the B Book, in our setting they
are simply typed as functions into integers, and the premises for their correct
application—for instance, that the cardinal is applied to finite sets—is handled
at the semantics level.

It is therefore sufficient to consider a type system with four base types: inte-
gers, Booleans, (power) sets, and (cartesian) products.

τ ::= int | bool | set τ | τ ×
Bτ

4

Γ ⊢B A : set(α) Γ ⊢B B : set(β)
(pfun)

Γ ⊢B A →| B B : set(set(α×Bβ))

Γ ⊢B x : α Γ ⊢B f : set(α×Bβ)
(app)

Γ ⊢B f(x) : β

∀i ∈ [[1, n]], Γ ⊢B Di : set(αi) Γ , v1 : α1, . . . , vn : αn ⊢B P : bool
(collect)

Γ ⊢B {v1, . . . , vn ∈B D1 ×B . . .×B Dn | P} : set(α1 ×B . . . ×Bαn)

Fig. 1. Typing rules for partial functions, function application and set comprehension.
In the last rule, variables v1, . . . vn are fresh variables and must not appear in Γ .

Remark 5. This type system could be extended to also model user-defined sets,
which can be used as type parameters for functions and relations. For the mo-
ment, such sets, along with enumerations, are assimilated to sets of integers.
Note that the typing rule for set comprehension is slightly more restrictive than
the corresponding well-definedness rule in the B-Book since it enforces the carte-
sian product to be explicit. Also, Boolean values and propositions are considered
to be on the same level in this framework, although they are distinct syntactical
categories in B.

3.3 Typing rules

Typing is then naturally defined inductively on terms within a typing context,
which is a map associating variables with their representive types. The typing
rules are formally expressed judgments Γ ⊢B t : τ , indicating that term t has type
τ in context Γ . A selection of three such rules is illustrated in Fig. 1, covering
partial functions, function application, and set comprehension.

Remark 6. A POG file always represents closed terms: therefore, any proof obli-
gation PO must verify the judgment with any typing context, and in particular,
the empty context:

⊢B PO : bool

4 Formalizing a subset of SMT-LIB

Similarly, a subset of the SMT-LIB language is formalized, based on the official
language specification [6], with simplifications.

4.1 Syntax

Let V be a collection of variables. A term t is then defined inductively as one of
these constructs:

5

Γ ⊢S x : α (some)
Γ ⊢S some x : Option α

- (none)
Γ ⊢S as none α : Option α

Γ ⊢S x : α Γ ⊢S y : β
(pair)

Γ ⊢S pair x y : Pair α β

Γ , v1 : α1, . . . , vn : αn ⊢S P : bool
(forall)

Γ ⊢S ∀Sv1 : α1 . . . , vn : αn, P : Bool

Fig. 2. Typing rules for options, pairs and forall. In the last rule, variables v1, . . . vn
are fresh variables and must not appear in Γ .

– literals, where v is a variable in V, n is an integer, and b is a Boolean:

v | n | b

– arithmetic operations:
t+S t | t−S t | t ∗S t

– Boolean operations:

t ∧S t | t ∨S t | ¬St | t =S t | t ≤S t | t ⇒S t | if t then t else t

– binders, where v1, . . . , vn are variables in V and α1, . . . , αn are SMT-LIB
types (which are defined below in Sec. 4.2):

λSv1 : α1, . . . , vn : αn, t | ∀Sv1 : α1, . . . , vn : αn, t | ∃Sv1 : α1, . . . , vn : αn, t

– other constructs, where α is an SMT-LIB type:

t(t) | as t α | some t | none | the t | pair t t | fst t | snd t

Remark 7. Note that the some, none, the, pair, fst and snd constructs are not
part of the official SMT-LIB language, but are introduced here to simplify the
encoding of certain constructs. They are formally defined as constructors of a
polymorphic datatype in the following section.

4.2 Type system

We formalize a simplified version of SMT-LIB’s type system covering the re-
stricted syntax defined in the previous section. Recalling that SMT-LIB func-
tions are total, a standard approach to representing partial functions within this
framework involves encoding them as total functions whose codomain includes an
additional element denoting the absence of value, as commonly achieved via the
so-called Option type. The type system of SMT-LIB is simplified to a minimal
form that accommodates the requirements of the formalization as follows:

τ ::= Int | Bool | Unit | τ →S τ | Option τ | Pair τ τ

6

Remark 8. The Option and Pair types, along with the some, none, and pair
constructors are included as terms of the syntax to circumvent unnecessary com-
plexity in the formalization of the language. Formally, they are defined as the
following polymorphic datatypes:

1 (declare-datatype Pair (par (T1 T2) ((pair (fst T1) (snd T2)))))
2 (declare-datatype Option (par (T) ((some (the T)) (none))))

The judgment Γ ⊢S t : τ , denotes that term t has type τ in context Γ . Four
of the complete set of typing rules are presented in Fig. 2, covering the some,
none, pair, and forall constructs.

Similarly to the B language, the semantics of SMT-LIB is defined in a set-
theoretic setting for type-correct terms, but is out of the scope of this paper.

5 Encoding B in SMT-LIB

With the formalizations of B and SMT-LIB established, the encoding rules can
now be formulated. The translation of POG files in SMT-LIB format has his-
torically been handled by the tool ppTransSMT [12]. This approach requires
complex encodings, particularly for set-theoretic constructs and functions [16].
The limitations of this encoding strategy, along with the new possibilities of-
fered by SMT-LIB 2.7’s higher-order features, are presented in the following.
The encoding rules are then detailed, followed by a discussion on soundness.

5.1 Prior approach

Versions of SMT-LIB prior to 2.7 were limited to multi-sorted first-order logic;
therefore higher-order elements required encoding through first-order reductions,
leaving certain components uninterpreted and only partially specified. The en-
coding performed by ppTransSMT was therefore based on a first-order reduction
and monomorphization of polymorphic constructs like membership, leaving any
higher-order terms uninterpreted. The set-theoretic constructs of the B language
were encoded using two distinct sorts: a unary sort P representing the powerset
operator, and a binary sort C encoding the cartesian product.

1 (declare-sort P 1)
2 (declare-sort C 2)

This formalization approach, while operational, presents two limitations. The
first limitation stems from its conflation of set-theoretic concepts (specifically
the powerset and cartesian product operations) with type-theoretic notions, two
paradigms that are based on divergent foundational principles [7]: collections
and constructions respectively.

Example 9. To visualize this theoretical divergence in practice, consider the type
of integers that are equal to their successor and the type of prime numbers

7

between 13 and 17, which are both uninhabited. For the sake of readability, they
can be informally expressed as:

{x : int | x = x+ 1} and {x : int | x ∈ P ∧ 13 < x < 17}

where P denotes the set of prime numbers. For these to be definitionally equal,
their constructions must be definitionally equal as well:

∀x : int, x = x+ 1
def
= x ∈ P ∧ 13 < x < 17

This clearly does not hold, showing that both of these uninhabited types are not
definitionally equal, despite being propositionally equal (since both sides of the
equation are logically equivalent to ⊥). □

The second limitation arises from the necessity to declare distinct uninter-
preted membership predicates for each sort combination. These predicates must
then be axiomatically specified to define concrete sets.

Example 10. Let S := {a, b, c} be an enumeration of three sets.1 The encoding
of S via the unary sort P is as follows:

1 (declare-const a (P (Int)))
2 (declare-const b (P (Int)))
3 (declare-const c (P (Int)))
4 (declare-const S (P (P (Int))))
5 (declare-const ∈1 ((P (Int)) (P (P (Int)))) Bool)
6 (assert (forall ((x (P (Int))))
7 (= (∈1 x S) (or (= x a) (= x b) (= x c)))))

With such a definition, the claim “a ∈ S” is not true by definition but is an
assertion to be proven; it is relevant to the specification of S which is not a
definition. □

These limitations motivate an alternative encoding approach that capitalizes
on SMT-LIB 2.7’s support for higher-order logic to achieve a more faithful and
direct representation of set-theoretic constructs.

5.2 Sets as characteristic predicates

The primary notable distinction in the design of this new encoding is the rep-
resentation of sets as predicates, i.e., total functions that evaluate to the truth
value of any element being a member of a set. Note that this approach is only
feasible thanks to the support of higher-order constructs brought by SMT-LIB
2.7, since sets of sets are encoded as higher-order functions.

1 Note that the constants a, b, c are not assigned a specific type a priori and are
encoded as sets of integers for simplicity. Alternatively, they could be declared as
sets of an abstract nullary sort.

8

Definition 11 (Characteristic predicate). Let S be a set. The characteristic
predicate Ŝ of S is defined as the following total function:

∀x, Ŝ(x) def
= x ∈ S

Lemma 12 (Existence and uniqueness). In any set theory embedding ex-
tensional reasoning on sets, the characteristic predicate of a set as defined above
describes the set correctly and is unique up to logical equivalence.

Proof. Any set S is extensionally equal to {x | Ŝ(x)}. Let then P be a predicate
such that the following holds:

∀x, x ∈ S ⇔ P (x)

Then by definition of Ŝ, ∀x, Ŝ(x) ⇔ P (x). ■

It follows that for any type α, any type representing homogeneous sets con-
taining elements of type α is isomorphic to the type α →S Bool. Note that B
types can be inductively embedded into SMT-LIB types in an axiomatic way,
via the following mapping ξ:

ξ(int) = Int ξ(bool) = Bool

ξ(set α) = ξ(α) →S Bool ξ(α ×
Bβ) = Pair ξ(α) ξ(β)

where α and β are B types. This implies that B integers (resp. Booleans) can be
semantically interpreted as SMT-LIB integers (resp. Booleans). For instance, B
sets of integers are represented as functions mapping integers to Booleans. This
is the basis of the encoding of sets in SMT-LIB. Moreover, the mapping ξ can
be extended to accommodate uninterpreted sorts, as in the example below.

Example 13. A set S of elements of type A is declared in SMT-LIB as follows:

1 (declare-sort A 0)
2 (declare-const S (-> A Bool))

□

Note that thanks to the lambda binder, any concrete set may be defined
either via a specification or directly as a function.

Example 14. The encoding of the set of natural numbers, first specified, then
inlined, yields:

1 (declare-const Nat (-> Int Bool))
2 (assert (forall ((x Int)) (= (Nat x) (>= x 0))))

1 (define-const Natλ (-> Int Bool) (lambda ((x Int)) (>= x 0)))

□

9

The latter option is chosen, so that set membership can be verified through
definitional equality with one β-reduction.

Example 15. Revisiting the set S = {a, b, c} from example 10, its encoding using
characteristic predicates is as follows:

1 (declare-const a (-> Int Bool))
2 (declare-const b (-> Int Bool))
3 (declare-const c (-> Int Bool))
4 (define-const S (-> (-> Int Bool) Bool)
5 (lambda ((x Int)) (or (= x a) (= x b) (= x c))))

□

This encoding offers the advantage of being more direct: it eliminates the
need to declare membership predicates, reducing membership to function appli-
cation, which is polymorphic. It suffers from a notable drawback, as it erases the
structure of sets, which can be a hindrance when attempting proof reconstruc-
tion.

5.3 Functions as functions

Another notable distinction in our encoding is the direct representation of func-
tions in B as actual SMT-LIB functions rather than encoding them as functional
relations, i.e., sets of pairs. This is achieved by leveraging the inherent function
type (->) introduced in SMT-LIB 2.7 and allowing for a more natural repre-
sentation of functions. This approach not only simplifies the encoding but also
reduces the burden on SMT solvers by avoiding the overhead of quantifiers that
would be necessary when encoding functions as relations. Quantifier elimination
and instantiation are among the most significant challenges in SMT solving,
motivating the choice of avoiding them whenever feasible.

Functions in B, being rooted in set theory, are fundamentally represented as
relations rather than natively as found in similar languages such as TLA+ [17]
or Alloy [14]. In particular, they are characterized as binary relations satisfying
some property, as defined below.

Definition 16 (Partial function). Let f be a binary relation over two arbi-
trary sets S and T , i.e. f ⊆ S × T . f verifies the functional property if:

∀x ∈ S, y ∈ T, z ∈ T, (x 7→ y ∈ f ∧ x 7→ z ∈ f) ⇒ y = z

In this case, f is said to be a partial function, denoted by f ∈ S →| T .

Remark 17. In the case of a functional relation f , the notation x 7→ y ∈ f should
be understood as f(x) = y. The definition above simply states that each element
from the domain of f is mapped to at most one element in its codomain.

10

Example 18. The overhead of encoding functions as relations can be readily
grasped by examining the encoding of the B expression FINITE(S), where S is
an arbitrary set. For improved readability, the superscript annotations of the B
operators are omitted in this example only and all expressions below are written
in B syntax.

By definition of the FINITE predicate in B, the expression expands to:

∀a ∈ Z · (∃b, f ∈ Z× (S ↔ Z) · f ∈ S ↣ a..b)

This expresses that the set S can be injectively mapped onto a finite interval of
integers, i.e., it can be enumerated. Unfolding all definitions yields the following:

∀a ∈ Z · ∃b, f ∈ Z× (S ↔ Z)·
(∀x, y ∈ S× Z · x 7→ y ∈ f ⇒ a ≤ y ∧ y ≤ b) ∧
(∀x, y, z ∈ S× Z× Z · x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z) ∧
(∀z ∈ S · ∃w ∈ Z · z 7→ w ∈ f) ∧
(∀x, y, z ∈ S× Z× Z · x 7→ z ∈ f ∧ y 7→ z ∈ f ⇒ x = y)

Encoding this expression with ppTransSMT yields the following SMT-LIB
script, where τ is the SMT-LIB type of the elements in the set S:

1 (assert (forall ((a Int)) (exists ((b Int) (f (P (C τ Int)))) (and
2 (forall ((x τ) (y Int)) (=> (mem2 x y f) (and (<= a y) (<= y b))))
3 (forall ((x τ) (y Int) (z Int))
4 (=> (and (mem2 x y f) (mem2 x y f)) (= y z)))
5 (forall ((z τ)) (exists ((w Int)) (mem2 z w f)))
6 (forall ((x τ) (y τ) (z Int))
7 (=> (and (mem2 x z f) (mem2 y z f)) (= x y)))))))

It can be seen that the encoding obtained via a first-order reduction produces
a large expression with many quantifiers. In particular, the variable f bound
under the existential quantifier has the SMT-LIB type P (C τ Int), which is
already a complex type and depends on τ . □

With the arrow type, B functions can be directly encoded as SMT-LIB func-
tions, thereby avoiding the need to rely on relations satisfying some property.

Example 19. Returning to the B expression FINITE(S) from Ex. 18, let τ de-
note an SMT-LIB type representing the type of the elements in the set S. By
directly encoding the function f as a function from τ to Option Int, the expres-
sion is encoded as follows in SMT-LIB, omitting the superscript annotations for
readability:

∃N : Int,f : τ → Option Int·
(∀x : τ , (¬f(x) = none) = Ŝ(x)) ∧
(∀x : τ , y : τ , z : Int · f(x) = some z ∧ f(y) = some z ⇒ x = y) ∧
(∀x : τ · Ŝ(x) ⇒ 0 ≤ the f(x) ∧ the f(x) < N)

□

11

Ultimately, expressions involving operators such as FINITE or CARD, which
rely on functions embedded within their definitions, can be encoded in a more
direct and efficient manner.

This idea can be systematically extended to all B terms involving functions,
rather than being restricted solely to those derived from fixed definitions. To
ensure the soundness of the proof obligations generated by the encoding, it is
essential to establish the conditions under which the encoding remains valid.
This is safe in the particular case of invariants enforcing functional properties on
terms. These properties are indeed easily broken in other contexts, as illustrated
in the following example.

Example 20. Consider the following B operation:

1 op (x, y) =
2 PRE
3 x : INTEGER & y : INTEGER // x ∈B Z ∧ y ∈B Z
4 THEN
5 f := f \/ {x |-> y} // f := f ∪B {x 7→B y}
6 END

and assume f has been initialized to the partial function {0 7→B 1, 1 7→B 2}.
After a call to op(2, 3), the value of f is {0 7→B 1, 1 7→B 2, 2 7→B 3}, which

is still a partial function. After another call to op(2, 4) however, the value of
f is {0 7→B 1, 1 7→B 2, 2 7→B 3, 2 7→B 4}, which is no longer a partial function,
as it maps 2 to both 3 and 4. Encoding f as a function in SMT-LIB would be
unsound.

Now, consider that the operation op occurs within the following B machine:

1 VARIABLES
2 f
3 INVARIANT
4 f : INTEGER +-> INTEGER // f ∈B Z →| B Z
5 INITIALISATION
6 f := {0 |-> 1, 1 |-> 2} // f := {0 7→B 1, 1 7→B 2}

This machine requires f to be a partial function as an invariant. In this case,
two proof obligations are generated, one for the initialization and one for the
invariant preservation. Written using the syntax defined in Sec. 3.1, they are:

{0 7→B 1, 1 7→B 2} ∈B Z →| B Z (init)
f ∈B Z →| B Z ⇒B ∀Bx, y ∈B Z×B Z · f ∪B {x 7→B y} ∈B Z →| B Z (invariant)

The first proof obligation is trivially satisfied. However, the second one is false:
consider the counterexample f := {0 7→B 1, 1 7→B 2, 2 7→B 3}, x := 2, and y := 4.
Then f ∪B {x 7→B y} is not a partial function.

As will be shown in the following section, the encoding of relation-related
operations must vary depending on whether neither, one, or both operands are
encoded as functions. In this example, the union f ∪B {x 7→B y} of a partial

12

function and a singleton has to be encoded.2 Since no additional constraints are
provided on variables x and y, a safe choice is to encode it as a relation, based
on the following consideration:

f ∪B {x 7→B y} =B

{p ∈B Z×B Z | p =B x 7→B y ∨B ∃Ba ∈B Z · p =B a 7→B f(a)}

The SMT-LIB encoding of f ∪B {x 7→B y} is then:

λSp :Pair Int Int,

(∃Sa : Int, b : Int, p =S pair a b ∧S f(a) =S some b) ∨S p =S pair x y

Using this expression in the encoding of the proof obligation, stating that this
relation is a partial function, would then result in an SMT-LIB expression that
can be proven to be false; however the semantics of the B expression would be
preserved by the encoding. □

5.4 Encoding rules

With these foundational considerations established, the encoding rules can be
defined. To establish a sound encoding, it is imperative to formalize the source
and target languages, thereby enabling rigorous reasoning about their structure
and properties. While the scope of this paper is confined to encoding B proof
obligations in SMT-LIB, it is noteworthy that a POG file encapsulates typing in-
formation that can be checked at runtime. Soundness of the encoding is therefore
contingent upon correctness of the typing and well-definedness of the encoding
rules, among other factors.

Literals, Arithmetic and Boolean operations Literal values are encoded
directly, associating B types with SMT-LIB types via the mapping ξ. Since
arithmetic and Boolean operations are natively supported in both B and SMT-
LIB, they can be directly encoded, namely ⊙B is encoded as ⊙S, where ⊙ is one
of the operators +,−, ∗,=,∧,∨,⇒ and ¬. Binders are also encoded directly, the
only difference being that the SMT-LIB types of the bound variables must be
computed from the domain of the B quantifier.

Set operations Maplets are encoded as pairs, i.e. 7→B is encoded as pair, and
membership is encoded as function application, benefiting from the encoding of
sets as characteristic predicates. Powerset is encoded as the set of all subsets.
Cartesian product is encoded with pairs as follows: let S and T be B terms such
that Γ ⊢B S : set α and Γ ⊢B T : set β for some context Γ and types α and
2 The fact that the proof obligation encodes the fact that f ∪B {x 7→B y} is a partial

function is a semantic property of the expression, and has nothing to do with how
the encoding is done.

13

β. Let Ŝ and T̂ be their respective encodings. The expression S ×B T is encoded
as:

λSp : Pair ξ(α) ξ(β), Ŝ(fst p) ∧S T̂ (snd p)

More complex operations like union are trickier to encode and are discussed
later.

Partial functions Let f,A and B be B terms. The expression f ∈B A →| B B,
assuming it is well-typed in the type system of B, is encoded in SMT-LIB as
follows:

– the symbol f is declared with the type α →S Option β,
– the following assertion is added:

(∀Sx : α, f x ̸= none ⇒S Â x) ∧S (∀Sx : α, f x ̸= none ⇒S B̂ (the f x))

where α (resp. β) is the SMT-LIB type corresponding to the B type of
elements of A (resp. B), and Â (resp. B̂) is the encoding of A (resp. B) as a
characteristic predicate.

This rule is, in fact, quite straightforward: the characterization of a function
is determined by two components—its domain and codomain—such that each
element in the domain is associated with exactly one corresponding element in
the codomain.

Example 21. Returning to the B expression from Example 18, the SMT-LIB code
obtained from encoding the expression FINITE(S) where S is a set of integers is
as follows:

1 (declare-const S (-> Int Bool))
2 (assert (exists ((N Int) (f (-> Int (Option Int)))) (and
3 (forall ((x Int) (y Int)) (=>
4 (and (S x) (S y) (= (f x) (f y)))
5 (= x y)))
6 (forall ((x Int)) (= (not (= (f x) none)) (S x)))
7 (forall ((x Int)) (=> (S x) (and (<= 0 (f x)) (<= (f x) N)))))))

□

Union As mentioned in Ex. 20, the main challenge stemming from juggling
relations and functions is to ensure that operations dealing with relations are
correctly handled in the case of functions.

Let f, g be two B terms and f̃ , g̃ their respective encoding in SMT-LIB such
that Γ ⊢S f̃ : α and Γ ⊢S g̃ : β for some context Γ and SMT-LIB types α
and β. The expression f ∪B g is encoded as follows, distinguishing between the
following cases on α and β:

– if α = β = σ →S Bool,
λSx : σ, f̃(x) ∨S g̃(x)

14

– if α = β = σ →S Option γ,

λSp : Pair σ γ, (f̃(fst p) =S some (snd p)) ∨S (g̃(fst p) =S some (snd p))

– if α = Pair σ γ →S Bool and β = σ →S Option γ (the symmetric case is
omitted),

λSp : Pair σ γ, f̃(p) ∨S (g̃(fst p) =S some (snd p))

The rules described above cover the subset of the B language formalized in
Sec. 3.1 while ensuring type correctness of the SMT-LIB translation under the
assumption that the B input is well typed. While additional B operators can
be encoded following similar principles by relying on the base constructs we
have defined, new encoding rules may be established to handle more complex
constructs in a more efficient manner.

5.5 Towards soundness

Establishing soundness—i.e., proving that the SMT-LIB encoding preserves the
semantics of B proof obligations—is a non-trivial task and remains future work.
However, the key ideas of the proof are outlined, without formally defining se-
mantics, for the more intricate rules: partial functions and unions. The non-
trivial aspect of these rules is that the SMT-LIB types must be correctly com-
puted from the B types. The notations used in the rules detailed in Sec. 5.4 are
kept.

Partial functions The idea is to reason by induction on B terms. Assuming
that f ∈B A →| B B is well-typed in B, there exists a context Γ such that:

Γ ⊢B f ∈B A →| B B : bool

By definition of the typing rules, this implies that there exist two B types α′

and β′ such that:

Γ ⊢B f : set (α′
×

Bβ′) and Γ ⊢B A : set α′ and Γ ⊢B B : set β′

Consequently, A (resp. B) is encoded to Â (resp. B̂) via its characteristic predi-
cate and the type α (resp. β) is shown to be equal to ξ(α′) (resp. ξ(β′)) where
ξ is the mapping embedding B types into SMT-LIB types defined in Sec. 5.2.
This encoding rule is therefore well-defined. ■

Union The cases listed in the encoding rule are shown to be exhaustive. As-
suming that Γ ⊢B f ∪B g : set τ ′, for some context Γ and B type τ ′, the typing
rules of B imply that:

Γ ⊢B f : set τ ′, Γ ⊢B g : set τ ′

15

If τ ′ = σ′ ×Sγ′, then f and g can be encoded either as functions or relations,
which constitutes the different cases. We only consider the case where only one
operand is encoded as a function—suppose it is f—as the other cases are similar.
By induction, the types α and β of f̃ and g̃ are shown to be such that:

α = σ →S Option γ and β = Pair σ γ →S Bool for some types σ and γ

which are shown to be equal to ξ(σ′) and ξ(γ′) respectively. ■

6 Evaluation

Although our encoding currently covers only a limited subset of the B language,
it can already be tested against real-world B proof obligations. An executable
version of the encoding, developed in Lean 4.15.0, is available at [22] with in-
structions and example proof obligations. A publicly available dataset of B proof
obligations [11] from industrial applications was used to compare our encoding
to ppTransSMT.

For the evaluation, 133 POG files that fall within the subset of the syntax that
can be handled by our encoding were selected from the dataset and encoded into
SMT-LIB using both our encoding and ppTransSMT, yielding a total of 2,195
proof obligations. These proof obligations were processed using cvc5 [5], with
model-based quantifier instantiation enabled and a timeout of 3 seconds per proof
obligation. Table 1 indicates that, on average, cvc5 discharges proof obligations
encoded using our approach twice as fast as those encoded with ppTransSMT,
likely due to the more direct encoding of functions. As shown in Table 2, the
solver exhibits consistent behavior across both encodings, except for 64 proof
obligations. Among these, 28 are successfully solved with our encoding but not
with ppTransSMT, which is a promising result. However, 14 proof obligations are
solved by ppTransSMT but not by our encoding, suggesting that our approach
may still overwhelm the solver in certain cases, especially when dealing with
complex lambda expressions that cannot be reduced. Finally, 22 proof obligations
remain unsolved by both encodings, indicating that further work is needed to
address these challenges. Inspection of these proof obligations reveals that they
are large and complex, involving multiple nested quantifiers that are difficult
to simplify in either encoding. It could be beneficial to consider splitting these
proof obligations into smaller, more manageable parts and it requires a good
understanding of the internal workings of the solvers.

7 Conclusion

This paper introduces an encoding of B proof obligations into SMT-LIB, laying
the groundwork for formal verification. The encoding rules are carefully designed
to guarantee soundness and are evaluated against a dataset of real-world B
proof obligations. The results are promising, demonstrating that our encoding is
efficient. However, further work is required to resolve the remaining challenges.

16

Time (s) Time / PO (ms)
PP 296 135
HO 116 53

Table 1. Total time taken by cvc5 to
solve the proof obligations encoded us-
ing ppTransSMT (PP) and our encoding
(HO).

(u, u) (r, u) (u, r)

#PO 22 14 28

Table 2. Results of the proof obligations
on both encodings, where r denotes either
sat or unsat and u denotes unknown.

The encoding is being implemented in the Lean theorem prover [19], along
with a formalization of the B language and SMT-LIB semantics to ensure the
correctness of the encoding and to facilitate the verification of further properties.
Future work will focus on proving the soundness of the encoding in Lean, on
extending the encoding to cover more constructs of the B language, and on
improving the efficiency of the encoding, both in terms of solving time and
number of discharged proof obligations.

Acknowledgments. I thank Stephan Merz, Sophie Tourret and Ghilain Bergeron
for providing valuable feedback on my work, and David Déharbe for discussions
on the B method and ppTransSMT.

References

1. Abrial, J.R., Lee, M.K.O., Neilson, D.S., Scharbach, P.N., Sørensen, I.H.: The b-
method. In: Prehn, S., Toetenel, H. (eds.) VDM ’91 Formal Software Development
Methods. pp. 398–405. Springer Berlin Heidelberg, Berlin, Heidelberg (1991)

2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, USA (1996)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International Journal
on Software Tools for Technology Transfer 12(6), 447–466 (Nov 2010). https:
//doi.org/10.1007/s10009-010-0145-y

4. Barbosa, H., Reynolds, A., Ouraoui, D.E., Tinelli, C., Barrett, C.: Extend-
ing SMT solvers to higher-order logic. In: Fontaine, P. (ed.) Proceedings of
the 27th International Conference on Automated Deduction (CADE ’19). Lec-
ture Notes in Artificial Intelligence, vol. 11716, pp. 35–54. Springer (Aug 2019),
http://theory.stanford.edu/~barrett/pubs/BREO+19.pdf, natal, Brazil

5. Barbosa, H., et al.: cvc5: A versatile and industrial-strength SMT solver. In: Fis-
man, D., Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems - 28th International Conference, TACAS 2022, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2022, Mu-
nich, Germany, April 2-7, 2022, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 13243, pp. 415–442. Springer (2022). https://doi.org/10.1007/
978-3-030-99524-9_24, https://doi.org/10.1007/978-3-030-99524-9_24

6. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.7. Tech.
rep., Department of Computer Science, The University of Iowa (2025), available
at www.SMT-LIB.org

17

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
http://theory.stanford.edu/~barrett/pubs/BREO+19.pdf
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24

7. Bruijn, de, N.: On the roles of types in mathematics, pp. 27–54. Cahiers du centre
de logique, Academia-Erasme (1995)

8. Clearsy: Atelier B. https://www.atelierb.eu
9. Clearsy: PO XML Format Documentation (2023), https://www.atelierb.eu/

wp-content/uploads/2023/10/pog-1.0.html
10. Déharbe, D.: Integration of SMT-solvers in B and Event-B development envi-

ronments. Science of Computer Programming 78, 310–326 (03 2013). https:
//doi.org/10.1016/j.scico.2011.03.007

11. Déharbe, D.: Proof obligations from the B formal method (September 2022).
https://doi.org/10.5281/zenodo.7050797

12. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.
Science of Computer Programming 94 (11 2014). https://doi.org/10.1016/j.
scico.2014.04.012

13. Fraenkel, A.A., Bar-Hillel, Y.: Foundations of Set Theory. Elsevier, Atlantic High-
lands, NJ, USA (1973)

14. Jackson, D.: Alloy: A logical modelling language. In: Bert, D., Bowen, J.P., King,
S., Waldén, M. (eds.) ZB 2003: Formal Specification and Development in Z and B,
Third International Conference of B and Z Users, Turku, Finland, June 4-6, 2003,
Proceedings. Lecture Notes in Computer Science, vol. 2651, p. 1. Springer (2003).
https://doi.org/10.1007/3-540-44880-2_1

15. Jacquel, M.: Automatisation des preuves pour la vérification des règles de l’Atelier
B. Theses, Conservatoire national des arts et metiers - CNAM (Apr 2013), https:
//theses.hal.science/tel-00840484

16. Konrad, M.: Translation from Set-Theory to Predicate Calculus. Technical report,
ETH Zurich (2012)

17. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA
(2002)

18. Mendelson, E., Fraenkel, A.A.: Axiomatic set theory. Journal of Symbolic Logic
24 (1958). https://doi.org/10.2307/2963801

19. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean
Theorem Prover (System Description). In: Felty, A.P., Middeldorp, A. (eds.) Au-
tomated Deduction - CADE-25. pp. 378–388. Springer International Publishing,
Cham (2015)

20. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting Enumerative Instantiation, pp.
112–131 (04 2018). https://doi.org/10.1007/978-3-319-89963-3_7

21. Tourret, S., Fontaine, P., El Ouraoui, D., Barbosa, H.: Lifting congruence closure
with free variables to λ-free higher-order logic via SAT encoding. In: SMT 2020 -
18th International Workshop on Satisfiability Modulo Theories. Online COVID-19,
France (Jul 2020), https://hal.science/hal-03049088

22. Trélat, V.: Safely Encoding B Proof Obligations in SMT-LIB (Feb 2025). https:
//doi.org/10.5281/zenodo.14870543

18

https://www.atelierb.eu
https://www.atelierb.eu/wp-content/uploads/2023/10/pog-1.0.html
https://www.atelierb.eu/wp-content/uploads/2023/10/pog-1.0.html
https://doi.org/10.1016/j.scico.2011.03.007
https://doi.org/10.1016/j.scico.2011.03.007
https://doi.org/10.1016/j.scico.2011.03.007
https://doi.org/10.1016/j.scico.2011.03.007
https://doi.org/10.5281/zenodo.7050797
https://doi.org/10.5281/zenodo.7050797
https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/10.1016/j.scico.2014.04.012
https://doi.org/10.1007/3-540-44880-2_1
https://doi.org/10.1007/3-540-44880-2_1
https://theses.hal.science/tel-00840484
https://theses.hal.science/tel-00840484
https://doi.org/10.2307/2963801
https://doi.org/10.2307/2963801
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
https://hal.science/hal-03049088
https://doi.org/10.5281/zenodo.14870543
https://doi.org/10.5281/zenodo.14870543
https://doi.org/10.5281/zenodo.14870543
https://doi.org/10.5281/zenodo.14870543

On Writing Alloy Models:
Metrics and a new Dataset

Soaibuzzaman[0000−0002−8971−5904], Salar Kalantari, and
Jan Oliver Ringert[0000−0002−3610−3920]

Bauhaus-University Weimar, Germany

Abstract. Alloy is a modeling language that combines relational first-
order logic and temporal logic while providing powerful automated analy-
ses via the Alloy Analyzer. Recent efforts in tool development and teach-
ing of Alloy have contributed the Alloy4Fun dataset enabling many anal-
yses of fine-grained model editing histories.
We present a smaller, but complementary dataset FMPals of similar edit-
ing granularity. While the Alloy4Fun dataset captures users filling in
predefined predicates, our dataset is more diverse and users develop all
parts of Alloy models including signatures, fields, facts, and commands.
We illustrate the differences between the datasets, define a Halstead met-
ric to measure the difficulty of models, and evaluate model edit paths
from both datasets on various metrics.

Keywords: Alloy · evolution · metrics · dataset

1 Introduction

Alloy [13] is a modeling language that combines relational first-order logic and
temporal logic while providing powerful automated analyses via the Alloy Ana-
lyzer. Alloy has been applied to modeling software designs [23,40], code testing,
debugging, and repair [9,28,38], and to analyze security properties [1,37].

Recent efforts in tool development and teaching of Alloy have contributed
the Alloy4Fun platform [18] and dataset [17]. Alloy4Fun provides a web-based
editor with selected Alloy models and tasks inside these models. The platform
generates feedback in terms of Alloy instances for each user attempt. The Al-
loy4Fun dataset [18,17] has attracted research interest [41,2,14] as it provides
fine-grained model editing histories previously not available.

Alloy4Fun [18] focuses on writing expressions inside predefined predicates
that are then semantically evaluated against an instructor’s solution. This limits
the insight one could obtain about how novice users use Alloy, as the Alloy
language also provides elements like signatures, fields, and commands (all briefly
introduced in Sect. 2.1), which instructors provide and are not expected to be
written or modified by users in the Alloy4Fun dataset. We present a smaller but
complementary dataset with similar editing granularity. Our FMPals dataset is
more diverse, and users develop all parts of Alloy models, including signatures,
fields, facts, and commands.

2 Soaibuzzaman et al.

We illustrate the differences between the datasets, define a Halstead metric
to measure the difficulty of models, and evaluate model edit paths from both
datasets on various metrics.

The remainder of this work is structured as follows. Section 2 briefly presents
the foundations of our work. Section 3 lists our research questions, Sect. 4
presents our dataset and data processing. Section 5 presents the evaluation of
our research questions on the datasets. We discuss related work in Sect. 6 and
conclude in Sect. 7.

2 Preliminaries

We now give a brief overview of the Alloy language, the Alloy4Fun platform, the
Formal Methods Playground, and Halstead metrics.

2.1 Alloy

Alloy [12,13] is a textual modeling language based on relational first-order logic.
An example Alloy model is shown in Lst. 1.1 consisting of signature declarations
(ll. 1-3) with fields, e.g., field link in signature File (l. 1). Intuitively, the
semantics of an Alloy model are instances consisting of atoms and relations over
atoms where each signature is a set (unary relation) of atoms, and each field is
an n-ary relation, e.g., the field link defines a binary relation that relates each
File-atom with an arbitrary number of File-atoms (multiplicity set in l. 1).
Facts, predicates, and assertions may contain expressions in relational as well as
temporal logic, e.g., the expression no Trash in predicate inv1 (l. 5) states
that the set Trash is empty in all instances satisfying predicate inv1 . Alloy
models can be automatically analyzed [13] by the Alloy Analyzer in a bounded
scope (bounding number of atoms) via a reduction to SAT [36].

1 sig File { link : set File }
2 sig Trash in File {}
3 sig Protected in File {}
4
5 pred inv1 { /* The trash is empty. */ /* solution: */ no Trash }
6 pred inv2 { /* All files are deleted. */ }
7 pred inv3 { /* Some file is deleted. */ }

Listing 1.1: An example Alloy model from [17] with three out of 10 predicates
for the user to complete, e.g., as attempted in predicate inv1 .

2.2 Alloy4Fun

Alloy4Fun [18] is a web application for writing and analyzing Alloy models in-
tended for teaching Alloy. Alloy4Fun offers automated assessment and feedback
by requiring users to fill in predefined predicates (see the predicates in Lst. 1.1,
ll. 5-7). Each predicate is independent of the others to avoid “distracting prob-
lems corresponding to failures of other properties” [18].

On Writing Alloy Models: Metrics and a new Dataset 3

Interactions with Alloy4Fun are captured and published in the Alloy4Fun
dataset [17] collected mainly from master students’ submissions at the University
of Minho and the University of Porto between Fall 2019 to Spring 2023.

2.3 Formal Methods Playground

The Formal Methods Playground1 is a web application for writing and analyzing
models in various modeling and specification languages. We have developed this
application mainly for teaching, e.g., slides in our Formal Methods for Software
Engineering lecture [33] contain permalinks to example models on the Formal
Methods Playground for direct analysis in the browser. Currently, the Formal
Methods Playground supports Limboole2, Z3 [21], Alloy [13], nuXmv [3] and
Spectra [20] specifications.

2.4 Halstead Metrics (also Theory of Software Science)

Halstead [11] introduced various measures for software, e.g., the effort related
to the time required to write the program or the difficulty D of understanding
a program when reading or writing it. Halstead metrics are computed based on
the numbers of unique operators η1 and operands η2, and the total numbers of
occurrences of operators N1 and operands N2. Halstead difficulty is defined as

D =
η1
2

× N2

η2
, i.e.,

unique operators
2

× # occurrences of operands
unique operands

(1)

Shen et al. [30] have summarized early critical assessment of Halstead metrics
as well as some “tentative support” [30] from empirical studies. Shepperd [31]
criticizes three representative metrics (including Halstead’s) based on their defi-
nition and general (ab-)use. We reflect on this criticism in Sect. 4.4 and Sect. 5.6.

3 Research Questions

We aim to understand better the differences between the existing Alloy4Fun
dataset and our new dataset and how Alloy models evolve in these.

We define the following research questions:

– RQ1: In what characteristics do the two datasets differ?
– RQ2: What is the Halstead difficulty for typical Alloy Models?
– RQ3: How does Halstead difficulty evolve in Alloy modeling tasks?
– RQ4: Is Halstead difficulty related to making and fixing errors?
– RQ5: How large are editing steps in Alloy modeling tasks?

1 See https://play.formal-methods.net and https://www.youtube.com/playlist?list=
PLGyeoukah9NYq9ULsIuADG2r2QjX530nf

2 See https://fmv.jku.at/limboole/

https://play.formal-methods.net
https://www.youtube.com/playlist?list=PLGyeoukah9NYq9ULsIuADG2r2QjX530nf
https://www.youtube.com/playlist?list=PLGyeoukah9NYq9ULsIuADG2r2QjX530nf
https://fmv.jku.at/limboole/

4 Soaibuzzaman et al.

4 Data Processing and Metrics Computation

4.1 Experimental Data

In this study, we utilize two datasets: the publicly accessible Alloy4Fun (A4F)
dataset [17] and our new Formal Methods Playground Alloy (FMPals) dataset [34].

Our FMPals dataset contains Alloy models executed on the Formal Methods
Playground from November 2023 to January 2025. Unlike with Alloy4Fun, users
usually initiate their work with a blank canvas rather than a starter model, and
there are no fixed predicates to encode. Students at Bauhaus-University Weimar
use this platform as part of our Formal Methods for Software Engineering [33]
module. Based on user activity and the models authored, at least one additional
university uses the platform. We capture models with their analyses, timestamps,
and historical derivations structured in a parent-child relationship.

The A4F dataset includes a total of 97,755 models. However, 1,358 of these
models only serve as starting points for users and do not include user edits or lack
an executed command (cmd_i). The remaining A4F dataset consists of 96,397
Alloy models. In contrast, the FMPals dataset contains 8,219 Alloy models.

4.2 Edit Paths

Both the A4F and FMPals datasets maintain records of the previous revision of
each Alloy model. Each revision is a user submission [17], i.e., the current model
whenever the user executes an analysis. We utilize this information to reconstruct
the edit path3, allowing us to capture the sequences of edits/submissions made
by users (these edits are typically small, see Sect. 5.5).

The A4F dataset comprises a total of 5,268 unique edit paths, whereas the
FMPals dataset consists of 747 unique edit paths. In particular, the top 25% of
the edit paths have a length greater than 28 for A4F and 22 for FMPals, with
median lengths of 11 and 8, respectively. The edit paths in the A4F dataset are
all derived from 19 distinct models4 that each define multiple tasks. In contrast,
the FMPals dataset has 392 unique initial models5 within the edit paths.

4.3 Alloy4Fun Edit Paths Partitioning (from A4F to A4FpT)

The Alloy4Fun platform offers a variety of starter models, each defined by unique
signatures and empty predicates that describe distinct tasks. Users may solve
these tasks across multiple edits in any order as the tasks are independent [18]
of each other. Thus, analyzing entire edit paths might lead to wrong conclu-
sions when trying to understand how individual tasks are solved. We, therefore,

3 We adopt the terminology of [14] although interaction paths might be more fitting
as shown in Table. 3.

4 "original: the first ancestor with secrets (always the same within an exercise)"[17]
5 While most edit paths start from scratch, some edit paths share initial models pro-

vided by instructors [33].

On Writing Alloy Models: Metrics and a new Dataset 5

partitioned the original edit paths of the A4F dataset. In addition to the ex-
ecuted commands, Alloy4Fun provides information about the predicates that
users evaluated. We utilized this information to develop new edit paths that
capture users’ efforts per task and refer to this dataset as A4FpT (Alloy4Fun per
Task). Technically, we remove the task predicates for unrelated tasks from these
models. They all remain stand-alone Alloy models with the common signatures
and facts defined in their 19 starter models. For more information, readers can
refer to our replication package [32].

A4FpT FMPals
Dataset

0

10

20

30

40

50

Ed
it

Pa
th

 L
en

gt
h

Q1: 1.0
Med: 2.0

Q3: 5.0

Q1: 3.0

Med: 8.0

Q3: 22.0

Edit Paths Length Distribution
A4FpT
FMPals

(a)

A4FpT FMPals
Dataset

1

2

3

4

5

6

Ed
it

St
ep

s

Q1: 1

Med: 1

Q3: 2

Q1: 1

Med: 1

Q3: 3

Edit Steps to Fix Parse Error
A4FpT
FMPals

(b)

Fig. 1: (a) Distribution of the edit paths length and (b) Edit steps required to
fix errors in edit paths

Fig. 1a illustrates the distribution of edit paths of the A4FpT dataset. The
partitioning process resulted in a total of 24,592 edit paths. The box plot reveals
that 75% of the edit paths have lengths of ≤ 5 for A4FpT and ≤ 22 for FMPals,
with median lengths of 2 and 8, respectively (outliers excluded from box plot).

4.4 A Halstead Metric for Alloy

The Halstead metrics, while offering an intuitive static analysis framework, have
received various criticism [30,31] on practical challenges associated with the
methodology of counting operators and operands. Halstead [11] does not provide
explicit definitions for these terms but instead characterizes their meanings as
“intuitively obvious”. Paige [24] defines operators as “all language elements which
must be used to allow the operands to be operated on”. As suggested by Salt [27]
we document our counting strategy by definitions of operators and operands and
provide an implementation in [32].

6 Soaibuzzaman et al.

Operator Frequency Operand Frequency
sig 3 inv1 1
no 1 inv2 1
set 1 inv3 1
in 2 Protected 1
pred 3 File 4

link 1
Trash 2

Table 1: Counting strategy of operators and operands of a model from Lst. 1.1

Counting Strategy Our counting strategy roughly follows the Alloy gram-
mar [12, App. B] extended with temporal operators added in Alloy 6 as described
in the Alloy Language Reference6.

1. Only parts of the current model are considered; the contents of imported
(operator open) models, and comments are ignored.

2. Operators are:
– Keywords: abstract , extends , var, enum , steps , sig, fun, pred ,

assert , check , run, but, else , module , open , disj , as, let,
for, fact , exactly

– Multiplicity and quantifiers: lone , some , one, all, sum, no
– Unary operators: !, not, no, set, #, ~, *, ^, always , eventually ,

after , before , historically , once , ′

– Binary operators: ∨, or, ∧, and,⇐⇒, iff,=⇒, implies , &, +, -, ++,
< : , : >, ., until , releases , since , triggered , ;, in, =, <, >,
≤, ≥, ->, [] (box join)

3. Operands are:
– literals of Int and String ; and constants: none , univ , iden
– names of modules, signatures, fields, variables, predicates, functions, and

asserts
– names and types of parameters and types of predicates and functions

4. Overloaded elements (fields, predicates, or functions) are counted once.
5. Parentheses and curly brackets are neither operators nor operands.

Table 1 illustrates an example of counting operators and operands for the
Alloy model presented in Lst. 1.1, following our established counting strategy.
The unique counts of operators and operands are 5 (η1) and 7 (η2), respectively,
while the total occurrences of operators and operands are 10 (N1) and 11 (N2),
respectively. Utilizing Eq. 1, we can calculate the Halstead difficulty as

D =
5

2
× 11

6
= 4.58

An implementation of this counting strategy is available from [32].

6 https://alloytools.org/spec.html

https://alloytools.org/spec.html

On Writing Alloy Models: Metrics and a new Dataset 7

5 Evaluation

We now present data to answer the research questions defined in Sect. 3.

5.1 RQ1: Dataset Characteristics

We evaluate characteristics of the A4F and the FMPals datasets along (slightly
modified) research questions from [14], a recent, thorough analysis of the A4F
dataset. We had to slightly modify the research questions of [14] as detailed below
and omit replication of RQs 4, 6, and 7 due to the absence of an oracle/fixed
task for models from FMPals, which would allow for deciding correct, under-, or
over-specified attempts, in this more open dataset.

Errors Users Make We build on the research questions from [14], which examine
the classification of correct and incorrect user submissions ([14], RQ1) and mis-
takes in writing formulas ([14], RQ5). We modify and extend these to identify
top-level language constructs where errors are made.

Approximately two-thirds of the models are syntactically correct, at 70.9%
for A4F and 66.3% for the FMPals dataset. Conversely, around one-third are
syntactically incorrect, with 29.1% for A4F and 33.7% for the FMPals dataset.

The syntactically incorrect models include both syntax and type errors. As
shown in Table 2, these error types are evenly distributed in the A4F dataset.
In contrast, the FMPals dataset has a significant prevalence of syntax errors at
77.6%, with type errors making up just 22.4%.

Finally, Table 2 indicates top-level language constructs where users face the
greatest challenges. In A4F, nearly all errors are found within predicates, which
is expected since users must only complete these. Conversely, the FMPals dataset
indicates that users similarly struggle with writing predicates and facts (25.7%
and 31.6% of errors), but also with signatures (15.5%) and commands (15.5% +
3.6%). This shows the importance of additional datasets like ours as users also
make errors in parts not assessed by the A4F dataset.

Dataset Type Syntax sig pred fact assert fun run check

A4F # 13 657 13 734 72 27 202 26 1 52 22 11
% 49.9 50.1 0.002 99.3 ≈ 0.0 ≈ 0.0 0.001 ≈ 0.0 ≈ 0.0

FMPals
566 1 962 376 625 769 101 97 378 87
% 22.4 77.6 15.5 25.7 31.6 4.2 4.0 15.5 3.6

Table 2: Error category and location of the errors for A4F and FMPals dataset

Submission Similarity RQ2 from [14] examines the prevalence of syntactically
and semantically unique submissions. We focus on syntactic similarity as a se-
mantic comparison is easy on the predicate-level (sufficient for A4F), but more
complex on the model-level [26] (as it would have been required for FMPals).

8 Soaibuzzaman et al.

A4FpT FMPals

% # %
Syntactically Unique Models 57 777 59.9 3 513 42.7

Syntactically Correct Models (in unique models) 37 024 64.1 1 880 53.5
Syntax Error (in unique models) 20 753 35.9 1 633 46.5

Models within single edit paths:
Consecutive Identical Models 4 664 4.64 3 174 25.58
Non-Consecutive Identical Models 5 758 5.73 667 5.38
Table 3: Syntactically unique models in the A4FpT and FMPals datasets

Table 3 demonstrates that many user submissions comprise syntactically
unique models. Specifically, the A4F dataset reveals that 59.9% of models main-
tain syntactic uniqueness, in contrast to 42.7% observed within the FMPals
dataset. Among these submissions, 64.1% of models in the A4F dataset are syn-
tactically correct, whereas 35.9% are incorrect. Conversely, the FMPals dataset
indicates a syntactic correctness rate of 53.2% among the unique models, with
46.4% of the models being incorrect. The A4F dataset demonstrates significantly
more unique models than the FMPals dataset. Further analysis reveals (Table 3,
bottom) that for FMPals 25.6% of consecutive models in edit paths are identical
(only 4.6% in A4FpT). We believe that users repeatedly browse instances and
thus analyze the same model again. The Formal Methods Playground, as the of-
ficial Alloy Analyzer, only allows showing the next instances, whereas Alloy4Fun
also allows for navigating previous ones. It might be worthwhile implementing
this backward navigation feature in the Formal Methods Playground and the
Alloy Analyzer as well. Additional contributors to this difference might be that
instances displayed on the Alloy4Fun platform are usually counterexamples that
come with semantic classifications. This task-specific information might reduce
the amount of instances users choose to inspect.

Fixing Errors We adapt RQ3 from [14], which examines invalid submissions and
the effectiveness of Alloy’s compiler-based error reporting, by focusing specifi-
cally on how users fix errors over multiple edit steps.

Approximately one-third of the models are deemed invalid in both the A4FpT
and FMPals datasets. To gain further insights into how users address these issues,
we analyze the presence of errors within the edit paths associated with the
models. The results are summarized in Table 4. In the A4FpT dataset, 39.24%
of the edit paths contain at least one erroneous model, with 3.80% consisting
entirely of erroneous models. In comparison, the FMPals dataset reveals that
54.08% of the edit paths include at least one erroneous model, and 6.55% are
comprised entirely of erroneous models.

Fig. 1b depicts the edit steps necessary to correct the errors, i.e., the numbers
of consecutive, syntactically invalid models until reaching a syntactically correct
one. In the A4FpT dataset, users generally require a median of 1 revision to
resolve errors, with 75% needing less than or equal to two revisions for complete

On Writing Alloy Models: Metrics and a new Dataset 9

A4FpT FMPals

Edit paths (#) 24 592 747
With Invalid Models (%) 39.24 54.08
Without Valid Models (%) 3.80 6.55
Edit Path Length ≥ 5 (%) 25.93 64.79

Max Edit Path Length 107 211
Table 4: Details of syntactically invalid models in edit paths

correction. Likewise, in the FMPals dataset, users also show a median of 1 revision;
however, 75% of them need less than or equal to 3 revisions to address the errors.
This could point to more complex errors experienced by users within the FMPals
dataset. A distinction between specific error types might be helpful for future
analyses.

5.2 RQ2: Halstead Metrics for Typical Models

We aim to assess modeling difficulty using Halstead difficulty as defined in
Sect. 4.4. As an intuitive baseline, we analyze the sample models provided with
the Alloy Analyzer to assess the Halstead difficulty of well-known Alloy models.
These ca. 80 models comprise four categories: Algorithm, Book, Case Study, and
Temporal. Fig. 2a presents the Halstead difficulty for each category.

The Book category comprises example models from [12]. Most of these models
exhibit a difficulty rating ranging from 11.9 to 60.4, with a median difficulty of
27.2. In contrast, the Case Studies category includes Alloy case studies, e.g.,
analyses of the Firewire [8] and Chord [39] protocols, and exhibits much higher
Halstead difficulties between 130.8 and 176.4, with a median value 140.8.

We selected the final submitted Alloy model from each edit path to com-
pare the Halstead difficulty of the A4FpT and FMPals datasets with typical Alloy
models. Fig. 2b presents a box plot of the Halstead difficulty for these final sub-
missions across both datasets. The results indicate that the A4FpT and FMPals
datasets exhibit similar Halstead difficulty levels to the Book category of typ-
ical Alloy models shown in Fig 2a. This is no surprise, as both platforms are
mainly used in teaching contexts. However, the FMPals dataset demonstrates
greater Halstead difficulty than A4FpT, with median values of 20.3 and 16.3, re-
spectively. Furthermore, the plot suggests that the FMPals dataset demonstrates
greater variability in Halstead difficulty compared to A4FpT.

5.3 RQ3: Evolution of Halstead difficulty

We analyzed both datasets using clustering and standard deviation to examine
how Halstead difficulty evolves during Alloy modeling tasks.

We performed KMeans clustering on the Halstead difficulty scores of models
in both datasets. The clustering allowed us to group edit paths with similar dif-
ficulty levels, revealing how difficulty changes over time across different revisions

10 Soaibuzzaman et al.

Algorithms Book Case Studies Temporal
(a)

0

25

50

75

100

125

150

175

200

Ha
lst

ea
d

Di
ffi

cu
lty

Q1: 79.3

M: 85.8

Q3: 103.7

Q1: 11.9

M: 27.2

Q3: 60.4

Q1: 130.8

M: 140.9

Q3: 176.4

Q1: 68.9

M: 75.9
Q3: 85.3

algorithms
book
case_studies
temporal

A4FpT FMPals
(b)

0

10

20

30

40

50

60

70

Ha
lst

ea
d

Di
ffi

cu
lty

Q1: 9.1

M: 16.3

Q3: 25.8

Q1: 10.6

M: 20.3

Q3: 33.8

A4FpT
FMPals

Fig. 2: Halstead difficulty of (a) typical Alloy models from the sample models of
Alloy Analyzer and (b) last submitted models of the A4FpT & FMPals edit paths

of the models. We identified eight distinct clusters in the A4FpT dataset, while
the FMPals dataset revealed three clusters. This variation reflects the differing
complexity and characteristics of the models within each dataset.

In addition, we incorporated standard deviation into our analysis to assess the
consistency of difficulty levels within each cluster. It offers insights into whether
the evolution of difficulty is stable or erratic across edit paths within a cluster.

Figure 3 and Fig. 4 demonstrate the evolution of Halstead difficulty for the
A4FpT and FMPals datasets, respectively. These plots illustrate the mean diffi-
culty scores for each cluster over time, spanning across edit path steps. Shaded
regions represent the standard deviation, offering insights into how the difficulty
of models within each cluster varies as users refine their Alloy models.

In our analysis of Halstead difficulty within the A4FpT dataset, we found
that the standard deviation for seven of the eight clusters was relatively low,
ranging from 0 to 20. This indicates that the models within these clusters display
consistent difficulty levels throughout their revisions.

Cluster 4 is the largest, comprising 9,675 edit paths, and is characterized by
relatively low difficulty levels, with fewer than 20 revision steps required. Other
significant clusters with larger model counts include Clusters 1, 3, 5, and 8, each
containing thousands of edit paths. These clusters typically involve less than
30 revision steps, suggesting that the tasks in these groups are generally less
complex requiring fewer edits.

Cluster 6, which consists of only 24 edit paths, displays significantly higher
difficulty levels, ranging from 30 to 50. Further investigation revealed that most
of the models in this cluster originate from the Train Station modeling problem
from the EM 20/21 dataset. This suggests that this particular task may be
inherently more complex than others in the dataset.

On Writing Alloy Models: Metrics and a new Dataset 11

0 20 40 60 80 100
Edit Path Length

10

20

30

40

50

Ha
lst

ea
d

Di
ffi

cu
lty

Halstead Difficulty with Standard Deviation
Cluster 1 (n=4919)
Cluster 2 (n=796)
Cluster 3 (n=1708)
Cluster 4 (n=9675)
Cluster 5 (n=3016)
Cluster 6 (n=24)
Cluster 7 (n=190)
Cluster 8 (n=4264)

Fig. 3: Clustered Halstead difficulty of A4FpT dataset. The shaded region repre-
sents the standard deviation for each cluster

1 always all f: File | (f not in Protected and f not in Trash) implies f in
↪→ Protected ’

2 always all f: File | always f not in Protected implies f in Protected ’
3 always all f: File | eventually f not in Protected implies f in Protected ’
4 always all f: File | f not in Protected implies after f in Protected
5 always all f: File | f not in Protected implies f in Protected ’

Listing 1.2: An example investigation on the decline of difficulty over edit paths

A common observation across nearly all clusters of the A4FpT dataset is a
noticeable decrease in difficulty at the end of the editing process, accompanied
by a narrow standard deviation. We investigated this trend and discovered that
the decline may be linked to users making significant changes, such as removing
entire constraints to fix errors in their models. Users often begin with a more
complex constraint and gradually simplify it over time. Listing 1.2 provides an
example of this revision strategy where each line is a separate edit. Note that
Listing 1.2 shows the predicate body only while the Halstead difficulty is always
computed for the whole model.

In the FMPals dataset, we identified three clusters of Halstead difficulty. The
largest cluster, Cluster 1, with 592 edit paths, demonstrates a broad range of
Halstead difficulty values, spanning from 0 to 50, which indicates variability in
model complexity within this group. Cluster 2 is noteworthy due to its elevated
difficulty levels, ranging from 25 to 175. Upon further analysis, we discovered

12 Soaibuzzaman et al.

0 50 100 150 200
Edit Path Length

0

25

50

75

100

125

150

175
Ha

lst
ea

d
Di

ffi
cu

lty

Halstead Difficulty with Standard Deviation
Cluster 1 (n=592)
Cluster 2 (n=6)
Cluster 3 (n=43)

Fig. 4: Clustered Halstead difficulty of FMPals dataset. The shaded region repre-
sents the standard deviation for each cluster

that most of the models in this cluster were generated automatically7 rather
than being crafted by users, which may account for the higher difficulty levels
observed. Cluster 3, consisting of only 43 edit paths, is the most diverse regarding
difficulty, reflecting a broad spectrum of complexity. This diversity suggests that
the models in this cluster embody a broad array of challenges.

5.4 RQ4: Metrics related to Errors/Fixing

Correlation Between Halstead difficulty and Time to Fix Errors To investigate
whether higher Halstead difficulty is linked to error-fixing times, we calculated
the Spearman correlation coefficient between the Halstead difficulty of each first
syntactically incorrect model and the total time required to rectify its errors.
We focused our analysis on models that underwent at least one revision and
excluded cases where the time difference exceeded 600 seconds to concentrate on
active revision sessions.

For the A4FpT dataset, the Spearman correlation coefficient was −0.032
(p = 0.006). This negative correlation indicates a weak association, suggest-
ing that higher Halstead difficulty is correlated with slightly shorter error-fixing
times. However, the small effect size and low correlation strength imply that this
relationship is likely not practically significant.

Conversely, for the FMPals dataset, the Spearman correlation coefficient was
0.236 (p < 0.0001), revealing a weak yet statistically significant positive cor-
7 The models were generated as part of a student project based on [29]

On Writing Alloy Models: Metrics and a new Dataset 13

relation between Halstead difficulty and the time taken to correct errors. This
suggests that in the FMPals dataset, models with higher Halstead difficulty tend
to require more time for error correction. Although this correlation is stronger
than that observed in the A4FpT dataset, it still remains relatively weak.

These weak correlations indicate that other factors—such as model structure,
user expertise, or the nature of the errors—may play a more significant role in
determining error resolution time.

Correlation Between Halstead difficulty and Error Occurrence To explore the
impact of Halstead’s Difficulty on the likelihood of errors, we performed a logistic
regression analysis on both datasets. In this analysis, the dependent variable
indicated whether a model contained an error, with Halstead difficulty as the
independent variable.

For the A4FpT dataset, the results revealed a weak negative correlation be-
tween Halstead difficulty and error occurrence, with a coefficient of −0.0167
(z = −10.84, p < 0.001). Although this finding is statistically significant, the
effect size is minimal, as demonstrated by the low pseudo − R2 value of 0.0010
and the Point-Biserial correlation of −0.0339.

This suggests that models with higher Halstead difficulty are slightly less
likely to contain errors. However, this difference is negligible, suggesting that
factors beyond difficulty have a more pronounced influence on error occurrence.

In contrast, the FMPals dataset indicates a weak positive correlation be-
tween Halstead difficulty and error occurrence, with a coefficient of 0.0034 (z =
6.28, p < 0.001). While this relationship is statistically significant, it remains
small, as indicated by the pseudo−R2 value of 0.0027 and a Point-Biserial cor-
relation of 0.0587. This suggests that models with higher Halstead difficulty are
slightly more likely to experience errors in the FMPals dataset.

In summary, while the statistical analysis suggests a modest association be-
tween Halstead difficulty and error occurrence, the effect sizes in both datasets
are petite.

5.5 RQ5: Edit Distance and Difficulty Delta

To better understand how users evolve Alloy models, we have computed Lev-
enshtein distances [15] between consecutive models, i.e., the minimal number of
characters modified to transform one into the other. We show box plots of Lev-
enshtein distances between consecutive, non-identical models for both datasets
in Fig. 5a. The median and 75th percentile of the edit distance in the A4FpT
dataset are relatively small, with 10 and 28. They are significantly larger in the
FMPals dataset with 25 and 123. This is expected for the A4FpT dataset, as most
edits are confined to a single line in a predicate. It also shows that users typically
analyze their models frequently, not only when solving predefined tasks.

In addition to Levenshtein distances, we have also computed and aggregated
changes in Halstead difficulty in Fig. 5b. Note that Fig. 5b aggregates the differ-
ence not in absolute terms and thus also shows decreases in Halstead difficulty,

14 Soaibuzzaman et al.

A4FpT FMPals
Dataset

0

50

100

150

200

250

300

Le
ve

ns
ht

ei
n

Di
st

an
ce

s

Q1: 4

Med: 10
Q3: 28

Q1: 5

Med: 25

Q3: 123

Edit Distances between Models
A4FpT
FMPals

(a)

A4FpT FMPals

6

4

2

0

2

4

6

8

Ha
lst

ea
d

Di
ffi

cu
lty

 D
el

ta

Q1: -0.64

Med: 0.41
Q3: 1.30

Q1: -0.86

Med: 0.75

Q3: 2.93

Halstead Difficulty Delta
A4FpT
FMPals

(b)

Fig. 5: (a) Distribution of the edit distance (Levenshtein distance) and (b) Hal-
stead difficulty differences in edit chain

e.g., for both datasets more than 25% of the edit steps decrease the model’s Hal-
stead difficulty. This is no surprise as we have seen negative trends in particular
for the A4FpT dataset already in Fig. 3 and Fig. 4. Again, the median values
and 75th percentile show that larger change sizes in the FMPals are also reflected
in larger differences of Halstead difficulty between edited models.

5.6 Threats to Validity

We now identify and discuss various threats to the validity of our analyses.
First, we have processed the A4F dataset from [17] to obtain edits per task

as described in Sect. 4.3. To ensure correctness we have performed manual in-
spection of the resulting edit paths as the excerpt shown in Lst. 1.2. In addition,
for transparency and reproducibility we provide the implementation of our pro-
cessing in [32].

Second, we assume that the use of the Formal Methods Playground across
the dataset is similar to that of our students, i.e., small models are created and
analyzed. However, we have no control over how other users use the publicly
available platform, e.g., it could be used for teaching with very narrow task
definitions. To assess this uncertainty, we have assessed unique initial nodes of
edit paths in Sect. 4.2, giving some confidence in the models’ variability (392
in FMPals vs. 19 in A4FpT). In addition, we have manually inspected the edit
paths’ clusters as described in Sect. 5.3, identifying a small number of (partially)
generated models inside the dataset.

Third, existing resources on Halstead metrics do not contain formal defini-
tions of operators and operands and we are not aware of previous applications
of the metrics to Alloy. Following best practices suggested by Salt [27] we have

On Writing Alloy Models: Metrics and a new Dataset 15

clearly defined our counting strategy in Sect. 4.4 and provide an implementa-
tion for reproducibility and inspection at [32]. We cannot rule out that different
counting strategies would change the data presented across Sect. 5.

Finally, the use of metrics like the Halstead difficulty has been criticized for
being employed as indicators when they show low or no evidence of correlation
with various phenomena [30,31]. Our use of the metrics is rather descriptive, and
we have carefully analyzed possible correlations with errors and times required
to fix these in Sect. 5.4.

6 Related Work

In recent years, an increasing amount of work has been invested to understand
how novice users use formal methods and, in particular, the Alloy language.
Mansoor et al. [19] performed an exploratory study where users fix Alloy models
and also create them from scratch. They report that users (both novices and non-
novices) find it hard to start Alloy models from scratch [19]. Our new FMPals
dataset [34] exhibits these challenges.

Many works have analyzed the popular Alloy4Fun dataset [18,17]. Zheng et
al. [41] and Cerqueira et al. [4] use it to evaluate their model repair approaches.
Our analysis in Sect. 5.1 shows that the FMPals dataset is complementary in
locations and kinds of issues exposed and might be beneficial for works on model
repair. Barros et al. [2] used the Alloy4Fun dataset to generate suggestions for
the next edits based on similar models written by other users. This approach
relies on fixed tasks and known goals of edits, which are not given for our dataset.

Cunha et al. [6] have assessed what kind of hints best support novice users in
fixing faulty Alloy models. Datasets like ours and platforms like Alloy4Fun and
the Formal Methods Playground would allow large-scale comparative analyses
of the strategies suggested above on diverse models and modeling tasks.

Another line of work has focused on improving instance generation for Alloy
models [22,16,35,25] and understanding how different strategies support users
in understanding Alloy models [10,5]. These and the ambitious early user study
by Danas et al. [7] highlight the difficulty of setting up controlled studies and
evaluating data from multiple sources, e.g., interviews and tool instrumentation.
While our dataset is much more diverse, we are only able to make general obser-
vations due to absent task descriptions and characteristics of individual users.

Closest to our current work is the analysis of the Alloy4Fun dataset by Jo-
vanovic and Sullivan [14]. They extensively analyze user edits syntactically as
well as semantically, i.e., whether predicates are over- or under- constrained.
We adapt their research questions as described in Sect. 5.1 to compare our new
dataset to the one of Alloy4Fun. In addition, our analysis introduces and inves-
tigates a Halstead difficulty measure for Alloy models and strongly focuses on
edits performed on edit paths.

16 Soaibuzzaman et al.

7 Conclusion

We have presented the Formal Methods Playground Alloy (FMPals) dataset and
compared it to the well-known Alloy4Fun (A4F) dataset. Our comparison shows
that additional datasets are worthwhile as the A4F dataset is limited to user
edits in predicates while our FMPals dataset shows challenges in writing other
language constructs as well.

Our analysis focused on the evolution of model complexity as characterized by
the Halstead difficulty metric we adapted for Alloy models. The FMPals dataset
exhibits more stable growth of the Halstead difficulty of models in edit paths,
while the A4FpT shows interesting dips as edit paths terminate. These trends
indicate iteratively growing models in the FMPals dataset and debugging behavior
in the A4FpT dataset. Interestingly, the Halstead difficulty shows only a (very)
weak correlation with error prevalence and fixing times in both datasets, i.e., it
does not seem to be suitable indicator for the difficulty of fixing errors in Alloy
models.

Finally, an observation on repeated analyses of identical models in the FMPals
dataset suggests for tool improvements and for further analyses of how users
interact with generated instances.

8 Data Availability

We have made the Formal Methods Playground Alloy (FMPals) dataset publicly
available on Zenodo as [34]. As the use of the Formal Methods Playground
increases, we plan to follow the example of [17] and provide updates to this
dataset.

In addition, to support reproducibility of our metrics computations and the
preprocessing of the A4FpT dataset, we have made the implementation used for
our analyses available in a GitHub repository as [32].

References

1. Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal approach for detection of
security flaws in the android permission system. Formal Aspects Comput. 30(5),
525–544 (2018). https://doi.org/10.1007/S00165-017-0445-Z

2. Barros, A., Neto, H., Cunha, A., Macedo, N., Paiva, A.C.R.: Alloy repair hint
generation based on historical data. In: FM 2024. LNCS, vol. 14934, pp. 104–121.
Springer (2024). https://doi.org/10.1007/978-3-031-71177-0_8

3. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuxmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV. LNCS, vol. 8559, pp. 334–342. Springer (2014)

4. Cerqueira, J., Cunha, A., Macedo, N.: Timely specification repair for alloy 6. In:
SEFM 2022. LNCS, vol. 13550, pp. 288–303. Springer (2022). https://doi.org/10.
1007/978-3-031-17108-6_18

https://doi.org/10.1007/S00165-017-0445-Z
https://doi.org/10.1007/S00165-017-0445-Z
https://doi.org/10.1007/978-3-031-71177-0_8
https://doi.org/10.1007/978-3-031-71177-0_8
https://doi.org/10.1007/978-3-031-17108-6_18
https://doi.org/10.1007/978-3-031-17108-6_18
https://doi.org/10.1007/978-3-031-17108-6_18
https://doi.org/10.1007/978-3-031-17108-6_18

On Writing Alloy Models: Metrics and a new Dataset 17

5. Cornejo, C., Novaira, M.M., Permigiani, S., Aguirre, N., Frias, M.F., Brida, S.G.,
Regis, G.: An analysis of the impact of field-value instance navigation in alloy’s
model finding. In: ABZ 2024. LNCS, vol. 14759, pp. 141–159. Springer (2024).
https://doi.org/10.1007/978-3-031-63790-2_9

6. Cunha, A., Macedo, N., Campos, J.C., Margolis, I., Sousa, E.: Assessing the impact
of hints in learning formal specification. In: SEET@ICSE 2024. pp. 151–161. ACM
(2024). https://doi.org/10.1145/3639474.3640050

7. Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.: User stud-
ies of principled model finder output. In: SEFM 2017. LNCS, vol. 10469, pp. 168–
184. Springer (2017). https://doi.org/10.1007/978-3-319-66197-1_11

8. Devillers, M., Griffioen, W.O.D., Romijn, J., Vaandrager, F.W.: Verification of a
leader election protocol: Formal methods applied to IEEE 1394. Formal Methods
Syst. Des. 16(3), 307–320 (2000). https://doi.org/10.1023/A:1008764923992

9. Dini, N., Yelen, C., Alrmaih, Z., Kulkarni, A., Khurshid, S.: Korat-api: a framework
to enhance korat to better support testing and reliability techniques. In: SAC 2018.
pp. 1934–1943. ACM (2018). https://doi.org/10.1145/3167132.3167339

10. Dyer, T., Nelson, T., Fisler, K., Krishnamurthi, S.: Applying cognitive principles
to model-finding output: the positive value of negative information. Proc. ACM
Program. Lang. 6(OOPSLA1), 1–29 (2022). https://doi.org/10.1145/3527323

11. Halstead, M.H.: Elements of Software Science. Operating and Programming Sys-
tems, Elsevier Science Inc. (1977)

12. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press
(2006), http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928

13. Jackson, D.: Alloy: a language and tool for exploring software designs. Commun.
ACM 62(9), 66–76 (2019). https://doi.org/10.1145/3338843

14. Jovanovic, A., Sullivan, A.: Right or wrong - understanding how users write soft-
ware models in alloy. In: SEFM 2024. LNCS, vol. 15280, pp. 309–327. Springer
(2024). https://doi.org/10.1007/978-3-031-77382-2_18

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Proceedings of the Soviet physics doklady (1966)

16. Macedo, N., Cunha, A., Guimarães, T.: Exploring scenario exploration. In: FASE
2015. LNCS, vol. 9033, pp. 301–315. Springer (2015). https://doi.org/10.1007/
978-3-662-46675-9_20

17. Macedo, N., Cunha, A., Paiva, A.C.R.: Alloy4fun dataset for 2022/23 (Jul 2023).
https://doi.org/10.5281/zenodo.8123547

18. Macedo, N., Cunha, A., Pereira, J., Carvalho, R., Silva, R., Paiva, A.C.R., Ra-
malho, M.S., Silva, D.C.: Experiences on teaching alloy with an automated as-
sessment platform. Sci. Comput. Program. 211, 102690 (2021). https://doi.org/
10.1016/J.SCICO.2021.102690

19. Mansoor, N., Bagheri, H., Kang, E., Sharif, B.: An empirical study assessing
software modeling in alloy. In: FormaliSE 2023. pp. 44–54. IEEE (2023). https:
//doi.org/10.1109/FORMALISE58978.2023.00013

20. Maoz, S., Ringert, J.O.: Spectra: a specification language for reactive sys-
tems. Softw. Syst. Model. 20(5), 1553–1586 (2021). https://doi.org/10.1007/
S10270-021-00868-Z

21. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3_24

22. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: ICSE 2013. pp. 232–241.
IEEE Computer Society (2013). https://doi.org/10.1109/ICSE.2013.6606569

https://doi.org/10.1007/978-3-031-63790-2_9
https://doi.org/10.1007/978-3-031-63790-2_9
https://doi.org/10.1145/3639474.3640050
https://doi.org/10.1145/3639474.3640050
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1023/A:1008764923992
https://doi.org/10.1023/A:1008764923992
https://doi.org/10.1145/3167132.3167339
https://doi.org/10.1145/3167132.3167339
https://doi.org/10.1145/3527323
https://doi.org/10.1145/3527323
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843
https://doi.org/10.1007/978-3-031-77382-2_18
https://doi.org/10.1007/978-3-031-77382-2_18
https://doi.org/10.1007/978-3-662-46675-9_20
https://doi.org/10.1007/978-3-662-46675-9_20
https://doi.org/10.1007/978-3-662-46675-9_20
https://doi.org/10.1007/978-3-662-46675-9_20
https://doi.org/10.5281/zenodo.8123547
https://doi.org/10.5281/zenodo.8123547
https://doi.org/10.1016/J.SCICO.2021.102690
https://doi.org/10.1016/J.SCICO.2021.102690
https://doi.org/10.1016/J.SCICO.2021.102690
https://doi.org/10.1016/J.SCICO.2021.102690
https://doi.org/10.1109/FORMALISE58978.2023.00013
https://doi.org/10.1109/FORMALISE58978.2023.00013
https://doi.org/10.1109/FORMALISE58978.2023.00013
https://doi.org/10.1109/FORMALISE58978.2023.00013
https://doi.org/10.1007/S10270-021-00868-Z
https://doi.org/10.1007/S10270-021-00868-Z
https://doi.org/10.1007/S10270-021-00868-Z
https://doi.org/10.1007/S10270-021-00868-Z
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1109/ICSE.2013.6606569

18 Soaibuzzaman et al.

23. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The
margrave tool for firewall analysis. In: LISA 2010. USENIX Association (2010),
https://www.usenix.org/conference/lisa10/margrave-tool-firewall-analysis

24. Paige, M.: A metric for software test planning. In: Conference Proceedings of
COMPSAC. vol. 80, pp. 499–504 (1980)

25. Ringert, J.O., Sullivan, A.: Abstract alloy instances. In: FM 2023. LNCS, vol.
14000, pp. 364–382. Springer (2023). https://doi.org/10.1007/978-3-031-27481-7_
21

26. Ringert, J.O., Wali, S.W.: Semantic comparisons of alloy models. In: MoDELS
2020. pp. 165–174. ACM (2020). https://doi.org/10.1145/3365438.3410955

27. Salt, N.F.: Defining software science counting strategies. ACM SIGPLAN Notices
17(3), 58–67 (1982). https://doi.org/10.1145/947912.947916

28. Samimi, H., Aung, E.D., Millstein, T.D.: Falling back on executable specifications.
In: ECOOP 2010. LNCS, vol. 6183, pp. 552–576. Springer (2010). https://doi.org/
10.1007/978-3-642-14107-2_26

29. Schnabel, T., Weckesser, M., Kluge, R., Lochau, M., Schürr, A.: Cardygan: Tool
support for cardinality-based feature models. In: VaMoS 2016. pp. 33–40. ACM
(2016). https://doi.org/10.1145/2866614.2866619

30. Shen, V.Y., Conte, S.D., Dunsmore, H.E.: Software science revisited: A critical
analysis of the theory and its empirical support. IEEE Trans. Software Eng. 9(2),
155–165 (1983). https://doi.org/10.1109/TSE.1983.236460

31. Shepperd, M.J., Ince, D.C.: A critique of three metrics. J. Syst. Softw. 26(3),
197–210 (1994). https://doi.org/10.1016/0164-1212(94)90011-6

32. Soaibuzzaman, Kalantari, S., Ringert, J.O.: Alloy metrics replication package
(2025), available from https://github.com/se-buw/alloy-metrics

33. Soaibuzzaman, Ringert, J.O.: Introducing github classroom into a formal methods
module. In: FMTea 2024. LNCS, vol. 14939, pp. 25–42. Springer (2024). https:
//doi.org/10.1007/978-3-031-71379-8_2

34. Soaibuzzaman, Ringert, J.O.: Formal methods playground alloy dataset (Feb 2025).
https://doi.org/10.5281/zenodo.14865553

35. Sullivan, A.: Hawkeye: User-guided enumeration of scenarios. In: ISSRE 2021. pp.
569–578. IEEE (2021). https://doi.org/10.1109/ISSRE52982.2021.00064

36. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS
2007. LNCS, vol. 4424, pp. 632–647. Springer (2007). https://doi.org/10.1007/
978-3-540-71209-1_49

37. Trippel, C., Lustig, D., Martonosi, M.: Security verification via automatic
hardware-aware exploit synthesis: The checkmate approach. IEEE Micro 39(3),
84–93 (2019). https://doi.org/10.1109/MM.2019.2910010

38. Zaeem, R.N., Khurshid, S.: Contract-based data structure repair using alloy. In:
ECOOP 2010. LNCS, vol. 6183, pp. 577–598. Springer (2010). https://doi.org/10.
1007/978-3-642-14107-2_27

39. Zave, P.: Using lightweight modeling to understand chord. Comput. Commun.
Rev. 42(2), 49–57 (2012). https://doi.org/10.1145/2185376.2185383, https://doi.
org/10.1145/2185376.2185383

40. Zave, P.: Reasoning about identifier spaces: How to make chord correct. IEEE
Trans. Software Eng. 43(12), 1144–1156 (2017). https://doi.org/10.1109/TSE.
2017.2655056

41. Zheng, G., Nguyen, T., Brida, S.G., Regis, G., Aguirre, N., Frias, M.F., Bagheri, H.:
ATR: template-based repair for alloy specifications. In: ISSTA 2022. pp. 666–677.
ACM (2022). https://doi.org/10.1145/3533767.3534369

https://www.usenix.org/conference/lisa10/margrave-tool-firewall-analysis
https://doi.org/10.1007/978-3-031-27481-7_21
https://doi.org/10.1007/978-3-031-27481-7_21
https://doi.org/10.1007/978-3-031-27481-7_21
https://doi.org/10.1007/978-3-031-27481-7_21
https://doi.org/10.1145/3365438.3410955
https://doi.org/10.1145/3365438.3410955
https://doi.org/10.1145/947912.947916
https://doi.org/10.1145/947912.947916
https://doi.org/10.1007/978-3-642-14107-2_26
https://doi.org/10.1007/978-3-642-14107-2_26
https://doi.org/10.1007/978-3-642-14107-2_26
https://doi.org/10.1007/978-3-642-14107-2_26
https://doi.org/10.1145/2866614.2866619
https://doi.org/10.1145/2866614.2866619
https://doi.org/10.1109/TSE.1983.236460
https://doi.org/10.1109/TSE.1983.236460
https://doi.org/10.1016/0164-1212(94)90011-6
https://doi.org/10.1016/0164-1212(94)90011-6
https://github.com/se-buw/alloy-metrics
https://doi.org/10.1007/978-3-031-71379-8_2
https://doi.org/10.1007/978-3-031-71379-8_2
https://doi.org/10.1007/978-3-031-71379-8_2
https://doi.org/10.1007/978-3-031-71379-8_2
https://doi.org/10.5281/zenodo.14865553
https://doi.org/10.5281/zenodo.14865553
https://doi.org/10.1109/ISSRE52982.2021.00064
https://doi.org/10.1109/ISSRE52982.2021.00064
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1109/MM.2019.2910010
https://doi.org/10.1109/MM.2019.2910010
https://doi.org/10.1007/978-3-642-14107-2_27
https://doi.org/10.1007/978-3-642-14107-2_27
https://doi.org/10.1007/978-3-642-14107-2_27
https://doi.org/10.1007/978-3-642-14107-2_27
https://doi.org/10.1145/2185376.2185383
https://doi.org/10.1145/2185376.2185383
https://doi.org/10.1145/2185376.2185383
https://doi.org/10.1145/2185376.2185383
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1145/3533767.3534369
https://doi.org/10.1145/3533767.3534369

On Quantitative Solution Iteration in QAlloy

Pedro Silva1,3[0000−0001−6918−5558], Nuno Macedo2,3[0000−0002−4817−948X], and
José N. Oliveira1,3[0000−0002−0196−4229]

1 Univ. do Minho, Braga, Portugal jno@di.uminho.pt
2 Faculdade de Engenharia, Univ. Porto, Porto, Portugal nmacedo@fe.up.pt

3 INESC TEC, Portugal pedro.d.silva@inesctec.pt

Abstract. A key feature of model finding techniques allows users to
enumerate and explore alternative solutions. However, it is challenging
to guarantee that the generated instances are relevant to the user, rep-
resenting effectively different scenarios.
This challenge is exacerbated in quantitative modelling, where one must
consider both the qualitative, structural part of a model, and the quan-
titative data on top of it. This results in a search space of possibly in-
finite candidate solutions, often infinitesimally similar to one another.
Thus, research on instance enumeration in qualitative model finding is
not directly applicable to the quantitative context, which requires more
sophisticated methods to navigate the solution space effectively.
The main goal of this paper is to explore a generic approach for navigat-
ing quantitative solution spaces and showcase different iteration opera-
tions, aiming to generate instances that differ considerably from those
previously seen and promote a larger coverage of the search space.
Such operations are implemented in QAlloy – a quantitative extension
to Alloy – on top of Max-SMT solvers, and are evaluated against several
examples ranging, in particular, over the integer and fuzzy domains.

Keywords: Quantitative Modelling · Scenario Exploration · Model Find-
ing · Alloy · Max-SMT Solvers.

1 Introduction

Alloy [9] is a successful, lightweight formal modelling language supported by a
model finding and model checking tool-set. The language finds its semantic foun-
dations in relation algebra [26], abstracting as much as possible over concrete
data so as to make model checking feasible. Such use of uninterpreted symbols is
very welcome in abstract modelling but less handy wherever models involve con-
crete (e.g. numeric) data types behaving as measures, metrics or quantities. This
led to the development of QAlloy [22,21], a quantitative extension to standard
Alloy that allows reasoning about quantitative models (e.g. fuzzy).

A key feature of model discovery techniques is to allow users to explore al-
ternative model instances. However, generating instances that are helpful to the
user is challenging [4], and research has focused on providing instances that

2 Silva et al.

represent truly different and illustrative scenarios [11,15,29]. This challenge be-
comes more difficult when considering quantitative models, where not only the
qualitative and structural component of a model must be considered, but also
its quantitative data.

In fact, quantities introduce a new layer of complexity in model finding be-
cause of possible infinite solution spaces. The main contributions of this paper
are: i) the formalization of iteration operations in the context of quantitative
model finding; ii) their implementation in QAlloy using its SMT-based back-
end; iii) an evaluation of the approach in terms of performance and diversity of
generated instances.

The rest of the paper is structured as follows. Section 2 motivates the work
through a couple of examples. Section 3 formalizes the iteration operations,
whose implementation in QAlloy is presented in Section 4. Section 5 presents the
evaluation of the approach proposed. Lastly, Section 6 presents related work,
followed by conclusions and directions for future work in Section 7.

2 Quantitative Enumeration by Example

This section demonstrates the issues related with the iteration over quantitative
relational instances and why previously proposed approaches for (qualitative)
instance iteration are inadequate in this context. Then we briefly show how the
enumeration approach proposed in this paper would result in more varied, and
possibly more useful, instance exploration sessions.

We will consider two examples from distinct quantitative domains, one re-
quiring integer quantities and another fuzzy values (reals between 0 and 1). This
will help highlight the challenges that arise in domains that are inherently infi-
nite, the former on its upper and lower bounds, and latter for the infinite number
of reals in any interval. For illustration purposes we rely on QAlloy4, although
the discussion applies to quantitative model finding in general.

Example 1: Supermarket self-checkout system Consider a self-checkout system
operating in a supermarket: there are products, that have a certain stock avail-
able, and bags processed by the system, each contains varying amounts of the
available products. The system is expected to find inconsistencies, for instance,
regarding the products in the bags and available stock. We consider a section
of the supermarket handling tea, coffee and milk products. These are packaged
in containers of varying sizes, whose weight is measured in oz, subject to some
restrictions guaranteed by the suppliers. Model finding techniques are useful
not only to explore scenarios that satisfy certain properties, but also to explore
counterexamples that violate certain properties. Consider the verification of the
constraint “if a bag weights more than another, it means that it contains more
products”, which naturally does not hold in general. We modelled this problem
in QAlloy [22], and wish to explore its counterexamples.

4 The full QAlloy models used in this section are publicly available [20].

On Quantitative Solution Iteration in QAlloy 3

Fig. 1. Naive solution iteration on the supermarket example.

Naive iteration The most basic enumeration in model finding is to remove the
current instance from the solution space by negating the current valuation of the
model’s variables. This is the technique used in Alloy 5 and the current QAlloy.
Figure 1 shows the first counterexamples found through this approach.5

Two kinds of changes can be identified: in the first two steps there is a
change in the structure of the instance, albeit a minimal change in the 2nd one.
Additionally, in every step there are arbitrary changes in the quantities assigned
to the model’s elements.6 After the two first steps, there are no longer any
changes in the structure, and only quantities are being changed. This persists
through the first 100 instances, with only occasional changes of an edge, while
often getting “stuck” for dozens of instances changing the stock of a single item.
These instances are valid counterexamples, but they are so similar that the user
can easily miss relevant instances evidencing important issues within the model,
resulting in a frustrating experience and reduced effectiveness for validation.

Separation of concerns The two kinds of change mentioned above are quite dif-
ferent in nature: one affects the structural aspects of the instance and is similar
to traditional (qualitative) iteration; the other affects the quantities assigned to
each element of the instance. Mixing these two concepts may result in modifi-
cations that may be too difficult for the user to interpret. We propose to factor
iteration across two distinct axes: (a) structure-level methods will focus in finding
instances that are structurally distinct, providing a different support on which to
5 Recall that model finding is often backed by off-the-shelf solvers, so different solvers
or configuration may result in a different sequence of instances.

6 $totalWeight and $count are not part of the instance, but helper functions showing
derived information, respectively the total weight and product count of a bag.

4 Silva et al.

assign quantities, and (b) quantity-level methods will focus on finding alternative
quantities for a fixed structure. This dichotomy will allow the user to first search
for an interesting structure to examine, and then explore alternative quantities
over that structure in a more predictable and controlled way; once validated, the
user can ask for another structure and repeat the process. Since model finders act
on a bounded domain of discourse, iteration over structures is necessarily finite
and can be exhausted. This is similar in nature to the approach taken in Alloy
6 when the dynamic aspect was introduced: iteration over the static elements
of the instance (its configuration) is distinct from trace iteration over a fixed
configuration; likewise, the number of valid configurations is finite, but traces
are potentially infinite (if no upper bound is imposed on trace prefix length).

Fig. 2. Structure-level solution iteration on the supermarket example.

The sequence of solutions presented in Fig. 2 was obtained by employing
an iteration approach focusing on structural changes. Notice how the instances
clearly change shape, illustrating more varied scenarios, with different number
of bags and contained products. Once the user finds an instance that requires
further analysis, quantities can be varied for that structure. If the 3rd instance
in Fig. 2 piqued the interest of the user, the iteration over quantity values only
would result in the instances shown in Fig. 3. From one instance to another, there
are noticeable changes between variants of the same solution structure-wise, that
violate the property. For example, the 1st instance has two bags containing the
same number of elements but with different weight, while in 2nd two of the bags
contain more elements but weight less than a third one.

On Quantitative Solution Iteration in QAlloy 5

Fig. 3. Quantity-level solution iteration on the supermarket example.

Example 2: Synthesis of medical diagnoses Consider that medical professionals
compile into a fuzzy relation symptoms the intensity with which each monitored
patient is afflicted by each symptom. These patients are professionally diagnosed,
the information thereof being encoded in a fuzzy relation diagnostic from each
patient to each disease. A classical work on fuzzy logic [19] proposed to synthe-
size this information into a fuzzy relation pathology relating each symptom
to each disease, which can then be used to produce diagnoses of new patients,
through its fuzzy composition with an arbitrary symptoms relation. Model find-
ing can be used to validate relation pathology by searching for patients with
certain combinations and intensities of symptoms. Given a pre-determined rela-
tion pathology, suppose one wishes to explore scenarios where “two patients do
not share any common symptoms, but are diagnosed with the same diseases”.

Fig. 4. Naive solution iteration for the medical diagnosis example.

6 Silva et al.

Fig. 5. Structure-level solution iteration for the medical diagnosis example.

Fig. 6. Naive quantity-level solution iteration for the medical diagnosis example.

Guided iteration Having modelled this problem in QAlloy [21], Fig. 4 depicts the
first instances obtained using the naive iteration approach. Similarly to example
1, only the 1st and 2nd solutions vary significantly, both patients showing the
same symptoms thereafter, in very similar intensities. Therefore, the resulting di-
agnosis is always the same.7 Let us apply the structure/quantity-level operations
discussed previously. The former, shown in Fig. 5, leads to different combinations
of symptoms under the imposed restrictions (patients with the same diagnosis).
Meanwhile, quantity iterations show change in symptom intensity and a possible
change in the diagnosis outcome. However, after a few more iterations, the pro-
cess “converges” into the one presented in Fig. 6, producing solutions which are
infinitesimally different from one another. Tabular information is shown since
they are indistinguishable in the graphic representation due to rounding.

Clearly, naive quantity-level iteration is still insufficient, for such iteration op-
erations should ensure more “vectorial distance” among instances. This problem,
already explored in the qualitative setting [11], is more complex in quantitative
domains: one cannot ask for instances that are furthest away from the current in-
stance, because this would result in a “ping-pong” between two sets of marginally
different instances. Instead, to guarantee a good coverage of the search space,
one must generate instances that are far from all previously seen instances. Fig-
ure 7 displays one such enumeration, starting from the 1st solution found, from
which three different diagnosis were quickly found. These varied scenarios may
7 Relation $diagnosis is a derived relation selecting the most likely disease(s).

On Quantitative Solution Iteration in QAlloy 7

Fig. 7. Guided quantity-level solution iteration for the medical diagnosis example.

be essential for field experts to validate and refine the diagnosis relation, unlike
the very similar scenarios resulting from naive iteration operations.

In summary, our main insights for this work are that i) iteration over struc-
tural and quantitative aspects must be provided as separate operations, and that
ii) the latter must be guided in order to guarantee sufficiently varied instances.

3 Solution Iteration

Quantitative relational model finding A quantitative, relational model finding
problem Q is a tuple 〈M, L, U, φ,S〉, where:

– M is a tuple 〈D,U , L0, U0〉 containing the static information of the problem,
namely the quantitative domain (such as integers, fuzzy values, or reals) D,
the universe of atoms U , and the original lower- and upper-bounds L0 and
U0, which are qualitative bindings R → P(TU) where TU is the set of atom
tuples from U , setting the upper- and lower-bounds of free relations R;

– L,U : R → P(TU) are the current lower- and upper-bounds such that, for
any r ∈ R, L(r) ⊆ U(r);

– φ is a relational formula over variables from R;
– S a set of bindings from which the instance is to be distanced.

An instance is a quantitative binding I : R → TU → D that, for each
relation r ∈ R, assigns a quantity from D to each tuple from TU . The support
of I is a qualitative binding supp I : R → P(TU), such that for each relation
r ∈ R, t ∈ supp I(r) iff I(r)(t) 6= 0. An instance I is a solution to a problem
Q = 〈M, L, U, φ,S〉, denoted by I |= Q, if for any relation r ∈ R, L(r) ⊆
supp I(r) ⊆ U(r), and φ holds. Additionally, the solver will try to optimize the
distance of the newly generated solution from the set S. We will allow S to
contain both qualitative and quantitative bindings, and assume that the model
finder adapts the distance measures accordingly. (More about this in Section 4.)

As a simple example, consider a problem with 3 relations declared with the
following lower- and upper-bounds: unary (i.e., sets) {} ⊆ X ⊆ {(x), (y)} and
{} ⊆ Y ⊆ {(w), (z)}, and binary {} ⊆ R ⊆ {(x,w), (x, z), (y, w), (y, z)}, and a
constraint φ imposing R ⊆ X ×Y . A possible valid solution for D = Z would be

8 Silva et al.

the following, omitting the zero-valued tuples:

I = {X 7→ (x) 7→ 1, Y 7→ (w) 7→ 1, Y 7→ (z) 7→ 2,

R 7→ (x,w) 7→ 5, R 7→ (x, z) 7→ 7} .

An iteration is an operation that, given a problem Q and a solution (quantita-
tive binding) I, returns a new problem to generate a new solution. For instance,
the naive iteration, denoted by next, is simply defined as:

next(〈M, L, U, φ,_〉, I) = 〈M, L, U, φ ∧ ¬JIK, ∅〉

where JIK produces a formula that exactly represents I, which is excluded as a
possible solution by being negated into φ. S is set to ∅ since there is no distance
goal in next. This guarantees that no identical instance is returned, i.e.:

∀I ′ · I ′ |= next(Q, I)⇒ I 6= I ′

Subsequent applications of next accumulate negated solutions in φ, so no two
identical instances are ever returned.

Structure-level iteration These iterations, which we shall denote as variants of a
nextS operation for different optimization goals, are expected to produce a new
solution with a different structure, i.e., abiding to the following property:

∀I ′ · I ′ |= nextS(Q, I)⇒ supp I 6= supp I ′

Without a distance goal, this operation essentially removes the current structure
from the search space:

next∅S(〈M,_,_, φ,_〉, I) = 〈M, L0, U0, φ ∧ ¬Jsupp IK, ∅〉

Note the abuse of notation in denoting by Jsupp IK the translation of a qualitative
binding into a formula that just determines whether tuples are present in the
solution, regardless of the associated quantity (i.e., whether their value is zero).
Notice how the bounds must be reset by this operation: the quantitative-level
iterations (presented next), force a particular structure by tightening the bounds,
which must be reset whenever a new structure is requested.

Without any optimization goal, next∅S behaves essentially like a qualitative
iteration, ignoring the quantities. If we wish to explore more varied structures, a
distance goal must be set. This is similar to target-oriented operations proposed
for the qualitative context [11]. As an example, consider an operation nextBS that
tries to produce maximally different structures.

nextBS (〈M,_,_, φ,_〉, I) = 〈M, L0, U0, φ ∧ ¬Jsupp IK, {supp I}〉

The distance goal is simply the support of the previous instance, so that the
structure of the next solution is as distinct as possible. Notice that the previous
goal is ignored, including any instances accumulated by the quantitative-level
iterations (presented next).

On Quantitative Solution Iteration in QAlloy 9

Quantity-level iteration Enumerating over quantities of a particular structure, a
class of operations to be denoted by variants of nextQ, must satisfy two invariants:
that the solutions preserve the specified structure throughout such enumeration
steps (or until there are no more solutions of this kind respecting the model’s
constraints), and that some quantity changes:

∀I ′ · I ′ |= nextQ(Q, I)⇒ supp I = supp I ′ ∧ I 6= I ′

The naive quantitative-level iteration next∅Q will allow quantities to change ar-
bitrarily. Formally:

next∅Q(〈M,_,_, φ,_〉, I) = 〈M, supp I, supp I, φ ∧ ¬JIK, ∅〉

Note how the lower- and upper-bounds are fixed with the support of I, forcing
the exact same tuples to exist in the next solution.

To produce solutions that are maximally distinct, note that one cannot sim-
ply ask for quantities further away from the current I, because in dense domains
such as the fuzzy one, this could result in a “ping-pong” behaviour between two
sets of similar solutions. Thus, we must accumulate all previously seen solutions
as the distance goal. Structure-level iterations always reset S, so these operations
only consider the distance to solutions for the currently fixed structure.

nextSQ(〈M,_,_, φ,S〉, I) = 〈M, supp I, supp I, φ ∧ ¬JIK,S ∪ {I}〉

4 Quantitative Iteration in QAlloy

The authors have previously proposed an extension to Alloy to allow quantitative
relational modelling – QAlloy — which currently supports both the integer and
fuzzy domains. This section describes how the iteration operations from the
previous section were integrated into the model finding backend of QAlloy, briefly
introducing the QAlloy infrastructure as needed.8 For a more detailed description
of QAlloy, the interested reader is redirected to [22,21].

QAlloy and its Analyzer At the language level, the key extension of QAlloy is
the introduction of n-ary quantitative relations through special keywords, whose
tuples will be assigned values from the selected domain (Z for int and [0, 1] ⊆ R
for fuzzy), the 0 quantity representing the tuple’s absence from the relation. The
semantics of the relational operators (e.g. relational composition) were adapted
accordingly, preserving the bulk of the language and retro-compatibility in case
only Boolean relations are used. A particularity is that numerical constants
cannot be declared standalone, but rather associated with an element from U ,
i.e., they are “typed” and thus benefit from the Alloy’s type system. This promotes
a more rigorous usage of units, which are often the source of issues in software
(e.g., combining two quantities of “incompatible units” throws a type error).
8 QAlloy is an extension to Alloy 5; migration into Alloy 6 is underway, but currently
the temporal aspect introduced in this latest release is not supported.

10 Silva et al.

Both the Alloy Analyzer and the underlying Kodkod [27] relational model
finder have been extended to handle quantitative relational models. Kodkod’s
Boolean structures managing relations and operations between them were ex-
tended to numerical ones, namely representing quantitative relations through
numerical matrices. Relational operations are thus defined by linear algebra.
To actually solve a model finding problem, Kodkod’s SAT solver backend was
switched to one that relies on off-the-shelf SMT solvers. The results are then
provided back to the Analyzer whose visualizer and evaluator were adapted to
the quantitative context, as shown in the examples of Section 2.

The two new classes of iterations, whose implementation is detailed next, are
provided to the user in the visualizer’s toolbar with buttons “Next Structure”
and “Next Quantity”, in contrast to the single “Next” of Alloy 5.

Quantitative iteration in Kodkod As highlighted in Section 2, Kodkod’s iteration
(operation next) is not effective in quantitative problems. Thus, the alternative
iteration methods proposed in Section 3 were implemented at the Kodkod level.
Since these require optimization capabilities, we rely on Max-SMT solvers [16]
which allow the definition of optimization goals.

The SMT specification for a given quantitative model finding problem Q
defines its primary variables through function symbols. When D = Z, the function
symbols are declared as integer-valued, with the solving process being executed
according to the Theory of Integers using the logical fragment QF_NIA; for D =
[0, 1] ⊆ R, the function symbols are specified as reals and the QF_NRA of the
Theory of Reals is used instead. Each free n-ary relation r ∈ R is encoded as
a |U|n matrix; each matrix element gives origin to a free variable at SMT-level,
denoting the value of an n-ary tuple t in r. Let r_t be such a primary SMT
variable. If a tuple t is in the lower-bound of L(r), r_t is forced is be non-zero;
if it is outside the upper-bound of U(r), it is forced to be zero.

Table 1. SMT encoding of bindings for ni-ary relations ri ∈ R and tuples tni
j ∈ TU

Binding SMT encoding f(r, t)

¬JBK (assert (or f(r0, t
n0
0) f(r0, t

n0
1) . . . f(rk, t

nk
|U|nk)))

{
(not (= r_t 0)) if B(r)(t) = 0
(= r_t 0) otherwise

¬JIK (assert (or f(r0, t
n0
0) f(r0, t

n0
1) . . . f(rk, t

nk
|U|nk))) (not (= r_t v)) where v = I(r)(t)

Constraints over function symbols are imposed through assertions, which are
managed in the solver’sAssertion Stack. This structure supports push and pop
operations to manage assertions at different levels, and commands such as e.g.
(check-sat) — which is used to determine the satisfiability of the model —
take into account every declaration and assertion up to the level of the stack
where it is being called. Thus, although formally a new problem is generated
whenever an iteration is applied, for performance issues we actually preserve the
SMT problem running between iterations and update the stack accordingly. The
problem’s constraint φ is set at the base level of the assertion stack, meaning that

On Quantitative Solution Iteration in QAlloy 11

it is always considered; meanwhile, temporary constraints might be considered in
a new level through push, and later on may be disregarded using pop, enabling the
application of different iteration operations. Two kinds of additional constraints
can occur in a problem Q: (a) imposing additional lower- or upper-bounds adds
constraints to the primary variables, which are popped when reset into L0 and
U0; and (b) introducing additional constraints ¬JBK and ¬JIK for qualitative and
quantitative bindings, respectively, whose translation is shown in Table 1. These
assertions are pushed after every solution is found and are never popped, so the
removal of a solution from the search space is permanent.

Table 2. SMT incremental goals for ni-ary relations ri ∈ R and tuples tni
j ∈ TU

Goal SMT encoding d(r, t)

B

(assert-soft d(r0, t
n0
0)) {

(not (= r_t 0)) if B(r)(t) = 0
(= r_t 0) otherwise

(assert-soft d(r0, t
n0
1))

. . .
(assert-soft d(rk, t

nk
|U|nk))

ISDst (maximize (+ d(r0, t
n0
0)) d(r0, t

n0
1) ... d(rk, t

nk
|U|nk)))

(ite (> r_t v) (- r_t v) (- v r_t))
where v = I(r)(t)IVDst

(maximize d(r0, t0))
(maximize d(r0, t1))

. . .
(maximize d(rk, t|U||rk|))

Max-SMT solvers provide optimization commands such as (maximize t),
which signal the solver to maximize the value of term t according to the stack’s
assertions; and (assert-soft a) to declare soft-constraints, whose validity
is not required, but the solver will attempt to maximize the number of soft-
constraints which can hold. These features can be used to implement different
goals in guided iterations. The goal is to generate a solution that is as further
away from a set of bindings S, but since S grows incrementally with each new in-
stance, we can also incrementally accumulate goals in the assertion stack (until it
is reset by a structure-level operation, in which case the goals must be popped).
Table 2 shows the encoding for single qualitative and quantitative bindings. It
should be noted that the shown encoding implements the Manhattan distance
between bindings (i.e., the sum of differences), rather than the more classical Eu-
clidean distance. Our early experiments showed that the latter weighted heavily
on the underlying solvers, due to the usage of exponentiation and square root
operations. Evaluation in the next section will show that this still produced
reasonable results with acceptable performance.

Two alternative encodings are shown for a quantitative binding I: one maxi-
mizes the distance to the instance (SDst), the other the distance to each tuple
of the instance individually (VDst). Although these are semantically equivalent,
Max-SMT solvers perform differently in multi-objective optimization problems.
In order to further mitigate this issue, we explore alternative goal implementa-
tions that reduce the number of objectives by considering the average of all seen
bindings (SAvg and VAvg, respectively). The trade-off is that these averages

12 Silva et al.

Table 3. SMT batch goals for ni-ary relations ri ∈ R and tuples tni
j ∈ TU

Goal SMT encoding d(r, t)

ISAvg (maximize (+ d(r0, t
n0
0) d(r0, t

n0
1) ... d(rk, t

nk
|U|nk)))

(ite (> r_t v) (- r_t v) (- v r_t))

where v =
∑

I∈S I(r)(t)

|S|IVAvg

(maximize d(r0, t
n0
0))

(maximize d(r0, t
n0
1))

...
(maximize d(rk, t

nk
|U|nk))

are updated in each iteration, so these objectives must be popped from the stack
at each iteration. Their encoding is shown in Table 3 (focusing on quantitative
cases, since structure-level goals consider a single previous binding). Max-SMT
solvers use different priorities towards which the goals should be optimized,
including a lexicografic order; an independent box objective that attempts to find
a solution where every goal is maximal; or through pareto fronts. These vary in
performance and may reach different solutions; we evaluate these alternatives in
the next section.

Unbounded domains As one might expect, when using optimization goals for
problems which are neither implicitly nor explicitly bounded, the optimization
goal may be infinitely valued. In these situations Max-SMT solvers report that
a goal is unbounded, alongside a non-optimal solution. Our current implemen-
tation reports this to the user, but still providing the valid, but not-optimal,
solution. The user is nonetheless advised to restrict the quantitative model with
additional constraints to bound the values of the quantitative relations.

5 Evaluation

This section evaluates the proposed quantitative solution-iterations and their
implementation in a Max-SMT backend through QAlloy. We shall be interested
in assessing not only performance but also how varied the generated solutions
are. While we are aware that assessing the quality of the generated instances
requires proper user studies, we consider their variety to be a prerequisite for
useful iteration sessions, this leading to the following research questions:

RQ1 How efficient is the SMT implementation of the quantitative iterations?
RQ2 Which iterations produce more varied solutions within their class?
RQ3 How efficient is the detection of infinitely-valued optimization goals?

To answer these questions, we consider several QAlloy examples. We consider
a very simple model of a point in the Cartesian plane in both the integer and
fuzzy domains, which proved useful to visualize the impact of the iterations in
the solution space. In the integer domain, these include the supermarket self-
checkout system addressed in Section 2; a model of quantitative properties over
vertex-labelled graphs; a model for a simple electronic purse and the transfer-
ence operations between them; two variants of flow networks, with the flow that

On Quantitative Solution Iteration in QAlloy 13

passes through the network being untyped in the first example, and explicitly
typed as litres in the second. In the fuzzy domain, problems include the QAlloy
medical diagnosis showcased in Section 2, as well as an intuitionistic variant [5];
fuzzy clustering applied to grouping portraits based on visual similarity [25]; two
distinct models of fuzzy controllers, one an automatic heater using the Mamdani
fuzzy inference system, and the other a tipping system according to the service
and food appraisal, modelled as a Sugeno fuzzy inference system [12,24,18].

We selected 19 commands for these models, all satisfiable in order to allow
for iteration (i.e., either run commands generating instances or check commands
generating counterexamples).9 To answer RQ1 and RQ2, all these commands
acted on variables bounded by the model. To answer RQ3, variants of 4 com-
mands were considered that left some variables unbounded. The νZ [2] (v4.8.12)
Max-SMT solver was used at the backend.10 All commands were run with the
alternative distance measures presented in Section 4, and with alternative pri-
ority strategies in multi-objective problems. All tests were run in a machine
equipped with a deca-core Intel Core i7-1355U @ 1.30 GHz with 16GB of RAM.
QAlloy ran with 8192MB maximum memory and 8192k of maximum stack size.
For all commands, each iteration operation was applied up to 30 times or until
unsatisfiable (i.e., no more solutions). For the initial execution of a command, a
timeout of 10 minutes was considered, while a timeout of 1 minute was set for
every iteration step. All QAlloy models, the benchmark script and the execution
results, as well as summary tables, are publicly available [20].

Table 4. Aggregated results for the first 10 applications of nextS variants.

Operation µmin(ms) µmax(ms) µN σN tout(%) µ<1(%) µ<10(%) µD σD

next 2 1928 4 24 0.0 94.74 100.0 5 67
next∅S 1 848 13 47 5.26 94.74 94.74 66 22
nextBS 3 5812 100 65 10.53 68.42 89.47 100 57

Tables 4 and 5 summarize the results for the first 10 instances produced
with structure- and quantity-level iterations, respectively. Each GP in column
“Goal” of Table 5 represents running operation IG (see Tables 2 and 3), employ-
ing the priority P for those implementing multiple optimization goals (either
“LEXicographic order”, “independent BOX objective” or “PAReto fronts”). Re-
garding execution time, µmin and µmax show the lowest and highest (excluding
timeouts) response times produced by each method, in milliseconds; columns
µN and σN display the response times after normalization between commands
(ranging from 0 to 100, the lower the better); tout measures the % of commands
which reached a timeout, and µ<1 and µ<10 show the % of commands whose
response time was lower than 1 and 10 seconds on average, respectively. Re-
9 For fuzzy problems, the popular Gödelian t-norm was selected.

10 We focused on νZ as the most popular and stable Max-SMT solver, but it could be
easily swapped by others conforming to SMT-LIB.

14 Silva et al.

Table 5. Aggregated results for the first 10 applications of nextQ variants.

Operation Goal µmin(ms) µmax(ms) µN σN tout(%) µ<1(%) µ<10(%) µD σD

next∅Q NA 2 187 0 0 0.0 100.0 100.0 11 15

nextSQ

SDstBOX 18 3934 74 74 21.05 47.37 78.95 17 45
SDstLEX 14 4352 33 23 15.79 78.95 84.21 12 42
SDstPAR 7 34 13 4 57.89 42.11 42.11 21 26
VDstBOX 22 6773 73 77 31.58 52.63 68.42 26 24
VDstLEX 13 5969 30 17 10.53 78.95 89.47 9 37
VDstPAR 15 33 16 4 68.42 31.58 31.58 13 17
VAvgBOX 8 11512 25 13 21.05 73.68 73.68 51 31
VAvgLEX 7 1706 16 2 10.53 84.21 89.47 74 69
VAvgPAR 9 37 43 6 68.42 31.58 31.58 33 29

SAvg 5 7082 26 6 10.53 84.21 89.47 76 63

garding the variety of the produced solutions, µD and σD evaluate the average
distance between every pair of generated solutions, also normalized for each com-
mand. For structure-level iterations, quantities are disregarded when measuring
distances, amounting to the set difference of the supports. For quantity-level
iterations, although the implementation relied on the Manhattan distance, for
evaluation we consider the ideal Euclidean distance. In order for the comparison
to be fair, only commands that do not hit a timeout are considered in these
metrics (since a smaller number of instances is more likely to be varied). For ex-
ample, VDstPAR, shows low response times, but a high timeout rate of ∼ 70%;
the times measured refer only to the ∼ 30% commands where it did not time-
out. Table 4 also presents the results for the naive approach as a baseline, but
this comparison must be made with care since next was not designed to produce
varied solutions.

RQ1 and RQ2 Focusing first on the performance of structure-level iterations
(RQ1), next∅S finds solutions in line with the naive approach next (its response
time, bar timeouts, does not exceed 0.9s (seconds) on average), while nextBS is an
order of magnitude slower but without exceeding 6s on average. Moreover, both
methods are overall consistent in finding answers without hitting timeout, with
a low rate of ∼ 5% and ∼ 10%, respectively. Regarding RQ2, the difference in
variety from the baseline next to both methods is large, as expected; moreover,
nextBS consistently produces the most varied set of solutions for almost every
command. When extending the analysis to the first 30 solutions (full data avail-
able at [20]), there is a slight increase of timeouts for the naive approach and
next∅S , but not for nextBS , without significant changes in the normalized variety
of solutions.

Moving on to quantity-level iterations, we consider next∅Q as a baseline, since
it fixes the structure of the solution but changes quantities arbitrarily (next can
change the structure, making the comparison more complicated). Regarding re-
sponse time (RQ1), it is apparent that in multi-objective encodings the pareto
(PAR) priority results in timeouts for most commands (57 ∼ 69%). At the
other end of the spectrum, VDstLEX, VAvgLEX and SAvg display the lowest

On Quantitative Solution Iteration in QAlloy 15

amounts of timeouts (∼ 10%), while VAvgLEX, SAvg and VAvgBOX have the
best performance (lowest average mean and average standard deviation); when
these methods do not timeout, they do not exceed 12s on average. Focusing
on the distance metrics (RQ2), the same configurations overall show significant
improvements in the solution variety. VAvgBOX (high mean and low variance),
VAvgLEX (high mean and highest variance) and SAvg (highest mean and high
variance) are the quantity-level iterations generating solutions in a richer way.
Note that higher values of mean and standard deviation indicate larger differ-
ences between the solutions produced. When considering the first 30 solutions,
there is a noticeable decrease in solution distance (which is expected, since more
of the search space has been covered), but VAvgBOX, VAvgLEX and SAvg still
show the best variety. SDstBOX and VDstBOX suffer from an increase in time-
outs (of ∼ 20% and ∼ 10%, respectively) and their average response times are
on the higher end. This is perhaps not surprising, as both methods cumulatively
add assertions to the stack in each iteration, so while the initial solutions may
be found faster and be varied, it will be harder for the solver to find varied
solutions while meeting every optimization goal. Besides these, SDstLEX shows
an increase of ∼ 5% timeouts, while the rate for the remaining quantity-level
methods is unaffected.

Table 6. Examples which lead to infinite optimization goals.

Operation Goal µmin(ms) µmax(ms) µN σN itout(%) tout(%) µ<1(%) µ<10(%) µD σD

next∅Q 2 29 0 6 0 0 100 100 0 2

nextSQ

SDstBOX 7 5975 76 75 0 0 75 100 54 52
SDstLEX 4 119 14 14 0 0 100 100 10 8
SDstPAR NA NA NA NA 0 100 0 0 NA NA
VDstBOX 6 947 87 90 25 50 50 50 50 50
VDstLEX 5 60 21 9 0 0 100 100 5 2
VDstPAR NA NA NA NA 100 100 0 0 NA NA
VAvgBOX 4 29 13 0 0 50 50 50 59 51
VAvgLEX 3 46 7 6 0 0 100 100 33 28
VAvgPAR NA NA NA NA 100 100 0 0 NA NA

SAvg 3 48 7 0 0 0 100 100 31 26

RQ3 Table 6 addresses iterations that make use of Max-SMT optimization capa-
bilities, for commands that lead to unbounded optimization goals, resulting in an
infinite outcome (a special case of a satisfiable outcome). It has an extra column
itout presenting the % of commands that reached a timeout on the first iteration,
representing cases where the user is not informed of the unbounded nature of the
command; tout still identifies the cases where a timeout was eventually reached.
Column itout shows three cases where the user is not properly informed. Notice
also that there are now no methods on the higher-end of the distance metric;
since solutions are no longer optimal, results are much less predictable.

16 Silva et al.

6 Related Work

There is considerable literature on controlling how solutions are generated in
qualitative model finding. The authors of [11] introduce the concept of weighted
target-oriented model finding, which was subsequently used in solution enumera-
tion operations [11]. These relied on (partial) maximum satisfiability (Max-SAT)
solvers, as do subsequent approaches, namely Aluminum [15] and Bordeaux [13].
REACH [10] enumerates solutions ordered by size (smallest to largest). At the
GUI-level, HawkEye [23] allows the user to control the next solutions by manipu-
lating the instance in the visualizer. Few works have tried to effectively measure
the impact of the different provided solutions through user studies [4,3].

Focusing on SMT solvers, path exploration work (e.g. [28]), inspired by test-
ing techniques, tries to generate instances that cover different valuations of SMT
formulas; SMT sampling approaches focus on generating stimuli to ensure “good
coverage” (e.g. according to user-defined criteria) of the solution space. They
include SMTSampler [7] and GuidedSampler [8], which only support theories of
bit-vectors, arrays, and uninterpreted functions, and MeGASampler [17], that
provides an heuristic using a theory of intervals to support the theory of integer
arithmetic (without division). However, it remains unclear how iteration at the
SMT-level would reflect at more abstract level of model finding problems. In
contrast, similarly to qualitative approaches based on Max-SAT, we took ad-
vantage of Max-SMT solvers to achieve diverse quantitative enumeration, whose
distance goals are provided at the model finding problem level. Moreover, many
of these approaches require further user input, while we believe that, at model
finding level operations should be provided with “push-button” simplicity.

Another technique employed by model finders is symmetry breaking, to avoid
the generation of isomorphic solutions, which Kodkod in particular implements
at the SAT level [27]. There is some work on symmetry breaking at the SMT
level. SyMT [1] provides an approach centered in building coloured graphs from
SMT formulas and finding said graphs’ automorphisms, representing the prob-
lem’s symmetries. CVC4-SymBreak [6] makes use of the SyMT tool, but rather
to exploit the symmetries of the SAT module of the SMT solving process.

7 Conclusions and Future Work

This paper proposes a formalization of solution enumeration operations in quan-
titative relational model finding, considering distinct operations for changes to
the structure and to the quantities. An implementation of these operations on
top of Max-SMT solvers is provided, whose evaluation shows to be performant
and capable of generating solutions with a high degree of variability.

There are a few directions along which this work may evolve. Symmetry
breaking is still unaddressed at the quantitative model finding level, despite
works at the SMT level. Our formalization could be extended with further infor-
mation, such as providing different weights to the relations, or considering user
information provided through the instance visualizer. More advanced operations

On Quantitative Solution Iteration in QAlloy 17

may require information from the problem’s constraints (e.g., to satisfy different
properties regardless of the distance to the seen solutions). Relevant insights may
come from data-driven search-based techniques [14] used in software engineering,
for instance, for test case generation.

QAlloy is also being migrated to the most recent Alloy 6 release, whose tem-
poral dimension introduces an additional layer of complexity in iteration.

Last but not least, and perhaps most important: to effectively assess the
quality of the generated solutions, thorough user studies must be performed.

Acknowledgements

This work is financed by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020
(DOI 10.54499/LA/P/0063/2020). J.N. Oliveira is also supported by project
FCT: PTDC/CCI-COM/4280/2021 and P. Silva holds FCT grant 2023.01186.BD.

References

1. Areces, C., Déharbe, D., Fontaine, P., Ezequiel, O.: SyMT: Finding symmetries in
SMT formulas. In: SMT Workshop (2013)

2. Bjørner, N.S., Phan, A.: νz-maximal satisfaction with Z3. In: SCSS. EPiC Series
in Computing, vol. 30, pp. 1–9. EasyChair (2014)

3. Cunha, A., Macedo, N., Campos, J.C., Margolis, I., Sousa, E.: Assessing the impact
of hints in learning formal specification. In: SEET@ICSE. pp. 151–161. ACM (2024)

4. Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.: User stud-
ies of principled model finder output. In: SEFM. LNCS, vol. 10469, pp. 168–184.
Springer (2017)

5. De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in med-
ical diagnosis. Fuzzy Sets Syst. 117(2), 209–213 (2001)

6. Dingliwal, S., Agarwal, R., Mittal, H., Singla, P.: Advances in symmetry breaking
for SAT Modulo Theories (2020), https://arxiv.org/abs/1908.00860

7. Dutra, R., Bachrach, J., Sen, K.: SMTSampler: Efficient stimulus generation from
complex SMT constraints. In: ICCAD. p. 30. ACM (2018)

8. Dutra, R., Bachrach, J., Sen, K.: GUIDEDSAMPLER: Coverage-guided sampling
of SMT solutions. In: FMCAD. pp. 203–211 (2019)

9. Jackson, D.: Alloy: A language and tool for exploring software designs. Communi-
cations of the ACM 62(9), 66–76 (2019)

10. Jovanovic, A., Sullivan, A.: REACH: Refining Alloy scenarios by size (tools and
artifact track). In: ISSRE. pp. 229–238. IEEE (2022)

11. Macedo, N., Cunha, A., Guimarães, T.: Exploring scenario exploration. In: FASE.
LNCS, vol. 9033, pp. 301–315. Springer (2015)

12. Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic
controller. Int. Journal of Man-Machine Studies 7(1), 1–13 (1975)

13. Montaghami, V., Rayside, D.: Bordeaux: A tool for thinking outside the box. In:
FASE. LNCS, vol. 10202, pp. 22–39. Springer (2017)

14. Nair, V., Agrawal, A., Chen, J., Fu, W., Mathew, G., Menzies, T., Minku,
L., Wagner, M., Yu, Z.: Data-driven search-based software engineering. CoRR
abs/1801.10241 (2018)

https://doi.org/10.54499/LA/P/0063/2020
https://arxiv.org/abs/1908.00860

18 Silva et al.

15. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
Principled scenario exploration through minimality. In: ICSE. pp. 232–241. IEEE
Computer Society (2013)

16. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and optimization prob-
lems. In: SAT. LNCS, vol. 4121, pp. 156–169. Springer (2006)

17. Peled, M., Rothenberg, B., Itzhaky, S.: SMT sampling via model-guided approxi-
mation. In: FM. LNCS, vol. 14000, pp. 74–91. Springer (2023)

18. Reznik, L.: Fuzzy controllers handbook: How to design them, how they work.
Elsevier (1997)

19. Sanchez, E.: Solutions in composite fuzzy relation equations: Application to medi-
cal diagnosis in brouwerian logic. In: Readings in Fuzzy Sets for Intelligent Systems,
pp. 159–165. Morgan Kaufmann (1993)

20. Silva, P.: QAlloy repository – quantitative solution iteration (2025), https://
github.com/pf7/QAlloy-QSI

21. Silva, P., Cunha, A., Macedo, N., Oliveira, J.N.: Alloy goes fuzzy. In: ABZ. LNCS,
vol. 14759, pp. 61–79. Springer (2024)

22. Silva, P., Oliveira, J.N., Macedo, N., Cunha, A.: Quantitative relational modelling
with QAlloy. In: ESEC/SIGSOFT FSE. pp. 885–896. ACM (2022)

23. Sullivan, A.: HawkEye: User-guided enumeration of scenarios. In: ISSRE. pp. 569–
578. IEEE (2021)

24. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to
modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

25. Tamura, S., Higuchi, S., Tanaka, K.: Pattern classification based on fuzzy relations.
IEEE Trans. Syst. Man Cybern. 1(1), 61–66 (1971)

26. Tarski, A., Givant, S.: A Formalization of Set Theory without Variables. AMS
(1987), AMS Colloquium Publications, volume 41.

27. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS. LNCS,
vol. 4424, pp. 632–647. Springer (2007)

28. Wu, H.: Generating metamodel instances satisfying coverage criteria via SMT solv-
ing. In: MODELSWARD. pp. 40–51. SciTePress (2016)

29. Zhang, C., Wagner, R., Orvalho, P., Garlan, D., Manquinho, V., Martins, R.,
Kang, E.: AlloyMax: Bringing maximum satisfaction to relational specifications.
In: ESEC/SIGSOFT FSE. pp. 155–167. ACM (2021)

https://github.com/pf7/QAlloy-QSI
https://github.com/pf7/QAlloy-QSI

Proof Semantics of Railway Interlocking

Linas Laibinisa, Alexei Iliasovb, Alexander Romanovskyb,c

a Institute of Computer Science, Vilnius University, Lithuania
b The Formal Route Ltd., UK

c School of Computing, Newcastle University, UK
Corresponding author: linas.laibinis@mif.vu.lt

Abstract. SafeCap is a modern toolkit for modelling, simulation and
formal verification of railway networks, focused on fully-automated scal-
able safety verification of Solid State Interlocking (SSI) programs – a
technology at the heart of many railway signalling solutions worldwide.
In this paper, we elaborate on the formal foundations of the employed
method by presenting the formal proof semantics of the modelled sys-
tems and the properties we are interested in verifying. We discuss the
composite nature of this semantics, namely, interrelationships between
signalling programs, signalling plan data, and the safety principles we
need to ensure. The main focus is to formally justify the derivation of
a number of proof obligations that a specific interlocking solution must
satisfy. The semantic definitions, properties, and inference rules are for-
malised with the Coq proof assistant.

1 Introduction

Railway interlockings are the core of ensuring the safe operation of modern rail-
way systems. The increasing demands for railway efficiency, including capacity,
punctuality, and energy consumption, lead to the increasing complexity of inter-
locking designs. This makes it harder to ensure their safety. Modern interlocking
includes complex software that controls the side track equipment and interacts
with trains and operating centers. From our experience, modern interlockings
can have up to 80K-110K lines of code. This complexity calls for an extensive
use of formal methods in the development of such systems and, especially, in
ensuring their safety.

Formal verification by proofs has been successfully used in the design of
complex control systems in the railway domain, starting with the groundbreaking
development of the METEOR metro (L14) using the B method and the Atelier-B
prover by Siemens Mobility France (formerly Matra Transport) in 1998 [1]. Since
2020 we have been commercially using the SafeCap toolkit for fully automated
formal verification of railway interlockings by theorem proving [2,3,4]. SafeCap
uses a custom rewriting-based prover for a language based on first-order logic
and set theory. This paper takes this work further by introducing a composite
proof semantics of interlocking programs and formalising (a part of) it in the
Coq proof assistant [5].

Fig. 1: Digital interlocking

After introducing the context of this work in the next section, in Section 3 we
discuss the underlying semantics of the interlocking design language that Safe-
Cap targets, namely, Solid State Interlocking (SSI) [6]. Section 4 formalises and
extends this semantics with formal safety constraints, preparing the foundation
for defining the proof semantics of the SSI programs. Section 5 discusses the
contributions of this work, and looks at possible directions for future research.

2 Background: Ensuring Safety in the Railway Domain

Digital railway interlocking is a typical example of a safety-critical control sys-
tem. It comprises a computer executing control logic (in an endless loop from
power on) that reads in inputs from environment (railway track-side equipment
such as track occupation circuits, signals and points), calculates the internal
state update, and sends out outputs to command controlled equipment (see the
diagram in Fig. 1).

Interlocking also interfaces with other, less safety critical subsystems such
as automated route setting, which uses a combination of train location sensors
and timetables to automatically issue route setting requests ahead of a train,
and Visual Display Unit (VDU), which displays track layouts, train positions,
and signal status and also offers manual triggering of route requests. In relation
to such systems, interlocking plays the role of a gatekeeper or a safety kernel
protecting trains and track-side equipment.

In this work, we focus on Solid State Interlocking (SSI), fully computerised
interlocking technology developed in the UK in the 1980s [6]. SSI is the pre-
dominant interlocking technology used on the UK mainline railways. It also has
applications overseas, including in Australia, New Zealand, France, Egypt, India
and Belgium. Running on bespoke hardware based on real or emulated Motorola
68K or PowerPC CPUs, SSI software consists of a generic application (common
to all signalling plans) and site specific geographic data. The latter configures a
signalling area by defining site specific rules concerning the signalling and other
equipment that the interlocking must obey.

Despite being referred to as data, an interlocking configuration is a program
written in a simple imperative programming language. The language has boolean

Fig. 2: Sample signalling plan. Three routes are defined: R100A from S100 to
S104, R100B from S100 to S102 and R103 from S103 to S101.

and integer variables, assignments, conditional execution, and subroutines. It
does not feature complex data types, pointers, recursion, and iteration. Thus,
while interlocking programs can be quite large (in tens of thousands of lines of
code), they are structurally and algorithmically quite simple.

Code review and scenario-based testing are the traditional and still dominant
validation techniques. However, after a flurry of incidents related to configuration
errors (that is, errors in interlocking programs), Network Rail has mandated
[7] an automated tool check prior their commissioning. We have developed a
Network Rail approved tool, called SafeCap [2], able to carry out such checks
using theorem proving and applied it commercially to nearly 100 interlockings.

In the process, we have devised a formal semantics for interlocking programs
focusing on their safety properties. Since we rely solely on theorem proving, it is
what may be called a proof semantics – interpretation of the interlocking source
code as a collection of proof conjectures which, once discharged, demonstrate
that certain safety properties are satisfied by the interlocking.

To give an intuition of how interlocking operates, we shall consider a very
small example as depicted in Fig. 2 (we had to omit many details that would
be found in a real interlocking). The example is a junction with one point P100,
six track sections, five signals, and three routes. The point is a movable part of
the track that allows traveling in left (diagram top) or right (diagram straight)
directions. Track sections serve to detect occupancy. At the first approximation,
they are boolean flags that indicate the presence of a train axle. Signals, which
may be any combination of physical and virtual, indicate the limits of routes
and also the permissible train speed. In this example, all signals are two aspect
colour signals (as indicated by ”2” in circle), with the red aspect for no proceed
and the green aspect for proceed and be prepared to stop at the exit signal.

Not shown directly on the diagram but deducible from it, there are sub routes
– directed paths corresponding to possible traversals of track sections. The linear
section TAA can be traversed in both directions and these paths are called BA

and AB (as marked on track section borders) for left-to-right and right-to-left
directions. Sub routes are typically named by replacing leading T in track section

name with U and adding path names, e.g., UAA-BA, UAA-AB. For instance, the
section TAB has sub routes UAB-CA, UAB-AC, UAB-CB and UAB-BC but not, e.g.,
UAB-AB.

In the example, we shall consider solely the route setting part of interlocking
logic, thus omitting the logic processing inputs and outputs. Let us consider the
following interlocking code fragment:

*QR100A if R100A a / route is available

UAB-CA f, UBB-BA f, UBC-BA f / route sub routes free

UAB-BC f / opposing locking check

P100 crf / point P100 can be put in reverse

then

R100A s / mark the route as set

P100 cr / command point P100 reverse

UAB-CA l, UBB-BA l, UBC-BA l / lock required sub routes

\

*QR100B if R100B a / route is available

UAB-CB f, UAC-BA f, UAD-BA f / route sub routes free

UAB-BC f / opposing locking check

P100 cnf / point P100 can be put in normal

then

R100B s / mark the route as set

P100 cn / command point P100 normal

UAB-CB l, UAC-BA l, UAD-BA l / lock required sub routes

\

*QR103 if R103 a / route is available

UAC-AB f, UAB-BC f, UAA-BA f / route sub routes free

UAC-BA f / opposing locking check

P100 cnf / point P100 can be put in normal

then

R103 s / mark the route as set

P100 cn / command point P100 normal

UAC-AB l, UAB-BC l, UAA-BA l / lock required sub routes

\

It defines three code blocks for route requests, one for each route. A route
request block is implicitly predicated on the state of the eponymous request
flag, which is set either by the automated route setting system or via VDU by a
signaller. Let us consider the first block in more detail.

The clause R100A a is a predicate a(R100A) written in a postfix notation,
where the function a stands for route available. The function f in UAB-CA f

(and other two cases) stands for sub route free. The expression P100 cnf (P100
crf) stands for point P100 is either already commanded normal (reverse) or free
to be commanded normal (reverse). The part free to be commanded is a reference
to a separately defined predicates that take the following form in our example:

*P100N if TAB c, UAB-CA f, UAB-AC f / free to be commanded normal

*P100R if TAB c, UAB-CB f, UAB-BC f / free to be commanded reverse

Finally, the clause R100A s is a command setting the boolean flag R100A

to true (i.e., the function s stands for set route). Similarly, P100 cr commands
point to reverse, and UAB-CA l (and other two cases) locks a given sub route.

3 Formal Semantics of the SSI Language

There are three main parts to an interlocking control system:

– a signalling plan, which in our case is a digital representation of a particular
railway layout,

– a signalling logic, i.e., an interlogic program written in the SSI notation,
– signalling principles, i.e., formally encoded safety requirements.

A signaling plan is a simpler artifact than a signaling logic, and its correct-
ness is presumed from the position of commercial signalling production practices.
Therefore, we verify the signalling logic against the plan and highlight any dis-
crepancies or inconsistencies in the logic, while fully trusting the plan. Whereas
the signalling logic and the plan vary from area to area, the principles stay the
same and are formulated once and for all.

The aim of our SSI semantics is to combine the three ingredients in an effec-
tive verification procedure. Before we can arrive at such a procedure, we need
more details on the meaning of each of the parts. We use set theory as a math-
ematical notation of choice.

3.1 Semantics of a Signalling Plan

A digital signalling plan is a graph with a number of annotations capturing the
track topology, route paths, signal positions, etc. We represent such a graph
as a collection of constant relations. Naturally, the definition of every possible
signalling plan adheres to the same template, so, where necessary, we can reason
about signalling plans in general, operating with abstract constants.

Formally, a signalling plan is a combination of axioms introducing constant
relations encoding the signalling plan graph, and, optionally, axioms providing
values to these relations.

For instance, the constant route subroutes defines all sub routes of a route.
For our example, we define it as follows:

route subroutes ⊆ Route× SubRoute
route subroutes = {(R100A, UAB-CA), (R100A, UBB-BA), (R100A, UBC-BA), . . . }

We shall later refer to the relation point tracks ⊆ Point×Track defining the
correspondence between points and their parent track sections. In our example
it simply defined as:

point tracks = {(P100, TAB)}.

Another relation we refer to later is route opposing subroutes ⊆ Route ×
SubRoute defining all the opposing sub routes of a route. For our example, it is
defined as:

route opposing subroutes = {(R100B, UAB-BC), (R103, UAC-BA)}

From now on, we will denote the set of all the possible values of signalling plan
constants (i.e., their different combinations) as C. In other words,

C = C1 × C2 × · · · × Cn,

where Ci, i ∈ 1..n, are the carrier sets of the corresponding constants.

3.2 Semantics of a Signalling Logic

The signalling logic in SSI is defined in a restricted form of an imperative pro-
gramming language notation. It is initialized by some predetermined state QI

and proceeds executing in an endless control cycle, which is a characteristic of
control systems. Each iteration of the cycle is split into three stages: processing
of inputs from environment by reading in and reacting to input telegrams, pro-
cessing of the internal logic dealing with route and point requests as well as some
other controls and, finally, the formation of output telegrams encoding output
commands to various trackside equipment such as signals and points.

Each stage consists of a number of code blocks executed sequentially. Block
execution cannot be interrupted midway or interleaved with any other activity.
From the viewpoint of an observer, it forms an atomic step of interlocking control.

Let Q be the signalling program state space such that Q = A0 × A1 × ...Aj

where Ai is the type of i-th signalling program variable, i.e., vi ∈ Ai. In other
words, a variable is simply the corresponding projection of a program state.1

The execution stages (dealing with reading input telegrams, executing the
internal logic, and producing output telegrams respectively) can be represented
as next-state relations, depending on the predefined constant values C, i.e.,
SIC ⊆ Q × Q, SLC ⊆ Q × Q, SOC ⊆ Q × Q. Moreover, each stage consists
of separate code blocks SIi ⊆ Q × Q, SLi ⊆ Q × Q, and SOi ⊆ Q × Q, such
that SIC =

⋃
i∈0..k SIi, SLC =

⋃
i∈0..m SLi, and SOC =

⋃
i∈0..n SOi.

In practice, each iteration cycle executes code blocks in some order. We can
write this as a signal iteration transition TC ⊆ Q × Q defined as relational
composition of all the possible blocks:

TC = SI0;SI1; ...;SIk;SL0;SL1; ...SLm;SOo;SO1, ..., SOn.

Each such SIi, SLi, and SOk must be automatically derived from the im-
perative interlocking source code. Due to the absence of nondeterminism, this

1 We will make the connection between signalling variables and the state space more
precise in Section 4, where we define variables as functions from variable names and
the current state to variable values.

relational composition may be replaced with functional composition of the cor-
responding state update functions.

Assuming QI stands for the initial state, a state trace of a complete signalling
program is then a sequence

{QI}, T [QI], T 2[QI], ...,

where R[S] is the relational image operator.

3.3 Signalling Data State Space Model

An interlocking program uses thousands of variables, with larger ones running
over 8,000 variables. Majority of variables are Booleans, the rest are 8-bit un-
signed integers. For instance, for each route there would be a dedicated flag in
the interlocking computer memory stating whether the route is set, available to
be set, being requested and so on.

Fortunately, the SSI notation is so limited that any given variable appears
as an argument to a small number of functions and commands. For instance,
the route set flag can only be used in conjunction with the route set predicate
and the route setting command. If one wanted to copy the state of one flag into
another, in most cases the only way to accomplish this is by using the IF-ELSE
clause, e.g., IF R100A s then R100B s else R100B xs to copy the state of
R100A into R100B (the command xs here sets its argument flag to false).

Such a rigid specialisation of variables enables a rather compact model of the
signalling data state space based on the set theory and used in the formulation
of next-state relations and signalling principles.

In this model, the states of all boolean flags concerning the same interlocking
function (e.g., route setting) are combined into a single set variable of the form
v : P(A) where A is a carrier (typically enumerated) set of the function argument
and P(..) is the power set operator. For instance, for the route setting function,
we define route s ∈ P(Route), where Route is the predefined set of all routes.

To model a route set check predicate such as R123 s, we use the set mem-
bership test R123 ∈ route s. For route set command R123 s, we use set union
to update the variable route s: route s ′ = route s ∪ {R123}.

Sets like Route are interpreted as abstract sets, when there is no concrete
signalling plan in the context, or as concrete, enumerated sets with their values
derived from a specific signalling plan.

3.4 Semantics of Signalling Principles

The level of granularity associated with an atomic code block forms a convenient
basis for the reasoning about signalling data correctness. Considering properties
of a whole iteration or even multiple iterations is, in principle, more expres-
sive, however, it presents no practical advantages since a signalling program is
developed in stages and aggregated from many smaller parts with the implicit
assumption that each block performs its assigned function completely. At the

same time, iteration-level reasoning is vastly more expensive and is, perhaps,
outside the realms of automated static verification.

We interpret signalling safety principles P as a maximal safe signalling data
defined as a next-state relation over signalling program state and dependent on
signalling plan, i.e., PC ⊆ Q × Q. Typically, safety principles or properties are
represented as invariant properties of state transition systems, defining the set
of safe states that the system must stay within. To express safety principles
in signalling, however, we need, in general, to consider a pair of the previous
(history) and current states. That allows to represent these principles as state
relations expressing the safe behaviour. The point locking principle SAF-2 given
below is one example of reasoning about transition between states.

Such PC defines all possible safe signalling logic implementations for a given
signalling plan. That is, for some signalling program iteration step T to be safe
with respect to the given signalling plan d, it would be necessary that T ⊆ Pd;
this equally applies to individual atomic blocks: SIk ⊆ Pd, SLj ⊆ Pd, ...

The whole verification process can be defined inductively. We start with the
test of membership for the first initial state(s) QI which must belong to the
domain of Pd and then check that every possible block SIi, SLj and SOk defines
a transition relation that, when started in a state satisfying Pd, is compatible
with (i.e., included into) Pd:

QI ∈ dom(Pd)
ran(Pd) C Sk ⊆ P

Here Sk stands for any block of the iteration T , dom and ran are functions
returning relation domain and range respectively, and C is the domain restric-
tion operator, restricting the given relation (Sk) by the set of starting states
(ran(Pd)). Note that ran(Pd) is used in the second conjecture instead dom(Pd),
because the latter would refer to possible previous states satisfying Pd.

It is convenient to partition principles Pd into a collection Pdi
such that

Pd =
⋂

i Pdi
and proceed with a test of one principle at a time:

QI ∈ dom(Pdi)
ran(Pd) C Sk ⊆ Pdi

Examples of Safety Principles There is a large number of safety principles
encoded in standards and working papers on SSI, while the SafeCap tool checks
over 140 of such principles. As examples, we shall consider only three following
ones:

SAF-1: All sub routes of a set route must be locked : when a route is set, all
the sub routes on the path of the route must be locked.

route subroutes[routes set] ⊆ subroutes locked

Here routes set ⊆ Route and subroutes locked ⊆ SubRoute are model variables
defining all currently set routes and locked sub routes, while R[S] is the relational
image operator.

SAF-2: Point movements should be protected : while a point is moving to a
new direction, the containing track section must be clear.

point tracks[commanded] ∩ track c = ∅,

where the set commanded is defined as

(point c′
−1

[{NOR}] \ point c−1[{NOR}]) ∪
(point c′

−1
[{REV}] \ point c−1[{REV}])

Here track c is a model variable defining the set of currently clear track sec-
tions, point c ∈ Point → {NOR,MID,REV} is a function defining the point
commanded state (i.e., normal, undefined, or reversed), and , finally, point c′

defines a new point commanded state (as produced, for instance, by an assign-
ment statement).

SAF-3: Opposing movement protection: on route setting, last opposing sub
routes of all opposing routes must be checked free and locked.

route opposing subroutes[routes set] ⊆ subroutes locked′ \ subroutes locked

Here \ is the set difference operator.
In all the presented formalisation examples we heavily rely on set theory,

where various interconnections between values (defined as relations or various
kinds of functions) are represented as sets of pairs.

4 Building the Proof Semantics in Coq

In the previous section we presented a high-level view of the formal SSI semantics
currently employed in the SafeCap verification framework. Many practical details
describing the verification process were omitted here and discussed earlier in
our previous papers [2,3,4]. In addition, we have started building an alternative
formalisation of the same semantics using the Coq proof assistant [5]. The main
goals of this exercise are to give us extra assurance in the correctness of the
verification process as well as to provide an alternative way using an external
tool to replicate formal verification of safety properties for concrete SSI systems.
Our choice of Coq as the theorem-proving assistant, in preference to systems
such as Isabelle/HOL or LEAN, is predicated on its highly programmable proof
techniques and its capacity for verified code extraction from completed proofs,
thus making it well-suited for software verification and more integrable into the
SafeCap automated processes.

In this section we introduce a formal semantics of SSI systems using the Coq
proof assistant. As explained in the previous sections, the semantics of SSI pro-
grams is composite and essentially represents that of a control system. In simple
terms, since there is no non-determinism occurring within each cycle describing
the SSI system reaction to external stimuli, each simple system reaction can eas-
ily be formalised as a function between states, which in turn can be represented
as functions mapping variables to their values.

The main purpose of the attempted formalisation exercise, however, is to
guarantee safety properties derived from safety principles. These properties are
formalised as safety invariant properties that should be verified for each control
system cycle as well as each atomic SSI code block occurring within a cycle. As
explained in Section 3, this results in a number of proof obligations (conjectures)
that need to be proved for specific code fragments in order to formally guarantee
the overall safety of the system. Formally defining the process of generating
necessary proof obligations gives us the extended proof semantics focusing on
ensuring system safety properties.

4.1 Building Proof Semantics for Safety Verification

We start by formalising the main notions necessary to define the semantics of SSI
programs as state transition (control) systems. Then we extend it by introducing
the notion of safety invariants and proving the theorems or inference rules for
generating all the necessary proof obligations. We are going to present fragments
of the corresponding Coq theories, defining the main notions as well as proved
essential theorems. The full theories (including the proofs for all theorems) are
available from [8].

A standard approach to define program variables (based on the existing Coq
definitions [9]) is to interpret them as total maps from the variable names to the
associated values.

Definition total map (A : Type) := string → A.

Definition t empty {A : Type} (v : A) : total map A :=
(fun ⇒ v).

Definition t update {A : Type} (m : total map A) (x : string) (v : A) :=
fun x’ ⇒ if String.eqb x x’ then v else m x’ .

Safety properties will be represented as safety invariants. As explained earlier, a
safety invariant for SSI programs is a predicate (relation) defined on the previous
(history) and current states. We can assume that such a relation satisfies reflex-
ivity and transitivity properties (like preorder relations). We will need these
properties for our essential result later on, so we formulate them as separate
definitions.

Definition Reflexive {A : Type} (r : A → A → Prop) :=
∀ a : A, r a a.

Definition Transitive {A : Type} (r : A → A → Prop) :=
∀ (a : A) b c, r a b → r b c → r a c.

Definition Preorder {A : Type} (r : A → A → Prop) :=
Reflexive r ∧ Transitive r .

The collective type Val represents all the values that program variables can take.
They can be natural numbers, booleans, or sets of predefined constant values.

The latter can also have structure and represent relations or functions between
respective values.

Inductive Val : Type :=
| Nval (n : nat)
| Bval (b : bool).
| Sval (s : FinSet).

In addition, we introduce the essential types that we will rely on to define neces-
sary pieces of the SSI semantics, namely, state variables, states, state predicates,
state functions, state relations, state expressions, state conjectures, and state in-
variants. Note the difference between state predicates (state relations) and state
conjectures (state invariants). In the first case, the resulting value is a boolean,
in the second one – a proposition we need to prove.

Definition SVar := string.

Definition State := total map Val.

Definition SPred := State → bool.

Definition SFun := State → State.

Definition SRel := State → State → bool.

Definition SExpr := State → Val.

Definition SPr := State → Prop.

Definition SInv := State → State → Prop.

On the syntactic level, we have three layers of an SSI system. On the lowest,
a particular variable is updated as a result of an assignment statement. In the
middle, we have a code block containing a sequential composition of assignments
and conditional statements. We call such a block a state transition since it is
considered atomic with respect to the safety properties we want to guarantee.
These properties can be, however, broken in intermediate states of a transition.
Finally, on the top, state transition system level we have a collection (a list)
of transitions that can be executed within one cycle of an SSI control system.
Each such transition (independently of their execution order) must preserve the
predefined safety invariants.

Inductive SAssign : Type :=
| Assign (v : SVar) (e : SExpr).

Inductive Trans :=
| Asgn (a : SAssign)
| Cond (p : SPred) (t1 : Trans) (t2 : Trans)
| Seq (t1 : Trans) (t2 : Trans).

Definition STS := list Trans → SFun.

Semantically, we associate these system elements with the corresponding state
functions. Note that SemAssign a function is directly associated with a single

state update. The displayed syntax is syntactic sugaring for t update st v (e st)).
SemTrans builds a state function for an arbitrary number of nested condition-
als, assignments, and sequential compositions. Finally, SemSTS just defines one
cycle of the SSI control system as a functional composition of all the system
transitions.

Definition SemAssign (a : SAssign) (st : State) :=
match a with

| Assign v e ⇒ (v !-> (e st) ; st)
end.

Fixpoint SemTrans (t : Trans) (st : State) : State :=
match t with
| Asgn a ⇒ SemAssign a st
| Cond p a1 a2 ⇒ if p st then SemTrans a1 st else SemTrans a2 st
| Seq a1 a2 ⇒ SemTrans a2 (SemTrans a1 st)
end.

Fixpoint SemSTS (tlist : list Trans) (st : State) : State :=
match tlist with
| nil ⇒ st
| t :: tl ⇒ SemSTS tl (SemTrans t st)
end.

Now, relying on the above semantic definitions, we can easily define program
correctness (e.g., Hoare correctness triples) for each of these layers. In all three
cases, the corresponding state functions (on different levels of system execution)
are constructed and checked against the given precondition and postcondition.

Definition CorrectAssign (pre : SPr) (a : SAssign) (post : SPr) (st : State) :
Prop :=
pre st → post (SemAssign a st).

Definition CorrectTrans (pre : SPr) (t : Trans) (post : SPr) (st : State) : Prop
:=
pre st → post (SemTrans t st).

Definition CorrectSTS (pre : SPr) (sts : list Trans) (post : SPr) (st : State) :
Prop :=
pre st → post (SemSTS sts st).

The invariant preservation property (on the state transition system level) can
be easily expressed as a special kind of program correctness. A separate lemma
shows how we can move from one kind of correctness to another. Note how the
invariant property (defined on both previous and current states) is adjusted or
shifted in the corresponding state transition by partial function application.

Definition InvSTS (inv : SInv) (sts : list Trans) (pre st : State) (st : State) :
Prop :=
inv pre st st → inv st (SemSTS sts st).

Lemma InvSTSCorrect:
∀ (inv : SInv) (sts : list Trans) (pre st : State) (st : State),

InvSTS inv sts pre st st ↔ CorrectSTS (inv pre st) sts (inv st) st .

The same correspondence can be shown on the single transition level.

Definition InvTrans (inv : SInv) (t : Trans) (pre st : State) (st : State) : Prop
:=
inv pre st st → inv st (SemTrans t st).

Lemma InvTransCorrect:
∀ (inv : SInv) (t : Trans) (pre st : State) (st : State),

InvTrans inv t pre st st ↔ CorrectTrans (inv pre st) t (inv st) st .

Finally, on the single assignment level, the respective state function is incorpo-
rated.

Definition InvSAssign (inv : SInv) (a : SAssign) (pre st : State) (st : State) :
Prop :=
inv pre st st → inv st (SemTrans (Asgn a) st).

Lemma InvAssignCorrect:
∀ (inv : SInv) (a : SAssign) (pre st : State) (st : State),

InvSAssign inv a pre st st ↔ CorrectAssign (inv pre st) a (inv st) st .

To derive the proof semantics of the SSI system, we need a number of infer-
ence rules (Coq theorems) that allow us to split the proof task of invariant
preservation for the whole system into a collection of simpler proof obligations
that collectively are sufficient to prove the main system property which stip-
ulates that all the safety properties must hold. To achieve that, we formulate
and prove the theorem that proving safety invariant invariant for each transition
(SSI block), independently of the order of their execution, allows us to prove the
main goal. The proof requires an additional assumption, stating that the given
safety invariant is a preorder relation between states.

Lemma STSCorrectTrans:
∀ (inv : SInv) (sts : list Trans) (pre st : State) (st : State),

Preorder inv →
(∀ t pre st’ st’ , In t sts → InvTrans inv t pre st’ st’) →
InvSTS inv sts pre st st .

Since we know the structure and semantics of SSI transitions, we can continue
this process. For a single assignment, we just rely on its semantic definition, i.e.
unfold the underlying state function.

Lemma AsgnTransInv:
∀ (inv : SInv) (a : SAssign) (pre st : State) (st : State),
inv pre st st → inv st (SemAssign a st) →
InvSFun inv (SemTrans(Asgn a)) pre st st .

For a conditional statement, we require invariant preservation for both its branches.

Lemma CondTransInv:
∀ (inv : SInv) (p : SPred) (t1 : Trans) (t2 : Trans) (pre st : State) (st : State),

InvTrans inv t1 pre st st →
InvTrans inv t2 pre st st →
InvTrans inv (Cond p t1 t2) pre st st .

For a sequential composition, we compose two semantical state functions into
one and the require invariant preservation in a post state. In order to do that,
we introduce the notion of invariant preservation for an arbitrary state function
and rely on the standard Coq definition of function composition (compose). Note
that here the invariant in question can be broken in an intermediate state.

Definition InvSFun (inv : SInv) (f : SFun) (pre st : State) (st : State) : Prop
:=
inv pre st st → inv st (f st).

Lemma SeqTransInv:
∀ (inv : SInv) (p : SPred) (p : SPred) (t1 : Trans) (t2 : Trans) (pre st : State)

(st : State),
InvSFun inv (compose (SemTrans t2) (SemTrans t1)) pre st st →
InvTrans inv (Seq t1 t2) pre st st .

4.2 Reasoning at the Expression Level

The generated proof conjectures will refer to system variables and attributes,
most of which are defined as particular kinds of finite sets (including relations,
functions, etc.). The safety proof conjectures SAF1, SAF2, SAF3, presented in
Section 3 are examples of such properties to be verified. Please note the abun-
dance of various set and relational and set operators (relational image, inverse,
etc.) that are used to express various relationships between state variables.

To make efficient automated reasoning involving such structures and their
properties, a separate Coq theory was created. The theory is generic (i.e., pa-
rameterised over an arbitrary element type supporting the equivalence relation)
and facilitates more efficient inductive reasoning over such finite structures.

Section FinSets.

Variable U : Type.

Variable equiv : U → U → bool.

Axiom equiv comm : ∀ (x :U) y , equiv x y = equiv y x .

Axiom equiv trans : ∀ (x :U) y z , equiv x y = true → equiv y z = true → equiv
x z = true.

Axiom equiv refl : ∀ (x :U), equiv x x = true.

Axiom Axiom equiv extensionality : ∀ (x : U) y , equiv x y = true ↔ x = y .

The base type for finite sets is then introduced by the following inductive defi-
nition.

Inductive FinSet : Type :=
| Empty set
| Add (x : U) (A : FinSet).

The main notions and standard operations of a set theory can be easily intro-
duced based on the above definitions. Some instances of those (a singleton set,
membership, a subset, etc.) are given below.

Definition Singleton (x : U) : FinSet := Add x Empty set.

Fixpoint Union (A : FinSet) (B : FinSet) :=
match A with

| Empty set ⇒ B
| Add y A0 ⇒ Add y (Union A0 B)
end.

Fixpoint mem (x : U) (A : FinSet) : bool :=
match A with

| Empty set ⇒ false
| Add y B ⇒ (equiv x y) || mem x B

end.

Definition Full set (A : FinSet) : Prop :=
∀ (x : U), mem x A = true.

Definition Subset (A : FinSet) (B : FinSet) : Prop :=
(∀ x :U , mem x A = true → mem x B = true).

Definition Same set (A : FinSet) (B : FinSet) : Prop :=
Subset A B ∧ Subset B A.

Most of the employed data structures express various relationships between pre-
defined sets of values, i.e., are defined as sets of pairs representing relations or
functions. The above definitions of finite sets can be easily instantiated and then
extended to introduce finite relations and various useful operators for them.

Section FinRelations.

Variable T : Type.
Variable U : Type.

Definition Relation T U := FinSet (T × U).

In a similar manner, we can inductively introduce all the relational operators
used in the safety properties (such as domain, range, inverse and so on).

Fixpoint dom (R : Relation T U) : FinSet T :=
match R with

| Empty set ⇒ Empty set
| Add (x,y) R0 ⇒ Add x (dom R0)
end.

Fixpoint ran (R : Relation T U) : FinSet U :=
match R with

| Empty set ⇒ Empty set
| Add (x,y) R0 ⇒ Add y (ran R0)
end.

Fixpoint inverse (R : Relation T U) : Relation U T :=
match R with

| Empty set ⇒ Empty set
| Add (x,y) R0 ⇒ Add (y,x) (inverse R0)
end.

Following the same approach, different types of finite functions can be intro-
duced as special kinds of relations. Once all the definitions are in place, many
essential properties have been proven by induction to be used for simplifying
and rewriting expressions, and thus facilitating automated reasoning about SSI
safety properties. The Coq sources of this theory are available from [8].

5 Discussion and Conclusions

This paper presents the proof semantics of SSI signalling programs focusing on
generation of necessary proof conjectures to ensure safety properties of such sys-
tems. The core underlying semantics of a SSI program as a control system is
quite simple and can be easily represented as a state transition system, where
each transition in turn can be expressed as a state function or a state relation.
The complexities arise when we have to include into consideration the other com-
posite parts of the overall semantics – a signalling plan and signalling (safety)
principles. Because of such a composite nature, the traditional denotational se-
mantics becomes insufficient and should be upgraded to the proof semantics
determining what proof conjectures must be proven for atomic code blocks to
ensure the predefined safety properties (safety invariants) with respect to the
given signalling plan and the signalling logic (SSI code).

The benefits of creating such proof semantics are twofold. First, it gives us
extra assurance in correctness of the SafeCap verification process (based on such
formalised semantics) in general, as well as in a number of the employed internal
tactics, inference rules, and other simplification techniques. Second, it provides us
with an alternative way to replicate formal verification of actual safety properties
for concrete SSI systems, i.e., to diversify the automated verification procedure
of SafeCap by using a well-established theorem proving system such as Coq.
Both aspects are also important for the ongoing work on tool certification.

::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.17.1/stdlib//Coq.Init.Datatypes

The proof semantics formalises the process of decomposing the overall cor-
rectness verification for the whole system until the lowest atomicity level (i.e.,
sequential composition of assignments) with respect to the verified safety prop-
erties is reached. The described process is rather straightforward. The only com-
plication is the treatment of safety properties as invariant properties defined on
the previous (history) and current states. Another important aspect is the pos-
sibility of exploiting the fact that all data structures (sets, relations, functions)
used to represent variable or constant values are finite sets. Induction over fi-
nite sets can ultimately lead to an efficient combination of theorem proving (for
general properties) and functional programming computations (by unfolding and
traversing given finite structures) to improve automation and efficiency of formal
verification of concrete safety proof conjectures.

There have been a number of research studies focusing on formal verification
of SSI programs [10,11,12,13,14,15]. The majority of works use various forms
of model-checking in an attempt to verify safety of train run scenarios, with
interlocking rules derived manually or via an automated translation from SSI
data. With few exceptions, the proposed techniques actually scale up to only
toy examples, or cover a small subset of functionalities, or both. Even if our
proposed SSI semantics does not achieve any major theoretical breakthroughs,
it serves pragmatic purposes to support practical full scale automated verification
of SSI programs.

In [16,17], the authors present a new modelling and verification framework
(EB4EB) for the Event-B formal language and its possible extensions, relying on
a defined trace-based semantics for Event-B as well as deep and shallow instanti-
ation mechanisms based on metamodelling techniques. The framework allows for
the introduction of new properties, data types, and proof rules for the extended
language. The approach presented in this paper is much more straightforward,
targeted, and pragmatic. However, its future enhancements might adopt some
elements of the proposed techniques.

This is still work in progress. To fully realise the benefits mentioned above,
we plan to further extend the theory of finite data structures (such as relations,
various kinds of functions, etc.) and their inductive properties, to allow us to
make full use of combining theorem proving and automated computations over
concrete finite data structures. Moreover, we are going to investigate how the
automated reasoning based on the proposed semantics can be integrated within
the existing SafeCap framework, providing an alternative and independent way
of verifying concrete safety properties of SSI signalling systems.

References

1. Behm, P., Desforges, P., Meynadier, J.: Météor : An industrial success in formal
development. In: Bert, D. (ed.) B’98: Recent Advances in the Development and
Use of the B Method, Second International B Conference, Montpellier, France,
April 22-24, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1393,
p. 26. Springer (1998). https://doi.org/10.1007/BFB0053352, https://doi.org/
10.1007/BFb0053352

https://doi.org/10.1007/BFB0053352
https://doi.org/10.1007/BFb0053352
https://doi.org/10.1007/BFb0053352

2. Iliasov, A., Taylor, D., Laibinis, L., Romanovsky, A.: Practical Verification of Rail-
way Signalling Programs. IEEE TDCS 20(Jan-Feb), 695–707 (2023)

3. Iliasov, A., Laibinis, L., Taylor, D., Lopatkin, I., Romanovsky, A.: Safety Invariant
Verification that Meets Engineers’ Expectations. In: Dutilleul, S.C., Haxthausen,
A.E., Lecomte, T. (eds.) Proceedings of Reliability, Safety, and Security of Railway
Systems (RSSRail 2022). LNCS, vol. 13294, pp. 20–31. Springer (2022)

4. Iliasov, A., Laibinis, L., Taylor, D., Lopatkin, I., Romanovsky, A.: The SafeCap
Trajectory: Industry-Driven Improvement of an Interlocking Verification Tool. In:
Milius, B., Dutilleul, S.C., Lecomte, T. (eds.) Proceedings of Reliability, Safety,
and Security of Railway Systems (RSSRail 2023). LNCS, vol. 14198, pp. 117–127.
Springer (2023)

5. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions. Springer Publishing Company,
Incorporated, 1st edn. (2010)

6. Cribbens, A.H.: Solid State Interlocking (SSI): an integrated electronic signalling
system for mainline railways. Proc. IEE. 134(3), 148–158 (1987)

7. NR/L2/SIG/11201/MOD B11. Signalling Design Handbook: Interlocking Guide-
lines. Network Rail, 2 June 2018, 20 pages

8. Source archive for two Coq theories used in the paper (Transitions.v - for state
transition systems and proof semantics, FinSets.v - for finite sets and rela-
tions), https://www.dropbox.com/scl/fi/kjh3lhdd3k0qlqk100q43/SafeCap_B.

zip?rlkey=fdu9j72ivo7xp4cami3oz4lu8&st=fmef1yqi&dl=0

9. Coq Standard Library, https://coq.inria.fr/doc/V8.20.0/stdlib/
10. Morley, M.J.: Safety Assurance in Interlocking Design. PhD thesis, University of

Edinburgh (1996)
11. James, P., Lawrence, A., Moller, F., Roggenbach, M., Seisenberger, M., Setzer,

A., Kanso, K., Chadwick, S.: Verification of Solid State Interlocking Programs. In:
SEFM 2013 Workshops. LNCS, vol. 8368, pp. 253–268. Springer (2014)

12. Huber, M., King, S.: Towards an Integrated Model Checker for Railway Signalling
Data. In: Proceedings of FME 2002: Formal Methods Europe. LNCS, vol. 2391,
pp. 204–223. Springer (2002)

13. Cappart, Q., Limbrée, C., Schaus, P., Quilbeuf, J., Traonouez, L.M., Legay, A.: Ver-
ification of Interlocking Systems Using Statistical Model Checking. In: Proceedings
of HASE – High Assurance Systems Engineering. pp. 61–68 (2017)

14. Busard, S., Cappart, Q., Limbrée, C., Pecheur, C., Schaus, P.: Verification of rail-
way interlocking systems. In: Proceedings of ESSS 2015. pp. 19–31 (2015)

15. Cappart, Q., Schaus, P.: A Dedicated Algorithm for Verification of Interlocking
Systems. In: Proceedings of Computer Safety, Reliability, and Security - 35th In-
ternational Conference, SAFECOMP 2016. Lecture Notes in Computer Science,
vol. 9922, pp. 76–87. Springer (2016). https://doi.org/10.1007/978-3-319-45477-
1 7

16. Rivière, P., Singh, N.K., Aı̈t-Ameur, Y.: Reflexive Event-B: Semantics and Cor-
rectness the EB4EB Framework. IEEE Trans. Reliab. 73(2), 835–850 (2024).
https://doi.org/10.1109/TR.2022.3219649

17. Rivière, P., Singh, N.K., Aı̈t-Ameur, Y., Dupont, G.: Extending the EB4EB frame-
work with parameterised events. Sci. Comput. Program. 243, 103279 (2025).
https://doi.org/10.1016/J.SCICO.2025.103279

https://www.dropbox.com/scl/fi/kjh3lhdd3k0qlqk100q43/SafeCap_B.zip?rlkey=fdu9j72ivo7xp4cami3oz4lu8&st=fmef1yqi&dl=0
https://www.dropbox.com/scl/fi/kjh3lhdd3k0qlqk100q43/SafeCap_B.zip?rlkey=fdu9j72ivo7xp4cami3oz4lu8&st=fmef1yqi&dl=0
https://coq.inria.fr/doc/V8.20.0/stdlib/
https://doi.org/10.1007/978-3-319-45477-1_7
https://doi.org/10.1007/978-3-319-45477-1_7
https://doi.org/10.1109/TR.2022.3219649
https://doi.org/10.1016/J.SCICO.2025.103279

Translating Event-B models and development proofs to
TLA+

Anne Grieu1[0009−0006−3020−3660], Jean-Paul Bodeveix1[0000−0002−4179−6063], and
Mamoun Filali[0000−0001−5387−6805]

IRIT, Université de Toulouse
{firstname.lastname}@irit.fr

Abstract. Event-B and TLA+are two formal languages based in set theory. It is
thus natural to exchange models between them. The work presented in this paper1
aims at translating Event-B models, proof obligations, and their corresponding
proofs to the TLA+environment. While the translation of models has been previ-
ously studied in [9], we extend this work by generating various proof obligations
in TLA+. Finally, we address the translation of proofs interactively constructed in
the Rodin platform into the TLA+proof script language.
Keywords: formal methods · B/Event-B · TLA+· set theory · proof systems ·
model translation.

1 Introduction

Event-B and TLA+are widely used in the formal method community and share the same
theoretical basis, that of set theory. It is thus quite natural to try exchanging developments
between them. Event-B brings more automation (proof obligations generation, proof
construction) and a development method based on refinement that can be shared with
TLA+. We thus focus on the transfer of Event-B developments to TLA+and present our
work on translating Event-B models, proof obligations, and their corresponding proofs
scripts into the TLA+environment. The translation of B models has already been ex-
plored in [9] for the B method. Here, we propose a new translation integrated to the
Rodin platform [3] and extend the previous work by also generating proof obligations
related to well-formedness, feasibility, and invariant preservation in TLA+. Finally, we
demonstrate how to translate proofs interactively constructed in the Rodin platform into
the TLA+proof language. To illustrate the translation of Event-B models and proofs
into TLA+, we consider a simple example (Figure 1) specifying the mutual exclusion
problem. Data structures needed to specify the problem are introduced in a context (Fig-
ure 1a). Two abstract sets are declared: Proc for processes and State for their states.
They are constrained by two labeled axioms: @fin declares Proc to be a finite set and
@State that State can be partitioned in to singletons, which means it consists of the
two elements In and Out.

1 This work has been partly supported by the French ANR ICSPA project, which focuses on
studying formal methods based on set theory (B, Event-B, TLA+) and by the ANR EBRP
project which focus on enhancements of the Event-B method.

2 Anne Grieu et al.

context cMutex1
sets Proc State
constants In Out
axioms

@fin finite (Proc)
@State partition (State ,

{In},{Out})
end

(a) Event-B Context

machine mMutex1 sees cMutex1
variables state
invariants

@state_ty state ∈ Proc → State
@mutex ∀p1,p2⋅ state(p1)=In ∧ state(p2)=In

⇒ p1 = p2
events

event INITIALISATION then
@i state ∶= Proc × {Out} end

event Enter any p where
@p_ty p ∈ Proc
@mutex ran(state) = {Out}

then @pIn state(p) ∶= In end
event Exit any p where

@pIn state(p) = In
then @pOut state(p) ∶= Out end

end

(b) Event-B machine
Fig. 1: The Mutex example in Event-B

The machine mMutex1 (Figure 1b) defines two events responsible for entering and
exiting a critical section while ensuring the preservation of the mutex invariant. An
event can have parameters (here p) constrained by guards following the where clause
and makes actions updating the machine state defined here by the state variable. The
events should preserve the machine invariants, which is checked through the generation
of proof obligations that must be discharged by the user when not automatically proved.

2 Translating Event-B models

An Event-B [2] model is defined as a single machine that describes the dynamics of a
system using a symbolic labeled transition system. Its state is represented by variables
and invariants, while its behavior is governed by parameterized events that must preserve
these invariants. A machine can reference contexts, which define static information such
as carrier sets, constants, and axioms, organized hierarchically. Translating a machine
involves recursively translating its referenced contexts first, followed by the translation
of the machine’s internal components. Both machines and contexts are mapped to sep-
arate TLA+modules [13].

2.1 TLA+modules

A TLA+module can extend other modules. It plays the role of an Event-B context
through the declaration of constants, axioms (assumptions) and theorems and also the
role of an Event-B machine through the declaration of variables and actions that corre-
late current and next (primed) values of variables.

Translating Event-B models and development proofs to TLA+ 3

−−−− MODULE time −−−−
EXTENDS Naturals
CONSTANTS N
VARIABLES t
ASSUME N_ty N ∈ Nat \ {0}
Init ≜ t = 0
Next ≜ t’ = IF t = N−1 THEN 0 ELSE t+1
=====================

2.2 Translating contexts
Event-B contexts are translated hierarchically, with each context generating a corre-
sponding TLA+module. In this module, each Event-B set or constant is represented by
a CONSTANT declaration, each axiom by an ASSUME declaration, and each theorem
by a THEOREM declaration. For example, translating the context shown in Figure 1a
produces the following:

−−−−−−− MODULE cMutex1 −−−−−−−
EXTENDS Naturals, Integers, TLAPS, Relations, Partitions , FiniteSets
CONSTANTS State, Proc, In, Out
ASSUME In_ty ≜ In ∈ State // type synthesized by Rodin
ASSUME Out_ty ≜ Out ∈ State // type synthesized by Rodin
ASSUME fin ≜ IsFiniteSet(Proc)
ASSUME State ≜ Partition(State, ⟨{In}, {Out}⟩)
==

2.3 Translating Event-B machines
An Event-B machine is translated into a TLA+module (see Figure 2 and Annex A
for a full translation) that extends the modules corresponding to its referenced con-
texts. State variables are mapped to TLA+VARIABLES (line 3), with an additional
variable (event) introduced to store the name of the executed event. Invariants are
translated as TLA+definitions (lines 5 and 6). Each Event-B event is translated into
three TLA+macros (lines 11,12,13). Given an event of the form: ev = any p where
G then A, we get:

– EVT_ev(p) == ⟨⟨

′′𝑒𝑣′′, 𝑝⟩⟩ defines the Event-B transition label as an ordered pair
consisting of the event name and its parameters.

– GRD_ev(p) == 𝐺 represents the conjunction of the TLA+translations of the Event-
B guards 𝐺.

– ACT_ev(p) == 𝐵𝐴(𝐴) encodes the TLA+translation of the before-after relation
𝐵𝐴(𝐴) associated with the event’s actions 𝐴.
The complete translation of the event ev is then defined as the conjunction of these

three components (line 14): _ev(p) ≜ EVT_ev(p) ∧ GRD_ev(p) ∧ ACT_ev(p).
Then, the TLA+Next operator can be defined as usual as the disjunction of existen-

tially quantified operators associated to each event, as well as the specification of the
system Spec (lines 15-16).

4 Anne Grieu et al.

1 −−−−−−− MODULE mMutex1 −−−−−−−
2 EXTENDS Naturals, Integers, TLAPS, Relations, Partitions , FiniteSets , cMutex1
3 VARIABLES event, state
4 vars ≜ ⟨event, state ⟩
5 Inv_state_ty ≜ (state ∈ TotalFunctions(Proc, State))
6 Inv_mutex ≜ (∀ p1 ∈ Proc, p2 ∈ Proc: ((FunImage(state, p1) = In) ∧
7 (FunImage(state, p2) = In) ⇒ (p1 = p2)))
8 Invariant ≜ Inv_state_ty ∧ Inv_mutex
9

10 Init ≜ event = ⟨"INITIALISATION"⟩ ∧ ⟨state⟩ = ⟨(Proc × { Out})⟩
11 EVT_Enter(p) ≜ event = ⟨"Enter", p⟩
12 GRD_Enter(p) ≜ (p ∈ Proc) ∧ (Ran(state) = { ut})
13 ACT_Enter(p) ≜ ⟨state’⟩ = ⟨Overwrite(state, {⟨p, In⟩})⟩
14 _Enter(p) ≜ EVT_Enter(p) ∧ GRD_Enter(p) ∧ ACT_Enter(p)
15 Next ≜ (∃ p ∈ Proc : _Enter(p)) ∨ (∃ p ∈ Proc : _Exit(p))
16 Spec ≜ Init ∧ [□][Next]_vars
17 ==

Fig. 2: TLA+translation of mMutext1

2.4 Translating Event-B formulas

The Event-B mathematical language is based on a typed set theory. In the Rodin envi-
ronment, types are inferred and assigned to each declared identifier, including constants,
variables, event parameters, and quantifiers. An Event-B type is either a user defined car-
rier set, the Integer and Boolean types, or a Cartesian product of types or a powerset of
a type:

𝑡 ∶∶= ∣ ℤ ∣ 𝔹 ∣ 𝑡 × 𝑡 ∣ ℙ(𝑡)

Although TLA+is an untyped language, type information is essential for translating
Event-B formulas, as it defines the bounds for quantified variables. For instance, the
formula: ∀𝐸 ⋅ 0 ∈ 𝐸 ∧ (∀𝑥 ⋅ 𝑥 ∈ 𝐸 ⇒ 𝑥 + 1 ∈ 𝐸) ⇒ ℕ ⊆ 𝐸 is first type-checked
by Rodin which provides type annotations for all its quantified variables. It becomes:
∀𝐸 ⦂ℙ(ℤ) ⋅ 0 ∈ 𝐸 ∧ (∀𝑥 ⦂ℤ ⋅ 𝑥 ∈ 𝐸 ⇒ 𝑥+1 ∈ 𝐸) ⇒ ℕ ⊆ 𝐸 where terms on the right
of the ⦂ operator are expressed in Event-B type language. The formula is then translated
to TLA+by using the synthesized type information to bound the quantifiers:

∀ E ∈ SUBSET(Int): 0 ∈ E ∧ (∀ x ∈ Int: x ∈ E ⇒ x+1 ∈ E) ⇒ Nat ⊆ E

Rodin also infers type information for constants (based on context axioms), machine
variables (derived from invariants), and event parameters (determined by event guards).

Formulas are classified into three categories: expressions, predicates, and actions.
Expressions are assigned types.

Expressions The primary challenge in translating Event-B expressions lies in the fact
that most operators are relational, with no direct counterparts in TLA+. Therefore, a

Translating Event-B models and development proofs to TLA+ 5

library of TLA+operators, designed to define all Event-B relational operators, must be
provided (the Relation module). A subset of these operators is presented here (close
to the library provided by [9])2.
−−−−−−−−−−−−−−−−−−− MODULE Relations −−−−−−−−−−−−−−−−−
Rel(A,B) ≜ SUBSET (A × B)
Id(S) ≜ {r ∈ Rel(S,S) : ∀ c ∈ r: c [1] = c[2]}
Dom(R) ≜ {xy[1] : xy ∈ R }
Ran(R) ≜ {xy[2] : xy ∈ R }
Rev(R) ≜ {xy ∈ Ran(R) × Dom(R): ⟨xy[2],xy[1]⟩ ∈ R}
RestrictDom(R,D) ≜ { xy ∈ R : xy[1] ∈ D}
AntirestrictDom(R,D) ≜ { xy ∈ R : xy [1] ∉ D}
RestrictRan(R,D) ≜ { xy ∈ R : xy [2] ∈ D}
AntirestrictRan (R,D) ≜ { xy ∈ R : xy [2] ∉ D}
Overwrite(R,S) ≜ S ∪ AntirestrictDom(R,Dom(S))

PartialFunctions (D,R) ≜ {r ∈ Rel(D,R): ∀ e,x,y: ⟨e,x⟩∈ r ∧ ⟨e,y⟩∈ r ⇒ x=y}
TotalFunctions(D,R) ≜ {r ∈ PartialFunctions (D,R): Dom(r) = D}
PartialInjections (D,R) ≜ {r ∈ PartialFunctions (D,R): Rev(r) ∈ PartialFunctions (R,D)}
TotalInjections (D,R) ≜ TotalFunctions(D,R) ∩ PartialInjections (D,R)

We emphasize the Overwrite(R,S) operator, which takes two relations as argu-
ments and returns a relation that includes pairs from 𝑆 as well as pairs from 𝑅 where
the first projection has no corresponding image in 𝑆. The Overwrite operator is cru-
cial for defining the semantics of function updates in machine actions. For instance,
the Event-B assignment f(x) := y is translated into the following TLA+action: f’ =
Overwrite(f, {⟨x,y⟩}).

The second point concerns partial functions (and by extension, total, injective, and
surjective functions), which are encoded in TLA+as specific relations, similar to their
representation in Event-B. As a result, TLA+functions are not used. While it would
be possible to identify relations that are actually functions and represent them using
TLA+functions, which would lead to a more efficient translation to SMT, this approach
would also require duplicating relational operators based on the nature of their argu-
ments or introducing conversions during the translation process. Such an approach would
also complicate the translation of Event-B proof scripts to TLAPS[6].

Given this encoding, functional application in TLA+is defined using the CHOOSE
operator, which means that the TLA+function call notation f[x] is not used. Instead,
Event-B f(x) is encoded as follows:
RImage(R,S) ≜ {y ∈ Ran(R): ∃ x ∈ S: ⟨x,y⟩ ∈ R}
FunImage(R,c) ≜ CHOOSE i ∈ RImage(R,{c}): TRUE

However, this definition is not explicitly expanded to make the TLA+proof as close as
possible to the Rodin proof. It is only used on leaves of the TLA+proof tree supposed
to be resolved by SMT calls. Otherwise, derived properties are used instead, such as the
following, which can be proven in TLA+:

2 We uses TLA+tuples 𝑥 = ⟨𝑥1,… , 𝑥𝑛⟩ where fields are accessed through 𝑥[𝑖].

6 Anne Grieu et al.

THEOREM FunImageSingleton ≜
ASSUME NEW S, NEW i PROVE ∀ c ∈ S: FunImage(S × {i},c) = i

In fact, it would be necessary to create a TLA+library containing all the theorems
used by Event-B proof rules.

Predicates The translation of the predicate language is straightforward, as quantifier
bounds are available through Rodin’s type synthesis. However, Event-B built-in pred-
icates (such as finite and partition) need to be defined in TLA+, for instance,
partition is defined as follows:
Partition (S,s) ≜ S = UNION {s[i] : i ∈ DOMAIN s}

∧ ∀ i ∈ DOMAIN s, j ∈ DOMAIN s: i ≠ j ⇒ s[i] ∩ s[j]= ∅

Actions Event-B actions are translated into TLA+actions, which are predicates that re-
late the current state to the next (primed) state of the module. Unchanged variables must
be identified and explicitly declared. The four types of Event-B actions are transformed
as follows:

– The multi-assignment action 𝑥1,… , 𝑥𝑛 := 𝑒1,… 𝑒𝑛 becomes
⟨𝑥′1,… , 𝑥′𝑛⟩ = ⟨𝑒1,… , 𝑒𝑛⟩ where 𝑒 denotes the translation of the expression 𝑒.

– Function update actions f(e) := e’ are transformed by Rodin into single variable
assignments f := f <+ {e ↦ e’} using the overwrite operator.

– The non-deterministic multi-assignment 𝑥1,… 𝑥𝑛 ∶∣ 𝑃 (𝑥1,… , 𝑥𝑛, 𝑥′1,… 𝑥′𝑛) where
𝑃 is the before-after predicate of the action becomes the TLA+translation of 𝑃

– The non-deterministic assignment to a set element 𝑥 ∶∈ 𝐸 becomes 𝑥′ ∈ 𝐸

Finally, the translation of all individual Event-B actions within an event is conjoined
with the TLA+UNCHANGED(V) action, where V represents the tuple of state variables that
are not syntactically modified by any Event-B action.

In our example, the deterministic assignment state(p) := In is translated into
ACT_Enter(p) ≜ ⟨state’⟩ = ⟨Overwrite(state,{⟨p, In⟩})⟩

Note that initialization actions are transformed differently; instead of generating an
action that relates the current and next states, a predicate over the current state is pro-
duced.

3 Generation of proof obligations in TLA+

In addition to translating the Event-B model, our plugin also generates proof obligations
corresponding to Event-B ones [10] as TLA+theorems. The Event-B proof obligation
generator provided by the Rodin platform [3] is not used here. Our plugin generates
statements specific to TLA+that use named predicates (for example Invariant instead
of the conjunction of individual formulas making the invariant) or the next-state oper-
ator. Furthermore, we generate generic proof scripts for TLAPS to facilitate automatic
proof attempts.

Translating Event-B models and development proofs to TLA+ 7

WD Proof obligations Well-definedness proof obligations arise from the use of partially
defined constructs, such as treating a relation as a function, calculating the cardinality
of a set, or taking the minimum of a set. The most common case involves function calls.
The proof obligation ensures that the relation belongs to a function space and that its
argument is within the domain of the relation. These checks are performed based on
the hypotheses inherited from referenced contexts, previous axioms (within contexts),
invariants (within machines), prior guards, and quantified parameters (within events).

We illustrate these principles with the TLA+translation of the well-definedness (WD)
proof obligation generated for the guard state(p) = In in the event Exit(p). The
synthesized type for p, provided by the Rodin environment, is Proc, which is used to
bound the TLA+universal quantifier.
THEOREM Exit_pst_WD ≜ Invariant ⇒ (∀ p ∈ Proc ∶

p ∈ Dom(state) ∧ state ∈ PartialFunctions (Proc, State))

Feasibility Proof obligations Proof obligations are generated to ensure that when the in-
variants and guards hold, non-deterministic actions are feasible. Specifically, this means
that the before-after predicate must have at least one solution, and the corresponding set
must be non-empty.
Theorem Proof obligations Theorems derived from axioms, invariants, and guards are
translated into TLA+theorems, with the hypotheses consisting of seen axioms, previ-
ous theorems, and, in the case of guards, previous guards. For guards, the hypotheses
are quantified by typed event parameters. Outside of contexts, seen axioms are directly
included in the TLA+model and do not need to be added to the theorem’s hypotheses.
Invariant Preservation Proof Obligations A proof obligation is generated for each de-
clared invariant and event, ensuring that the invariant is preserved by the event actions.

For example, the preservation of the mutex invariant by the Enter(p) event results
in the following theorem, where the TLA+prime operator is used to express that the
invariant must be satisfied in the next state. Additionally, we assume that the previous
invariants (such as Inv_state_ty) are preserved, as the corresponding theorem has
already been established.
THEOREM PO_Next_Enter_mutex ≜ ∀ p ∈ Proc∶

Invariant ∧ Inv_state_ty’ ∧ _Enter(p) ⇒ Inv_mutex’

Variant-related Proof Obligations We also generate proof obligations for set-based or
integer-based non-lexicographic variants. Events declared as convergent must ensure
that the variant strictly decreases, while anticipated events should not cause the vari-
ant to increase.

In the following example, the exit event is declared as convergent with respect to
the variant state ⊳ In. This leads to two proof obligations: one asserting the strict
decrease of the variant, and the other confirming its finiteness. Note the use of the
TLA+prime operator, which ensures that the left argument of the ⊂ operator is eval-
uated in the next state.

8 Anne Grieu et al.

THEOREM Exit_vv_VAR ≜ Invariant ⇒ (∀ p ∈ Proc: _Exit(p) ⇒
RestrictRan ({In}, state)’ ⊂ RestrictRan ({In}, state))

THEOREM Exit_vv_FIN ≜ Invariant ⇒ (∀ p ∈ Proc: _Exit(p) ⇒
IsFiniteSet (RestrictRan ({In}, state))

Deadlock-freedom We also generate a proof obligation not typically produced by Event-
B: deadlock-freedom. This obligation asserts that the disjunction of guards is implied
by the invariant. It is important to note that in Event-B, an action is always considered
feasible when its guard is true, thanks to the feasibility proof obligations.
THEOREM NoDeadlock ≜ Invariant ⇒

(∃ p ∈ Proc : GRD_Enter(p)) ∨ (∃ p ∈ Proc : GRD_Exit(p))

Automatic proof of proof obligations Automatically proving obligations in TLAPS is
often challenging because the user must provide all necessary theorems and defini-
tions. While TLAPS implicitly injects the definitions and theorems related to standard
TLA+modules (such as Naturals, Sequences, FiniteSets, etc.), Event-B operators
are fundamentally defined using relational operators. As a result, all these operators must
be explicitly defined in TLA+and provided to TLAPS.

If we supply the prover with the complete list of definitions, the resulting statement
transmitted to SMT solvers is often too complex and difficult to prove. In contrast, Event-
B employs numerous domain-specific rewrite and deduction rules, which are applied
before invoking specialized set theory-based solvers or SMT solvers (after first-order
reduction). Additionally, the Rodin user may need to guide the prover interactively to
ultimately build the proof.

As a consequence, in case the automatic proof fails, we have explored how to trans-
late Event-B proofs to TLA+.

4 Translating Event-B proof trees

Since automatically proving generated proof obligations is challenging, we attempt to
generate TLAPS proof scripts from the Rodin proof trees, utilizing the hints contained
within them. To keep the TLA+proof synchronized with the Rodin proof, the translation
of Event-B proof trees is performed through a recursive traversal of the tree. Each node
leads to a corresponding TLA+proof script schema, where the proofs of the subtrees are
inserted. The subgoals (and their hypotheses) are extracted from the Rodin proof tree
and translated into TLA+. Then, TLA+should prove that the node goal follows from the
conjunction of the sub-node goals.

However, this general approach fails if the proof, which expresses the correctness
of the rule instance, cannot be automated (through SMT calls performed by TLA+).
In such cases, additional information—such as dedicated theorems, definitions to be
unfolded, or intermediate goals—must be provided. These depend on the specific rule
and its parameters, as indicated by the Rodin proof tree.

Translating Event-B models and development proofs to TLA+ 9

4.1 TLA+proof language

TLA+defines a textual proof script language [12]. A proved statement is characterized
by an identifier, a formula or an assume-prove statement, and a tree structure 3. The
leaves of the tree are composed of definitions and/or facts (e.g., theorems) that are used
to support the proof. A subtree represents a sequence of steps that ends with a QED
step. Each step is associated with its own proof. TLA+provides proof constructs for
building these steps. Figure 3 shows a simplified view of the TLA+proof structure. The
entry point is the Proof class. A proof is either direct (classes Obvious and By) or
needs several steps (class Steps) ending with a qed step. Some of the basic proof steps
(specified by sub-classes of the class Step) include:

– The construct WITNESS E (class Witness) provides a value (E) for proving an ex-
istential goal.

– The construct HAVE P (class Have) introduces a lemma stating the property P
– The construct ASSUME H PROVE G (class SubProof) introduces a TLA+sequent,

where H represents a sequence of either a variable declaration (using the NEW key-
word) or a hypothesis. This construct can be viewed as a forward proof mechanism,
as it allows for assuming H and proving G based on that assumption.

– The SUFFICES construct (class Suffices) introduces an intermediary step to dis-
charge the current goal. After justifying this step, the proof continues with the newly
introduced goal. Thus, SUFFICES can be viewed as a backward proof mechanism,
as it helps to derive the goal by working backwards from the current step.
We illustrate the use of these constructs with the following excerpt, which is taken

from the translation of the Rodin proof tree.
1 <1>3. SUFFICES ∀ p1 ∈ Proc, p2 ∈ Proc :
2 FunImage(Overwrite(state , {⟨p, In⟩ }), p1) = In
3 ∧ FunImage(Overwrite(state , {⟨p, In⟩ }), p2) = In ⇒ p1 = p2
4 OBVIOUS
5 <1>4. SUFFICES
6 ASSUME NEW CONSTANT p1 ∈ Proc, NEW CONSTANT p2 ∈ Proc
7 PROVE FunImage(Overwrite(state, {⟨p, In⟩ }), p1)=In ∧ FunImage(Overwrite(state , {⟨p, In⟩ }), p2)=In ⇒
8 p1 = p2
9 OBVIOUS

10 <1>5. SUFFICES
11 ASSUME FunImage(Overwrite(state, {⟨p, In⟩}), p1)=In , FunImage(Overwrite(state , {⟨p, In⟩ }), p2)=In
12 PROVE p1 = p2
13 OBVIOUS

4.2 Structure of Rodin proof trees

A property to be proven is represented as a sequent, which consists of hypotheses and
a goal. A proof is structured as a tree of such sequents, as depicted in the (simplified)
UML diagram in Figure 4. A non-terminal sequent (class Sequent) is resolved by a rule
(class Rule), which may take input parameters (class Input) provided by the user, such
as expressions for quantifier instantiation, the position of a subterm to be transformed,
and so on. The application of a rule generates new sequents, which may introduce new

3 The tree structure is optional; in such cases, the proof consists of a named statement.

10 Anne Grieu et al.

Fig. 3: Simplified view of the TLA+proof tree structure

identifiers (derived from universal goals or existential hypotheses) (class Identifier)
or create new hypotheses (subclasses of Action) by applying actions (e.g., deduction,
rewriting) to the parent hypotheses.

This tree structure will be illustrated in the next section by considering a concrete
proof tree. It represents, together with the structure of formulas, the main data structure
to be traversed for transforming a Rodin proof.

4.3 A Rodin proof tree

Figure 5 illustrates the tree representation of the Rodin proof for the preservation of the
mutex invariant by the Exit event. The key points to note are the following:

– Some rules (such as ∀ goal) introduce new variables, corresponding to the univer-
sally quantified rules at the head of the goal. These new variables are found by
following the newIdents link of Figure 4.

– Some rules (such as ⇒ goal) introduce new hypotheses, corresponding to the con-
juncts in the left part of the implication goal. They are found by following the link
actions of Figure 4.

Translating Event-B models and development proofs to TLA+ 11

Fig. 4: Simplified view of Rodin Proof Tree Structure

– Certain rules create multiple sub-trees. For example, the overwrite rule ovr creates
one when the argument of the function is the overwritten point, and another when
it is not. They are found by following the sequents link of Figure 4.

– Some rules (such as ovr) apply to specific terms, which can be specified by the user
during the proof development process. They are found by following the link input
of Figure 4.

– Deduction rules (e.g., MP for Modus Ponens) and rewrite rules (e.g., he, for reverse
equality in hypothesis) generate new hypotheses from existing ones. The corre-
sponding actions are instances of the ForwardInfHypAction or RewriteHypAction
classes of Figure 4.

4.4 Translating proofs of Rodin proof obligations

The following TLA+theorem is a direct translation of the proof tree built by the Rodin
user for the proof obligation stating the preservation of the invariant mutex by the Enter
event of the Mutex1machine. It is important to note that Rodin produces a self-contained
proof obligation, i.e. it includes identifiers and axioms declared in the seen contexts (such

12 Anne Grieu et al.

Fig. 5: A Rodin proof

as Proc, State, In, Out, etc.) and variables of the machine (state here). Additionally,
we observe that the state of the machine after the event is expressed using the Event-B
Overwrite operator (lines 12-13).

1 THEOREM Mutex1_Enter_mutex_INV_po ≜
2 ASSUME NEW CONSTANT Proc, NEW CONSTANT State,
3 NEW CONSTANT p ∈ Proc, NEW CONSTANT In ∈ State,
4 NEW CONSTANT state ∈ SUBSET Proc × State,
5 NEW CONSTANT Out ∈ State,
6 RImage(Rev(state), {In}) = ∅ ,
7 state ∈ TotalFunctions (Proc, State) ,
8 ∀ p1 ∈ Proc, p2 ∈ Proc :
9 FunImage(state , p1) = In ∧ FunImage(state , p2) = In ⇒ p1 = p2 ,

10 Partition (State , ⟨{In}, {Out}⟩)
11 PROVE ∀ p1 ∈ Proc, p2 ∈ Proc :
12 FunImage(Overwrite(state , {⟨p, In⟩ }), p1) = In

Translating Event-B models and development proofs to TLA+ 13

13 ∧ FunImage(Overwrite(state , {⟨p, In⟩ }), p2) = In ⇒ p1 = p2

4.5 Translating Rodin proof structure

Translating an Event-B proof tree involves recursively generating a TLAPS proof schema
for each node. A node representing an Event-B proof rule is structured as follows:

𝐶1 ∶ 𝑇1, 𝑛𝐻1,𝐻 ⊢ 𝐺1 … 𝐶𝑘 ∶ 𝑇𝑘, 𝑛𝐻𝑘,𝐻 ⊢ 𝐺𝑘

𝐻 ⊢ 𝐺
𝑅(𝑝)

which says that applying the rule𝑅with input parameters 𝑝 on the goal𝐻 ⊢ 𝐺 generates
𝑘 new sequents, each of them using new constants 𝐶𝑖 of type 𝑇𝑖 and new hypotheses 𝑛𝐻𝑖to solve the goal 𝐺𝑖. The generated TLAPS proof schema is then the following:
<N> ASSUME H PROVE G (∗ current goal ∗)

<N+1>1 ASSUME NEW CONSTANT C1 ∈ T1, H1 PROVE G1
... (∗ proof of G1 ∗)

<N+1>k ASSUME NEW CONSTANT Cn ∈ Tk, Hk PROVE Gk
... (∗ proof of Gk ∗)

<N+1>k+1 QED BY <N+1>1 ... <N+1>k (∗ try to prove H⇒G from subgoals ∗)

which means that given a proof for the 𝑘 subgoals (marked with …), we get a proof for
the initial goal. TLA+will attempt to automatically prove the QED step.

In order to simplify the proof structure, the generated schema is different when we
only have one subgoal (𝑘 = 1):
ASSUME H PROVE G
SUFFICES ASSUME NEW CONSTANT C1 ∈ T1, H1 PROVE G1

OBVIOUS (∗ try to prove H⇒G from the subgoal ∗)
... (∗ proof of G1 ∗)

This rule can be read: it suffices to prove 𝐺1 using the new constants and hypotheses
to get a proof of the initial goal. As previously, TLA+tries to prove automatically the
correctness of the rule, i.e. that the subgoal is really a sufficient condition for the goal
to hold.

The example of Section 4.1 is the translation of steps ∀𝑔𝑜𝑎𝑙 and ⇒ 𝑔𝑜𝑎𝑙 of the Rodin
proof tree of Figure 5. The first step introduces the two typed quantified variables that
are referred to by the newIdents role of Figure 5. The second step moves the left hand
side of the ⇒ connector to the assumptions.

The two script schemas aim to automatically verify the correctness of rule instances,
ensuring that the conjunction of subgoals imply the initial goal. This automation typi-
cally succeeds for propositional and basic set reasoning. For more complex cases man-
aged by Rodin through the use of domain-specific rules or theorems, we provide dedi-
cated techniques in Section 5. They avoid trying to prove set-related formulas by reduc-
ing them to (often complex) first-order formulas.

14 Anne Grieu et al.

4.6 Taking into account Rodin Proof Rules

The general schema we have presented does not consider the specific nature of the proof
rule referenced in the Rodin Proof Tree. Instead, it attempts to automatically verify that
the conjunction of subgoals implies the initial goal—that is, to establish the correctness
of the proof rule instance. In most cases, this approach succeeds when the deduction
relies on propositional logic or set-theoretic arguments, thanks to TLA+’s internal trans-
formations and its use of SMT solvers. However, it fails when the proof requires specific
theorems or definitions.

5 Translating Rodin tactics

As mentioned in the introduction, this work is preliminary, and achieving full cov-
erage of the Event-B framework is a long-term effort. The Event-B framework has
evolved over many years, incorporating more than 50 proof rules and over 500 sim-
plification rules. Addressing these is essential to accurately preserve the structure of
Event-B proofs.

5.1 Proof Rules

Here, we highlight two proof rules that illustrate the inherent challenges of translating
Event-B proofs to TLA+: Generalized Modus Ponens, which encapsulates a complex
reasoning process, and Overwrite Right Subset, which functions as a rule schema rather
than a single rule.

– The reasoner GeneralizedModusPonens uses many modus ponens-like rules such
as the two following:

𝑃 , 𝜑(⊤) ⊢ 𝐺
𝑃 ,𝜑(𝑃) ⊢ 𝐺

𝜑(⊤) ⊢ ¬𝐺
𝜑(𝐺) ⊢ ¬𝐺

where 𝑃 is a predicate present in the list of hypotheses (left rule), 𝜑(_) the list of
(remaining for the left rule) hypotheses and 𝐺 the current goal. Predicates of this list
may contain 𝑃 (left rule) or 𝐺 (right rule) as a sub-formula. Applying one of these
rules replaces 𝑃 by ⊤ or 𝐺 by ⊥ in all the hypotheses. These rule applications are
not explicitly traced, so the approach to handling this tactic is to let TLA+attempt
to prove the resulting goal automatically.

– The OVR_RIGHT_SUBSET: This rule facilitates the proof of a relational over-
write statement in the presence of another overwrite. However, it cannot be directly
expressed as a single rule, as it functions more as a rule schema. Therefore, apply-
ing this rule requires supplying TLA+with the necessary elementary theorems to
support the proof and relying on automatic verification.

𝑓 <+⋯ <+𝑔 <+⋯ <+ℎ ⊆ 𝐴 ⊢ 𝑔 <+⋯ <+ℎ ⊆ 𝐴

In this case, providing the binary variant of the mentioned rule along with a theorem
stating the associativity of the overloading operator should be sufficient. In the next
section, we present an example to illustrate this idea.

Translating Event-B models and development proofs to TLA+ 15

5.2 Simplification rules

An Event-B proof rule triggers a simplification procedure that applies numerous rewrit-
ing rules to the current goal and its hypotheses. However, the order in which these rules
are applied is only available in debug mode via standard output, and the transformed
sub-formulas are not specified. Even when the final formula is known, expecting an au-
tomatic proof in TLA+remains challenging. Therefore, it is essential to identify as many
applied rules as possible to assist the TLA+prover. To illustrate potential approaches to
this problem, we have selected two specific rules as examples.

– The rule SIMP_MULTI_BINTER removes duplicates in an intersection. It is specified
as follows: 𝑆 ∩ … ∩ 𝑇 ∩ … ∩ 𝑇 ∩ … ∩ 𝑈 = 𝑆 ∩ … ∩ 𝑇 ∩ … ∩ 𝑈 . It cannot be
directly expressed as a TLA+theorem as it is in fact a rule schema. However, since
we know the left and right terms, and the ∩ operator is a built-in TLA+operator, we
can state the expected goal and expect an automatic proof4.
THEOREM ints_SIMP_MULTI_BINTER ≜

ASSUME NEW S, NEW T, NEW I, NEW U
PROVE S ∩ T ∩ I ∩ T ∩ U = S ∩ T ∩ I ∩ U
OBVIOUS

– Simplifications rules may also concern relational operators that are not built-in.
For example, a duplication inside a chain of overwrite operators can be removed:
𝑟1 <+… <+𝑟𝑛 = 𝑟1 <+… <+𝑟𝑖−1 <+𝑟𝑖+1… <+… <+𝑟𝑛 if ∃𝑘 > 0 ∶ 𝑟𝑖+𝑘 = 𝑟𝑖. The
corresponding theorems (associativity of overwrite, binary and ternary instances of
the previous rule) must be provided through the BY clause to get an automatic proof
of the following theorem provided as an example5.
THEOREM Ovr_ASSOC ≜

The given information must be well chosen to avoid an overload of the underlying
SMT’s and thus chosen on a case by case basis.

5.3 Architecture of the generated TLA+development

As seen in Section 4.4, Event-B proof trees are self-contained and thus do not de-
pend the Event-B model. Links are only provided for traceability. Consequently, the
TLA+proofs generated from Event-B proof trees are currently self-contained also. How-
ever, the TLA+language allows a module containing a proof script to import a module
containing a model. Establishing this connection remains an open task and involves two
key steps: first, eliminating proof assumptions that duplicate information already present
in the model, and second, expanding TLA+macros (such as invariants, event guards, and
actions) used in the direct generation of proof obligations in TLA+(Section 3), so that
the obtained statements match those of the Rodin proof tree.

4 It is indeed the case!
5 The whole module OVERWRITE is given in appendix B.

16 Anne Grieu et al.

6 Conclusion

A conclusion of our study is that Event-B and TLA+are more closely related than they
might initially seem. While Event-B is based on relations and TLA+on functions, both
rely on Zermelo-Fraenkel (ZF) set theory, and the syntax of their formula languages are
nearly identical. However, Event-B relies heavily on relations while TLA+introduces
functions. It would be interesting to distinguish Event-B relations which behave as func-
tions and are not mixed with other relations. Then, such relations could be encoded as
TLA+functions. Moreover, since Event-B lacks a textual proof language, it could po-
tentially benefit from TLA+’s approach. Our initial experiments suggest that this inte-
gration is promising. Conversely, regarding proof obligations, Event-B’s methodology
could enhance TLA+by standardizing the way proof statements for properties such as
safety are formulated. Such uniformity would improve model readability and compre-
hension while facilitating intuitive translations between models or entire developments.

A closely related work is EB4EB [15], which also explores Event-B semantics. How-
ever, we believe EB4EB is better suited for addressing meta-level issues, such as defining
the semantics of new constructs not currently supported by Event-B—e.g., liveness [13]
or scheduling properties [11]. In contrast, our work is more focused on verification,
specifically at the proof level. Other research efforts, such as the BWare project [7],
have explored the translation of B-system proof obligations. However, those efforts pri-
marily use proof obligations generated by Atelier B [1, 4, 14] and do not take underlying
proofs into account. Additionally, the Why3 tool [8] has been employed as an interface
to various provers to facilitate proof discovery.

For future work, we plan to explore machine refinement and the syntactic exten-
sions introduced by Event-B, which aid in refinement proofs. In particular, witness
declarations serve as valuable hints for existential proofs. Finally, we aim to define a
TLA+translation semantics for Event-B context instantiation [16, 5].

Acknowledgments

The authors greatly thank the reviewers for their helpful and insightful comments.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University Press,
New York, NY, USA (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, New York, NY, USA, 1st edn. (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open
toolset for modelling and reasoning in Event-B. Int. Journal on Software Tools for Technology
Transfer 12(6), 447–466 (Nov 2010). https://doi.org/10.1007/s10009-010-0145-y

4. Berkani, K., Dubois, C., Faivre, A., Falampin, J.: Validation des règles de base de l’atelier
B. Tech. Sci. Informatiques 23(7), 855–878 (2004). https://doi.org/10.3166/TSI.23.855-878,
https://doi.org/10.3166/tsi.23.855-878

Translating Event-B models and development proofs to TLA+ 17

5. Bodeveix, J., Filali, M.: Event-B formalization of Event-B contexts. In: Raschke, A.,
Méry, D. (eds.) Rigorous State-Based Methods - 8th International Conference, ABZ
2021, Ulm, Germany, June 9-11, 2021, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 12709, pp. 66–80. Springer (2021). https://doi.org/10.1007/978-3-030-77543-8_5,
https://doi.org/10.1007/978-3-030-77543-8_5

6. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.: TLA+ proofs.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012: Formal Methods - 18th International
Symposium, Paris, France, August 27-31, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7436, pp. 147–154. Springer (2012). https://doi.org/10.1007/978-3-642-32759-
9_14, https://doi.org/10.1007/978-3-642-32759-9_14

7. Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The bware project: Building a proof plat-
form for the automated verification of b proof obligations. In: Ait Ameur, Y., Schewe, K.D.
(eds.) Abstract State Machines, Alloy, B, TLA, VDM, and Z. pp. 290–293. Springer Berlin
Heidelberg, Berlin, Heidelberg (2014)

8. Filliâtre, J.C., Paskevich, A.: Why3: where programs meet provers. In: Proceedings of the
22nd European Conference on Programming Languages and Systems. p. 125–128. ESOP’13,
Springer-Verlag, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8,
https://doi.org/10.1007/978-3-642-37036-6_8

9. Hansen, D., Leuschel, M.: Translating B to TLA+ for validation with TLC. Sci.
Comput. Program. 131, 109–125 (2016). https://doi.org/10.1016/J.SCICO.2016.04.014,
https://doi.org/10.1016/j.scico.2016.04.014

10. Hoang, T.S.: An introduction to the Event-B modelling method. In: Romanovsky, A., Thomas,
M. (eds.) Industrial Deployment of System Engineering Methods, pp. 211–236. Springer-
Verlag (Jul 2013), http://www.springer.com/computer/swe/book/978-3-642-33169-5

11. Hudon, S., Hoang, T.S., Ostroff, J.S.: The Unit-B method: refinement guided by progress con-
cerns. Softw. Syst. Model. 15(4), 1091–1116 (2016). https://doi.org/10.1007/S10270-015-
0456-2, https://doi.org/10.1007/s10270-015-0456-2

12. Lamport, L.: TLA+ version 2 a preliminary guide. https://lamport.azurewebsites.net/tla/tla2-
guide.pdf, accessed: 2025-02-18

13. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley Longman Publishing Co., Inc., USA (2002)

14. Lecomte, T., Déharbe, D., Fournier, P., Oliveira, M.: The CLEARSY safety platform: 5
years of research, development and deployment. Sci. Comput. Program. 199, 102524 (2020).
https://doi.org/10.1016/J.SCICO.2020.102524, https://doi.org/10.1016/j.scico.2020.102524

15. Rivière, P., Singh, N.K., Aït-Ameur, Y.: Reflexive Event-B: Semantics and cor-
rectness the EB4EB framework. IEEE Trans. Reliab. 73(2), 835–850 (2024).
https://doi.org/10.1109/TR.2022.3219649, https://doi.org/10.1109/TR.2022.3219649

16. Verdier, G., Voisin, L.: Context instantiation plug-in: a new approach to genericity in Rodin.
https://eprints.soton.ac.uk/449887/1/proceedings.pdf (2021), accessed: 2025-02-19

18 Anne Grieu et al.

A mMutex in TLA+

−−−−−−− MODULE mMutex1 −−−−−−−
EXTENDS Naturals, Integers, TLAPS, Relations, Partitions , FiniteSets , cMutex1
VARIABLES event, state
vars ≜ ⟨event, state ⟩
Inv_state_ty ≜ (state ∈ TotalFunctions(Proc, State))
Inv_mutex ≜ (∀ p1 ∈ Proc, p2 ∈ Proc: ((FunImage(state, p1) = In) ∧

(FunImage(state, p2) = In) ⇒ (p1 = p2)))
Invariant ≜ Inv_state_ty ∧ Inv_mutex

Init ≜ event = ⟨"INITIALISATION"⟩ ∧ ⟨state⟩ = ⟨(Proc × { Out})⟩
EVT_Enter(p) ≜ event = ⟨"Enter", p⟩
GRD_Enter(p) ≜ (p ∈ Proc) ∧ (Ran(state) = { ut})
ACT_Enter(p) ≜ ⟨state’⟩ = ⟨Overwrite(state, {⟨p, In⟩})⟩
_Enter(p) ≜ EVT_Enter(p) ∧ GRD_Enter(p) ∧ ACT_Enter(p)

EVT_Exit(p) ≜ event = ⟨"Exit", p⟩
GRD_Exit(p) ≜ (FunImage(state, p) = In)
ACT_Exit(p) ≜ ⟨state’⟩ = ⟨Overwrite(state, {⟨p, Out⟩})⟩
_Exit(p) ≜ EVT_Exit(p) ∧ GRD_Exit(p) ∧ ACT_Exit(p)

Next ≜ (∃ p ∈ Proc : _Enter(p)) ∨ (∃ p ∈ Proc : _Exit(p))
Spec ≜ Init ∧ [□][Next]_vars
==

B Simplification of Overwrite

−−−−− MODULE OVERWRITE −−−−−−
EXTENDS Relations
R <: S ≜ Overwrite(R,S) (∗ an infix notation for Overwrite ∗)
THEOREM Ovr_ASSOC ≜

ASSUME NEW R1, NEW R2, NEW R3
PROVE (R1 <: R2) <: R3 = R1 <: (R2 <: R3)
BY DEF <:, Overwrite, AntirestrictDom, Dom

THEOREM Ovr_IDEMP ≜
ASSUME NEW R PROVE R <: R = R
BY DEF <:, Overwrite, AntirestrictDom, Dom

THEOREM Ovr_IDEMP_GAP ≜
ASSUME NEW R, NEW S
PROVE R <: S <: R = S <: R
BY DEF <:, Overwrite, AntirestrictDom, Dom

THEOREM MULTI_OVERWRITE ≜
ASSUME NEW S, NEW T, NEW I1, NEW I2, NEW U
PROVE S <: T <: I1 <: I2 <: T <: U = S <: I1 <: I2 <: T <: U
BY Ovr_ASSOC, Ovr_IDEMP, Ovr_IDEMP_GAP

==============================

The Proved Construction of a Protocol with an Example
Inspired by the Paxos Protocol

Dominique Cansell (Lessy), Jean-Raymond Abrial (Marseille)

email: dominique.cansell@gmail.com

Abstract. This paper present a complete proved development of a protocol in-
spired by the Lamport’s Paxos protocol. Our protocol is not fault-tolerant. This
work was carried out at the end of 2019.

1 Informal Description

This document contains the description of the formally proved construction of a proto-
col. Such a description is not so different from that of the formally proved construction
of a loop program as this one:

A; while G do S end

with loop initialisation A, loop guard G and loop body S. Such a program can be
specified by means of a pre-condition PRE and a post-condition POST . In order to
demonstrate that this program achieves POST , one has to prove the following:

¬G, I ` POST

where I stands for some invariant predicates (to be discovered) in the loop body, invari-
ants to be proved as follows:

PRE ` [A]I
G, I ` [S]I

where [A]I and [S]I stand for the establishment of invariant I by the loop initialisation
A and the loop body S. Another proof is needed, namely that the loop terminates. This
can be done by exhibiting a variant that is decreased by the loop body S.

In the case of the loop program, the initialisation A, the guard G and the body S are
executed by a single computing entity. In the case of a protocol, we have also a kind
of loop, but the initialisation A, the guard G and the body S are executed concurrently
by several (sometimes many) computing entities communicating with one another by
means of messages. We still have some pre- and post-conditions specifying our protocol
and we have a kind of proof similar to the one proposed for the loop program above.
As for the loop program, we need to propose some invariants. We have also to prove
the termination of our protocol. It might be a little more complicated than in the case of
the loop program as we might have now several loops involved. An additional demon-
stration is needed to prove that the concurrent execution of the body does not deadlock
while our protocol execution is not terminated. This has to be done under the implicit
assumption that the communication between the computing entities do not fail.

In this paper, we illustrate what has been just said. For this, we choose a terminating
variant of part of the protocol Paxos [3] proposed by Leslie Lamport. In our protocol,
besides the basic behaviour, it is also supposed that the communication between the
computing entities does not fail. Our intention is to write later an extension of this
document taking account of the communication failure.

In the present section, we present first a general background in Section 1.1. Then we
propose an informal description of our protocol in Section 1.2. In Section 2, we propose
two approaches to formally proving our protocol: a direct approach and a constructive
approaches. Details of the direct approach are given in Section 3 while details of the
constructive approach are given in Section 4. Related works are given in Section 5. In
Section 6, we have a short conclusion.

1.1 Background

We are given a set V of values. The purpose of our protocol is to distribute elements
in the set V to elements of a finite set A of entities called ”acceptors”. One value only
will be distributed to each acceptor. We suppose that each acceptor is ignorant of the
presence of other acceptors.

At the end of our protocol all acceptors must have received the same value. This is
the goal of our Protocol.

There exists another finite set, P , of entities, called ”proposers”. As is the case for
acceptors, each proposer ignores the presence of other proposers. Some of the elements
of the set V of values are spread over proposers. In other words, each proposer p owns
a value val(p), which is a member of the set V . Notice that several proposers may
own the same value. Moreover, the only values able to be distributed to acceptors are
those owned by proposers. This distribution is made possible through messages sent by
proposers to acceptors as is explained in the next paragraph.

Although each proposer ignores other proposers, each proposer knows all accep-
tors. Thus a proposer is able to send messages to all acceptors. Conversely, an acceptor
receiving a message from a proposer p is able to reply to this message from the proposer
p. Messages between proposers and acceptors and vice versa are sent concurrently.

In this document, we suppose that the communication between proposers and ac-
ceptors is safe (reliable). That is, we suppose that messages sent from proposers to
acceptors and vice versa always reach their destination, and this without being modi-
fied. Notice that the general Paxos protocol handles the case where the communication
is not safe (although general Paxos assumes that messages reaching their destination
are not modified). Again, we do not consider this case in the present document.

It is clearly not possible to achieve the main goal of our protocol (i.e. all acceptors
receive the same value) with the previous data we mentioned. This is so because the
only information to be transmitted from a proposer p to acceptors is the value val(p)
owned by the proposer p. All acceptors might receive the same value only if the set A
contains a single element or if all elements in the set P own the same value.

In order to solve the problem, another data structure is needed. In fact, each proposer
p is given a unique positive natural number num(p) not shared by other proposers.
Proposers are thus organised as a strict hierarchy.

From the point of view of each proposer, our protocol is decomposed into two
phases:

2

In a first phase, each proposer p sends num(p) to all acceptors. Such a message
from a proposer to an acceptor is called a ”prepare” message. This not done at once,
only gradually by each proposer concurrently with other proposers.

In a second phase, when a proposer p has sent a prepare message to all acceptors
and has received the associated reply (called a ”promis” message, whose contents is
defined below in Section 1.2) from each of them, the proposer p sends, again gradually,
its value val(p) (or a substitute of it, store(p)) to all acceptors. Such a message from a
proposer to all acceptors is called an ”accept” message.

We have similar phases for acceptors.
In order to finalise the description of our protocol, more data structures are needed.

Each acceptor a can record numbers sent by proposers (in a prepare message) in a vari-
able called the num(a). Initially, the num(a) is equal to 0 (remember that num(p) is
a positive natural number). Moreover, each acceptor contains a variable The val(a).
Initially, The val(a) contains any value. At the end of our protocol, each variable
The val(a) must contain the same value for all acceptors a. Finally, each acceptor has a
boolean variable val bool(a). Initially, val bool(a) = FALSE. When val bool(a) =
TRUE, it means that acceptor a received a value from a proposer (in an accept mes-
sage), and that this value has been recorded in The val(a).

Each proposer p can record values to be sent to acceptors not only in the initial
constant val(p) but also in a variable store(p) which is local to each proposer. Ini-
tially, store(p) is equal to val(p), but, during the execution of our protocol, store(p) is
modified in order to send the same value to all acceptors.

1.2 Informal Description of our Protocol

Here is the informal description of our protocol. It is made of the following six num-
bered actions:

(1) Each proposer p sends a prepare message containing num(p) to all acceptors.
(2) When receiving a prepare message from a proposer p, an acceptor a compares

the num(p) contained in the prepare message with its local variable the num(a). If
num(p) > the num(a), then the value of the num(a) is updated with num(p).

(3) Whatever the comparison between num(p) and the num(a), a promise mes-
sage is send by acceptor a as a reply to the processor p which sent the prepare message
to acceptor a. This promise message contains val bool(a) and The val(a)

(4) When a proposer p receives a promise message from an acceptor a containing
TRUE and The val(a), the proposer p updates store(p) with The val(a) contained
in the promis message, otherwise proposer p does nothing.

(5) Once a proposer p has received replies from all acceptors, it sends an accept
message to all acceptors. This message contains num(p) and store(p).

(6) When an acceptor a receives an accept message from a processor p, this message
is discarded if the num(p) contained in the message is smaller than the num(a) or if a
has already received a value (that is, if val bool(a) = TRUE). Otherwise, The val(a)
is updated with the store(p) contained in the accept message and val bool(a) is set to
TRUE.

Our protocol ends when each acceptor has received a value, that is when, for each
acceptor a, we have val bool(a) = TRUE.

3

As can be seen, the behaviour of this protocol is highly non-deterministic and it is
not at all obvious that all acceptors get the same value at the end of it. In fact, model
checking is absolutely impossible even with small sets P and A. A proof can only be
convincing in this case.

We want to prove three things: (1) at the end of the execution of our protocol, all
acceptors receive the same value, (2) the execution of our protocol comes eventually to
an end (notice that the general Paxos protocol might fail to terminate), (3) there is no
deadlock in the execution of our protocol.

2 Approaches to Proofs

We tried two different approaches: a direct approach and a constructive approach. We
started with the direct approach but we had, after adding many invariants only one un-
proved proof obligation. We were stuck so we started the constructive approach (till
model M4) . In the meantime (but after a long time) the missing invariant was discov-
ered for the direct approach. After that we were able to finish the constructive approach
easily.

2.1 A Direct Approach

In this approach, we encode directly our protocol with Event-B [1] on the Rodin toolset
[7] (see below in Section 3). For doing this, each kind of messages (prepare, promis,
accept) is encoded by at least two events: one corresponding to the sending of the mes-
sage, and at least one corresponding to the reception and reactions to the message. Note
that this reaction can be the sending of another message.

In order to perform the proof of (1) defined in the previous Section, we had to
introduce some invariants. It was not an easy task. It took us a long time until we had
the proper set of invariants. During this approach, we used the model checker ProB [6,
5] a lot in order to find some invariant counter examples.

The conclusion was that this approach was not satisfactory at all, due to the main
difficulty to discover good invariants.

2.2 A Constructive Approach

In this approach, we define a sequence of models, each of which being a refinement of
the one before it in the sequence (see below in Section 4). The first models are very
abstract containing some global variables able to be seen by proposers or acceptors. As
refinements progress, these abstract variables are removed so that we reach in the final
model our genuine protocol. In each model, some invariants are introduced and proved
far more easily than in the direct approach.

3 Details of the Direct Approach

In this section, we describe how the informal description of our protocol defined in
Section 1.2 can be encoded in terms of various events. Besides the data presented in

4

Section 1.1 (the num, The val, val bool and store), we use six technical variables.
Three variables define the three kinds of messages: prepare msg ∈ (P × A) 7→ N1,
promis msg ∈ (P ×A) 7→(bool×V) and accept msg ∈ (P ×A) 7→(N1×V). Three
more variables are used to control loops in the proposers: loop prepare ∈ P → P(A),
loop accept ∈ P → P(A) and loop promis ∈ P → P(A).

For reasons of space, we will only give the names of the events; the reader can see
them (guards and action) in the Subsection 4.10:

– Event send prepare corresponds to a proposer sending a prepare message to an
acceptor (this corresponds to action (1) of the informal description of our protocol
in Section 1.2):

– The two events rcv prepare 1 and rcv prepare 2 correspond to the reactions of
an acceptor receiving a prepare message from a proposer. Notice that a promis
message is sent back to the proposer (this corresponds to actions (2) and (3)):

– The two events rcv promis 1 and rcv promis 2 correspond to the reactions of a
proposer receiving a promis message (this corresponds to action (4)):

– When a proposer has received reactions from all acceptors, this proposer can send
an accept message to all acceptors (this corresponds to action (5)). It’s the event
send accept.

– The two events rcv accept 1 and rcv accept 2 correspond to the reactions of an
acceptor receiving an accept message (this corresponds to action (6)):

The main property to prove is the following. It says that at the end of our protocol
(when all acceptors have received a value), all acceptors received the same value:

(val bool = A× {TRUE}) ⇒ (∃v · v ∈ V ∧ The val = A× {v})

This property is quite difficult to prove at this point because many invariants have to
be introduced. Nevertheless it is important to have defined these events as it is then
possible to validate the constructing approach defined in Section 4: at the end of the
constructing approach we must obtain exactly the same set of events as defined in this
section except the event final. To prove our invariant we have to add the two (abstract)
variables init acc and init p. Two other properties have to be proved at the next level:
ending property and no deadlock property. In this first refinement init acc and init p
disappear. Again, some invariants are needed to perform such proofs. The no deadlock
is a little different. Since event final is not present we prove that the negation of the
disjunction of all guards implies that the protocol is finished.

¬((∃p, a · a /∈ loop prepare(p)) ∨
(∃p, a, n · (p 7→ a) 7→ n ∈ prepare msg ∧ the num(a) < n) ∨
(∃p, a, n · (p 7→ a) 7→ n ∈ prepare msg ∧ the num(a) ≥ n) ∨
(∃p, a, v · (p 7→ a) 7→ (FALSE 7→ v) ∈ promis msg) ∨
(∃p, a, v · (p 7→ a) 7→ (TRUE 7→ v) ∈ promis msg) ∨
(∃p, a · loop promis(a) = A ∧ a /∈ loop accept(a)) ∨
(∃p, a, n, v · (p 7→ a) 7→ (n 7→ v) ∈ accept msg ∧

val bool(a) = FALSE ∧ n ≥ the num(a)) ∨
(∃p, a, n, v · (p 7→ a) 7→ (n 7→ v) ∈ accept msg ∧

(n < the num(a) ∨ val bool(a) = TRUE)))

⇒
(val bool = A× {TRUE})

5

4 Details of the Constructive Approach

4.1 Context C1 and Model M1

Before describing model M1 in this section, we have to define the most abstract pre-
condition of our protocol. Such a pre-condition is defined by means of some constants
in the context C1: the set V (the set of values) and the finite set A (the set of acceptors):
finite(A) .

In model M1, we have a unique variable the val. This variable is supposed to record
values sent to acceptors during the execution of our protocol. It is a partial function from
A to V : the val ∈ A 7→ V . It is initialised to the empty set ∅.

The post-condition of our protocol is defined in the guard of the special event fi-
nal with no action. This post-condition states that, at the end of our protocol, each
acceptor receives the same value. We have an additional event, chg val, that, non-
deterministically, states that the variable the val can be modified. This event will be
made more precise in the next model:

final
when
∃v·v ∈ V ∧ the val = A× {v}

then
skip

end

chg val
then

the val :∈ A 7→ V
end

The event chg val is anticipated. It means that we do not prove now that this event
does not take control for ever. This will be done in the next model where the event
chg val will be refined by two convergent events.

4.2 Model M2

In this model, we add the variable init val. It is a member of the set V that is, suppos-
edly, the value distributed to all acceptors. Of course, in this abstract model, we do not
know how this value is chosen. This will be made clear in further models. The event
final is refined as follows:

final
when
dom(the val) = A

then
skip

end

In order to prove that this new version of the event final refines the more abstract
version proposed in the previous section, we have to prove that the guard of this concrete
version implies the guard of the abstract version, that is the following:

(dom(the val) = A)⇒ (∃v ·v ∈ V ∧ the val = A× {v})

In order to do so, we need the following invariant:

ran(the val) ⊆ {init val}

6

The abstract event chg val is refined by the two events first val and next val. The event
first val corresponds to the first time a value v is ever sent to an acceptor a. In this event,
the variable init val is updated to v. The event next val corresponds to the case where
a variable is not sent for the first time to an acceptor. In fact, init val is used in this
case:

first val
any
v, a

where
the val = ∅
v ∈ V
a ∈ A

then
the val(a) := v
init val := v

end

next val
any
a

where
the val 6= ∅
a /∈ dom(the val)

then
the val(a) := init val

end

These events are convergent. This means that we have to prove that they cannot take
control for ever. For proving this, we must define a decreasing variant. In this case, the
variant is the following finite set:

A \ dom(the val)

4.3 Context C2 and Model M3

In this model, proposers enter into the scene. For this, we extend the context C1 by the
context C2. The finite set P is defined in this context: finite(P). This is done together
with the total constant function val defining the value owned by each proposer: val ∈
P → V . In model M3, we remove the variable init val. We replace it by the new
variable init acc, which is the first acceptor receiving init val. The two events first val
and next val are refined as follows:

first val
any
a, p

where
the val = ∅ ∧ a ∈ A ∧ p ∈ P

with
v = val(p)

then
the val(a) := val(p) || init acc := a

end

next val
any
a

where
the val 6= ∅
a /∈ dom(the val)

then
the val(a) := the val(init acc)

end

In order to prove the correct refinement of these events, we have to introduce the fol-
lowing invariant:

the val 6= ∅ ⇒ init acc ∈ dom(the val) ∧ the val(init acc) = init val

4.4 Context C3 and Model M4

Here, we introduce the new constant num. It defines a unique positive natural number
for each proposer. The constant num is thus an injective function from P to N1: num ∈
P � N1. This is done in a context C3, extending context C2.

7

In this model, we add the new variable a met p. It is a relation between A and P :
a met p ∈ A↔ P . If a 7→ p ∈ a met p, it means that acceptor a met proposer p in
the past. This variable is initialised to the empty set ∅. The event first val is refined as
follows. Notice the guard A×{p} ⊆ a met p: it means that all acceptors met proposer
p. The last guard means that num(p) has the greatest number among other similar
proposers. These two guards correspond to what is done in the concrete protocol.

first val
any
a, p

where
the val = ∅
a ∈ A
A× {p} ⊆ a met p
∀q · a 7→ q ∈ a met p ⇒ num(q) ≤ num(p)

then
the val(a) := val(p)
init acc := a

end

Notice that several acceptors can trigger this event. However, the proposer p is unique.
This is due to the fact that the number num(p) associated with each proposer p is
unique. More precisely, if we have the following according to the guards of the event
first val with parameters a1, p1 and a2, p2:

A× {p1} ⊆ a met p
∀q · a1 7→ q ∈ a met p ⇒ num(q) ≤ num(p1)
A× {p2} ⊆ a met p
∀q · a2 7→ q ∈ a met p ⇒ num(q) ≤ num(p2)

we can deduce num(p2) ≤ num(p1) and num(p1) ≤ num(p2), that is num(p1) =
num(p2), that is p1 = p2 since the function num is injective.

We have a new abstract event modifying the variable a met p:

chg a met p
any

a, p
where

a ∈ A
a 7→ p /∈ a met p

then
a met p := a met p ∪ {a 7→ p}

end

This event is convergent. Here is the corresponding finite set variant:

(A× P) \ a met p

4.5 Model M5

In this model, we introduce the variable the num. It is a total function: the num ∈
A→ ran(num) ∪ {0}. It is initialised to A × {0}. When the num(a) 6= 0, it means
that acceptor a knows at least the number of one proposer. The event first val is refined
as follows:

8

first val
any
a, p

where
the val = ∅
A× {p} ⊆ a met p
num(p) = the num(a)

then
the val(a) := val(p)
init acc := a

end

To prove this refinement, we need the following invariant:

∀a, p · a 7→ p ∈ a met p ⇒ num(p) ≤ the num(a)

The abstract event chg a met p is refined by the following events:

chg the num
any
a, p

where
a 7→ p /∈ a met p
num(p) > the num(a)

then
a met p := a met p ∪ {a 7→ p}
the num(a) := num(p)

end

no chg the num
any
a, p

where
a 7→ p /∈ a met p
num(p) ≤ the num(a)

then
a met p := a met p ∪ {a 7→ p}

end

4.6 Model M6

So far, we did not introduce messages. This is quite normal in a constructive approach:
messages are part of an implementation. In this model M6, we introduce the last kind of
messages involved in our protocol: accept messages. For this, we define the following
variable: accept msg ∈ (P ×A) 7→ (N1×V). Events first val and next val are refined
as follows:

first val
any
a, p, n, v

where
the val = ∅
(p 7→ a) 7→ (n 7→ v) ∈ accept msg
n ≥ the num(a)

then
the val(a) := v
init acc := a
accept msg := accept msg \

{(p 7→ a) 7→ (n 7→ v)}
end

next val
any
a, p, n, v

where
the val 6= ∅
a /∈ dom(the val)
(p 7→ a) 7→ (n 7→ v) ∈ accept msg
n ≥ the num(a)

then
the val(a) := v
accept msg := accept msg \

{(p 7→ a) 7→ (n 7→ v)}
end

For proving the guards of the event first val, we need the following invariant:

∀p, a, n, v · (p 7→ a) 7→ (n 7→ v) ∈ accept msg ⇒ A× {p} ⊆ a met p

9

For proving the actions of the event first val , we need the following invariant:

∀p, a, n, v · (p 7→ a) 7→ (n 7→ v) ∈ accept msg ∧
the val = ∅ ∧
n ≥ the num(a)
⇒
v = val(p)

For the event next val, we need the following invariant:

∀p, a, n, v · (p 7→ a) 7→ (n 7→ v) ∈ accept msg ∧
the val 6= ∅ ∧
n ≥ the num(a)
⇒
v = the val(init acc)

In order to deal with these invariants, we define the following event sending an
accept message. Before presenting this new event, we must introduce the new variable
already accept ∈ P ↔A. When p 7→ a ∈ already accept, it means equivalently that
proposer p already sent an accept message to acceptor a:

send accept
any
a, p, v

where
p 7→ a /∈ already accept
A× {p} ⊆ a met p
the val(a) = ∅ ⇒ v = val(p)
the val(a) 6= ∅ ∧ num(p) ≥ the num(a) ⇒ v = the val(init acc)

then
accept msg := accept msg ∪ {(p 7→ a) 7→ (num(p) 7→ v)}
already accept := already accept ∪ {p 7→ a}

end

The following event explains under which circumstances the accept message is ignored:

ignore accept
any

a, p, n, v
where

(p 7→ a) 7→ (n 7→ v) ∈ accept msg
n < the num(a) ∨ a ∈ dom(the val)

then
accept msg := accept msg \ {(p 7→ a) 7→ (n 7→ v)}

end

The last two events are convergent. This can be proved by means of the following
lexicographic variant:

(P ×A) \ send accept)
dom(accept msg)

10

4.7 Model M7

In this model, we introduce other messages. Here is the event sending a prepare mes-
sage:

send prepare
any
p, a

where
p 7→ a /∈ already prepare

then
prepare msg := prepare msg ∪ {(p 7→ a) 7→ num(p)}
already prepare := already prepare ∪ {p 7→ a}

end

The next invariant makes precise the contents of a prepare message:

∀p, a, n · (p 7→ a) 7→ n ∈ prepare msg ⇒ n = num(p)

Events chg the num and no chg the num are refined as follows (notice the
changes of name):

rcv prepare 1
refines
chg the num

any
a, p, b, v,m

where
(p 7→ a) 7→ m ∈ prepare msg
m > the num(a)
a ∈ dom(the val)⇒

b = TRUE ∧
v = the val(init acc)

a /∈ dom(the val)⇒
b = FALSE ∧ v ∈ V

then
the num(a) := m
prepare msg := prepare msg \

{(p 7→ a) 7→ m}
promis msg := promis msg ∪

{(p 7→ a) 7→ (b 7→ v)}
end

rcv prepare 2
refines
no chg the num

any
a, p, b, v,m

where
(p 7→ a) 7→ m ∈ prepare msg
m ≤ the num(a)
a ∈ dom(the val)⇒

b = TRUE ∧
v = the val(init acc)

a /∈ dom(the val)⇒
b = FALSE ∧ v ∈ V

then
prepare msg := prepare msg \

{(p 7→ a) 7→ m}
promis msg := promis msg ∪

{(p 7→ a) 7→ (b 7→ v)}
end

When a proposer p receives a promis message with TRUE and value v, it means that
the value v is the one that is chosen. The proposer p will save this value in a variable
store(p) where store ∈ P → V is initialised to val. When a proposer p receives a
promis message with FALSE and value v, it means that the value v is not the one that
is chosen. Here are the two corresponding events rcv promis 1 and rcv promis 2:

rcv promis 1
any
a, p, v

where
(p 7→ a) 7→ (TRUE 7→ v) ∈ promis msg

then
promis msg := promis msg \

{(p 7→ a) 7→ (TRUE 7→ v)}
already promis := already promis ∪

{p 7→ a}
store(p) := v

end

rcv promis 2
any
a, p, v

where
(p 7→ a) 7→ (FALSE 7→ v) ∈ promis msg

then
promis msg := promis msg \

{(p 7→ a) 7→ (FALSE 7→ v)}
already promis := already promis ∪

{p 7→ a}
end

11

The variable a met p can be removed thanks to the following invariant:

a met p−1 = dom(promis msg) ∪ already promis

The event send accept can now be refined as follows:

send accept
any
a, p

where
p 7→ a /∈ already accept
{p} × A ⊆ already promis

with
v = store(p)

then
accept msg := accept msg ∪ {(p 7→ a) 7→ (num(p) 7→ store(p))}
already accept := already accept ∪ {p 7→ a}

end

Only two proof obligations were unproved for the refinement of send accept. The
case of the guard

the val = ∅⇒ store(p) = val(p)

is easy using the following invariant:

the val = ∅ ⇒ (∀p · store(p) = val(p))

The case of the guard:

the val(a) 6= ∅ ∧ num(p) ≥ the num(a) ⇒ store(p) = the val(init acc)

is more difficult. For doing it, we introduce the variable init p. This variable stands
for the proposer whose value is to be distributed to all acceptors. It is initialised by the
event first val as follows:

first val
any
a, p, n, v

where
the val = ∅
(p 7→ a) 7→ (n 7→ v) ∈ accept msg
n ≥ the num(a)

then
the val(a) := v
init acc := a
init p := p
accept msg := accept msg \ {(p 7→ a) 7→ (n 7→ v)}

end

We have the following invariant concerning init p:

the val 6= ∅ ⇒ {init p} ×A ⊆ already promis

Four more invariants are needed to prove the refinement of the event send accept:

store(init p) = val(init p) the val 6= ∅ ⇒ val(init p) = the val(init acc)

12

∀p · the val 6= ∅ ∧
FALSE ∈
dom(promis msg[{p 7→ init acc}]
⇒
num(p) ≤ num(init p)

∀p · the val 6= ∅ ∧
p 7→ init acc ∈ already promis
∧ num(p) > num(init p)
⇒
store(p) = the val(init acc)

The proof of the second guard can be managed by cases:

– p = init p then store(init p) = val(init p) = the val(init acc)
– p 6= init p then num(p) > num(init p) since num(init p) ≤ the num(a)
≤ num(p) and num(p) 6= num(init p) because num is injective. Then we can
conclude store(p) = the val(init acc) using the last invariant.

The three new events send prepare, rcv promis 1 and rcv promis 2 are all conver-
gent. This is proved by means of the following finite set variant:

(P ×A \ already prepare) ∪ dom(promis msg)

The two convergent events rcv promis 1 and rcv promis 2 are the last ones to be in-
troduced. As a consequence, we have thus proved that our system in indeed convergent.

4.8 Model M8

In this model, we eliminate variables init p and init acc. Notice that these variables
were used in the model M7 for the definitions of some important invariants, this was
their only purpose.

The eliminations of init p and init acc makes actions of events first val and next -
val becoming identical. Consequently, both events will be merged in the next model.
Here are the actions of these events:

then
the val(a) := v
accept msg := accept msg \ {(p 7→ a) 7→ (n 7→ v)}

end

4.9 Model M9

In this model we put together events first val and next val in the following event:

rcv accept 1
refines

first val
next val

any
a, p, n, v

where
a /∈ dom(the val)
(p 7→ a) 7→ (n 7→ v) ∈ accept msg
n ≥ the num(a)

then
the val(a) := v
accept msg := accept msg \ {(p 7→ a) 7→ (n 7→ v)}

end

13

We also change the name of the event ignore accept:

rcv accept 2
refines

ignore accept
any

a, p, n, v
where

(p 7→ a) 7→ (n 7→ v) ∈ accept msg
n < the num(a) ∨ a ∈ dom(the val)

then
accept msg := accept msg \ {(p 7→ a) 7→ (n 7→ v)}

end

We have the following invariant. It helps proving deadlock freeness:

∀p, a · (∀x · num(x) ≤ num(p)) ∧
p 7→ a ∈ already accept ∧
p 7→ a /∈ dom(accept msg)
⇒
a ∈ dom(the val)

4.10 Model M10

In this model, we localise the variables. Concerning acceptors, we replace the variable
the val by the total function The val and the boolean variable val bool. Both new
variables are formally defined by means of the following invariants:

The val ∈ A→ V
the val ⊆ The val
val bool ∈ A→ bool
∀a · val bool(a) = TRUE ⇔ (a ∈ dom(the val))

The event final is refined as follows:

final
when
val bool = A× {TRUE}

then
skip

end

Concerning proposers, the variables already prepare, already promis and already-
accept are replaced by the variables loop prepare, loop promis and loop accept de-

fined by the following invariants:

loop prepare ∈ A→ P(A)
∀p · loop prepare(p) = already prepare[{p}]
loop promis ∈ A→ P(A)
∀p · loop promis(p) = already promis[{p}]
loop accept ∈ A→ P(A)
∀p · loop accept(p) = already accept[{p}]

14

The introduction of the new variables implies the following modifications of the re-
maining events:

send prepare
any
p, a

where
a /∈ loop prepare(p)

then
prepare msg := prepare msg ∪ {(p 7→ a) 7→ num(p)}
loop prepare(p) := loop prepare(p) ∪ {a}

end

rcv prepare 1
any
p, a, n

where
(p 7→ a) 7→ n ∈ prepare msg
n > the num(a)

then
the num(a) := n
promis msg := promis msg ∪
{(p 7→ a) 7→ (val bool(a) 7→ The val(a))}
prepare msg := prepare msg\
{(p 7→ a) 7→ n}

end

rcv prepare 2
any

p, a, n
where

(p 7→ a) 7→ n ∈ prepare msg
n ≤ the num(a)

then
promis msg := promis msg ∪
{(p 7→ a) 7→

(val bool(a) 7→ The val(a))}
prepare msg := prepare msg\
{(p 7→ a) 7→ n}

end

rcv promis 1
any
p, a, v

where
(p 7→ a) 7→ (TRUE 7→ v) ∈
promis msg

then
store(p) := v
loop promis(p) :=
loop promis(p) ∪ {a}

promis msg := promis msg\
{(p 7→ a) 7→ (TRUE 7→ v)}

end

rcv promis 2
any
p, a, v

where
(p 7→ a) 7→ (FALSE 7→ v) ∈
promis msg

then
loop promis(p) :=
loop promis(p) ∪ {a}

promis msg := promis msg\
{(p 7→ a) 7→ (FALSE 7→ v)}

end

send accept
any
p, a

where
loop promis(p) = A
a /∈ loop accept(p)

then
accept msg := accept msg ∪ {(p 7→ a) 7→ (num(p) 7→ store(p))}
loop accept(p) := loop accept(p) ∪ {a}

end

15

rcv accept 1
any
p, a, n, v

where
(p 7→ a) 7→ (n 7→ v) ∈

accept msg
n ≥ the num(a)
val bool(a) = FALSE

then
The val(a) := v
val bool(a) := TRUE
accept msg := accept msg \
{(p 7→ a) 7→ (n 7→ v)}

end

rcv accept 2
any
p, a, n, v

where
(p 7→ a) 7→ (n 7→ v) ∈

accept msg
n < the num(a) ∨

val bool(a) = TRUE
then
accept msg := accept msg \
{(p 7→ a) 7→ (n 7→ v)}

end

4.11 Model M11

In this last model, we prove that the system is deadlock free while it is not terminated.
Here is the theorem we proved:

(val bool = A× {TRUE}) ∨
(∃p, a · a /∈ loop prepare(p)) ∨
(∃p, a, n · (p 7→ a) 7→ n ∈ prepare msg ∧ the num(a) < n) ∨
(∃p, a, n · (p 7→ a) 7→ n ∈ prepare msg ∧ the num(a) ≥ n) ∨
(∃p, a, v · (p 7→ a) 7→ (FALSE 7→ v) ∈ promis msg) ∨
(∃p, a, v · (p 7→ a) 7→ (TRUE 7→ v) ∈ promis msg) ∨
(∃p, a · loop promis(a) = A ∧ a /∈ loop accept(a)) ∨
(∃p, a, n, v · (p 7→ a) 7→ (n 7→ v) ∈ accept msg ∧

val bool(a) = FALSE ∧ n ≥ the num(a)) ∨
(∃p, a, n, v · (p 7→ a) 7→ (n 7→ v) ∈ accept msg ∧

(n < the num(a) ∨ val bool(a) = TRUE))

For proving this theorem, we need the following invariant (to be proved in model M7)
stating that the sets dom(prepare msg), dom(promis msg), and already promis
partition the set already prepare.

4.12 About the Proofs

For the direct approach the overall proving effort required 194 proofs, among which
164 were proved automatically by the Rodin Toolset (that is , 84.5%). The 30 interactive
proofs are more complicated than the constructive approach but not difficult. There is
only one variant (non lexicographic) and their proofs are more long but technical (9
interactive proofs). We can have less with a lexicographic variant. For the deadlock
freeness theorem the proof is the same in both approach..

For the constructive approach the overall proving effort required 253 proofs, among
which 244 were proved automatically by the Rodin Toolset (that is , 96.4%). The 9 inter-
active proofs are not complicated except one for the refinement of event send accept
in model M7 and one for the deadlock freeness theorem in model M11 (technical proof).
There are only 2 interactive proofs (on 95!) in M7 (heart of the protocol) and 1 for M10
(implementation).In the first version we have 11 interactive proofs: one was proved by
an updated SMT solver (5 years after!) and one was proved automatically when we
changed the variant to a lexicographic one in the model M6. Thanks to the reviewer
who suggested a lexicographic variant.

16

Remark: Numbers of interactive proof can change using a specific profile. For this
development we used the profile:

withZ3 with PP with EqualHyp with CV C3 with CV C4.
Using the profile SMT (predefined in Rodin) we have more interactive proofs 34 for

the direct approach and 38 for the constructive one.

5 Related works

Our work is very closed to the Lamport’s Paxos protocol [3], same variables almost
same events, but it’s not fault tolerant. Like in Lamport’s Bakery algorithm [4] where
each process has an unique number here each proposer has also an unique number to
decide. There are also many protocols developed in [1] using Event-B (on trees, rings,
. . .). In [2] authors added liveness properties in Event-B and used the Peterson (mutual
exclusion) algorithm as example. In our case atthough our protocol is more complicated
we don’t have to prove fairness properties like in the Bakery’s or Peterson’s one. We
never thought of using temporal logic to model our protocol: invariants and variants are
sufficient to express what we want.

6 Concluding Remarks

In this document, we presented two approaches to control the basic behaviour of a pro-
tocol : a direct approach and a constructive approach. The direct approach was not suc-
cessful. This approach is not sufficient to find the missing invariant. We were extremely
lucky to have find it. Only the constructive approach allowed us to derive a significant
an simpler proof. At this point, we want to point out the importance of refinement in the
constructing development of this protocol: better explanation, simpler proofs as usual
using the refinement process. We can notice that the fundamental invariants in model
M7 were defined by means of two abstract variables : init acc and init p.

As usual the correctness of this protocol is ensured by refinement: the last model
behaves like the first (thanks to invariants). The variant and the deadlock freeness assure
that the event final in the last model will be triggered.

Event-B models can be found on http://perso.numericable.fr/cansell.dominique

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University
Press, 2010

2. T.S. Hoang, J.-R. Abrial;”Reasoning about Liveness Properties in Event-B”. ICFEM 2011,
LNCS 6991, pp. 456-471, Springer, 2011

3. L. Lamport: ”Byzantizing Paxos by Refinement”, DISC 2011: 211-224
4. L. Lamport: ”A New Solution of Dijkstra’s Concurrent Programming Problem”, Commun.

ACM 17(8) 1974
5. M. Leuschel, M. Butler. ProB: A Model Checker for B. FME 2003 855-874
6. The ProB Animator and Model Checker. https://prob.hhu.de
7. Rodin Platform. http://www.event-b.org

17

Insider Threat Simulation Through
Ant Colonies and ProB

Akram Idani[0000−0003−2267−3639], Aurélien Pepin, and Mariem Triki

Univ. Grenoble Alpes, Grenoble INP, CNRS, F-38000 Grenoble France
akram.idani@univ-grenoble-alpes.fr, aurelien.pepin@grenoble-inp.org,

mariem.triki@grenoble-inp.org

Abstract. In cyber-security, insider threats are particularly challenging
to prevent because they are carried out by individuals who already have
legitimate access to the information system (IS). In fact, insiders exploit
their privileges to perform malicious actions. In previous works we pro-
posed to tackle this problem via a backward symbolic search built on a
formal B specification of the IS. Unfortunately this approach is not per-
formant because many proof obligations and constraints must be solved
interactively. In this paper, we provide a heuristic-based forward search
built on the ant colony optimization algorithm called API (Ant-based
Path Identification) that we implemented using ProB. We show how API
can be used to search for malicious scenarios and we present the results
of our experiments in comparison with other approaches.

Keywords: B Method · Access Control · Ant colonies · Insider attacks

1 Introduction

Cyber-attacks known as insider attacks are difficult to tackle because they are
perpetrated by trusted users, i.e. persons who already have legitimate access to
the Information System (IS). These attackers exploit their privileges to perform
malicious actions, such as data theft, privilege escalation, or system sabotage.
Unlike external threats, insider attacks do not rely on breaching network defenses
but instead misuse of authorized access, making prevention less effective. In
this paper, authorized access is represented via the Role Based Access Control
pattern. In practice, insider threats are not violations of the access control policy,
but authorized actions that may lead to unwanted situations. To address this
challenge, we developed a formal model-driven framework on top of UML and
the B method [1]. The approach is suitable to deal with the dynamic evolution
of an IS thanks to the composition mechanism of the B method. The platform,
named B4MSecure [10], translates UML and SecureUML [17] models into B
and then applies the model-checking facilities of ProB [16] to exhibit malicious
scenarios [11].

Detecting an insider attack can be reduced to searching for a specific critical
state in the system’s state space. If this state is reachable, it means that a
sequence of legitimate operations can lead to a security breach. However, a major

2 Akram Idani, Aurélien Pepin, and Mariem Triki

limitation of model-checking is the combinatorial explosion of states. As systems
grow in complexity, the number of possible states increases exponentially, making
exhaustive search impractical for real-world applications. A naive brute-force
approach would require examining millions or even billions of states, leading
to excessive computational costs and long processing times. To circumvent this
limitation, we proposed in our previous works [23] a backward symbolic search
built on theorem proving and constraint solving. Unfortunately, this approach is
not performant because many proof obligations and constraints must be solved
interactively. In this paper, we propose to employ a forward search strategy
based on ant colony optimization [6], implemented in the API (Ant-based Path
Identification) algorithm [7]. Instead of exploring all states blindly [11], like in
pure model-checking, or interactively [23], like in symbolic search, API guides
the search using a quality-based heuristic, prioritizing paths that are more likely
to lead to a given situation.

Ant colony optimization [6,7] (ACO) is a bio-inspired algorithm that mimics
the behavior of ants searching for food. In nature, ants deposit pheromones along
paths they take, reinforcing routes that lead to successful outcomes. Similarly,
in API, artificial ants explore the state space and leave digital pheromones on
promising paths. Over multiple iterations, these pheromones accumulate, guiding
subsequent ants towards more relevant states. Instead of checking all states, the
algorithm prioritizes highly relevant paths, reducing the number of evaluations.
The pheromone system allows the algorithm to dynamically adjust and refine its
search strategy based on past findings. This work is an attempt to evaluate the
efficiency of API for the identification of insider threats, and its capability to find
attack scenarios faster than exhaustive search or symbolic search. By combining
formal verification with heuristic search, we hope to improve the detection of
insider attacks while mitigating the limitations of state-space explosion.

Section 2 presents the B4MSecure platform and the formal modeling of secure
IS. Section 3 introduces the API algorithm. Section 4 shows how ProB and API
are combined to deal with the insider threat problem and presents the obtained
results. Section 5 situates this work within the state of the art. Finally, Section 6
concludes the paper and outlines future work.

2 B for Modeling Secure Information Systems

2.1 Functional and security modeling

To illustrate our approach we consider a simplified model of a bank IS that is
inspired by [2]. The UML class diagram of Figure 1 defines functional concerns:
customers (class Customer) and their accounts (class Account). A bank account
has a balance (attribute balance), an authorized overdraft (attribute overdraft)
and a unique identifier (attribute IBAN). Operations of class Account (e.g. trans-
ferFunds, withdrawCash and depositFunds) allow one to transfer an amount of
money from an account to another, to withdraw and to deposit cash on a given
account. A customer is associated with at least one bank account that he does
not share. Transferring the ownership of the account or carrying out fraudulent

Insider Threat Simulation Through Ant Colonies and ProB 3

financial operations are examples of insider attacks to prevent. Before searching
for these scenarios, it is necessary to define users together with their permissions.

Fig. 1. Functional UML class diagram

Figure 2 is a SecureUML model associated to our class diagram. This model
defines two roles: CustomerUser and AccountManager. They respectively repre-
sent the customer of the system and the account manager in charge of the bank’s
customers.

Fig. 2. Security modeling with SecureUML

In this IS, customers have the ability to read their personal data (permission
CustomerUserPerm1) and perform financial operations such as transfer money,
deposit, and withdraw cash (permission CustomerUserPerm2). Account man-
agers have full access to Customer class (permission AccountManagerPerm1),
allowing them to create, read, and modify customer data. However, their rights
on the Account class are restricted to the creation of new accounts; which is
ensured by permission AccountManagerPerm2. An authorization constraint is
associated with permissions CustomerUserPerm1 and CustomerUserPerm2, en-

4 Akram Idani, Aurélien Pepin, and Mariem Triki

suring that only the account holder can perform the corresponding actions on
their account. Under this security policy, the account manager has no read or
write access to the attributes of the Account class.

2.2 Generating B specifications

The translation of a UML class diagram has been discussed in [9] and follows a
classical UML-to-B translation. In B, abstract sets represent an abstraction of a
set of objects from the real world. As this definition is close to the notion of class
in UML, it is used by all UML-to-B approaches to formalize UML classes. At-
tributes are translated into functions that map the set of existing instances to the
attribute’s type. The result depends on the attribute’s characteristics: mandatory
or optional, unique or non-unique, single-valued or multi-valued. For instance,
attribute IBAN of class Account is single-valued, mandatory, and unique ; it is
therefore translated into Account_IBAN ∈ Account ↣ N, which is a total in-
jection. Associations are translated similarly into functional relations depending
on multiplicities. For example, association AccountOwner is translated into a
partial surjective function due to multiplicities 0..1 and 1..*. Figure 3 shows
the typing invariants generated by B4MSecure from our class diagram.

INVARIANT
Account ⊆ ACCOUNT
∧ Customer ⊆ CUSTOMER
∧ AccountOwner ∈ Account 7↠ Customer
∧ Account_balance ∈ Account → Z
∧ Account_overdraft ∈ Account → Z
∧ Customer_name ∈ Customer 7→ STRING
∧ Customer_address ∈ Customer 7→ STRING
∧ Account_IBAN ∈ Account ↣ N

Fig. 3. Structural invariants produced by B4MSecure

The SecureUML model is translated by B4MSecure into a B machine that
enforces permissions for functional operations based on the roles assigned to a
user. For instance, if a user Paul is assigned to role CustomerUser, he is permitted
to read his personal data through the getters of class Customer, while other
operations such as modification or creation are restricted. The tool produces for
every functional operation, a secured operation that verifies (using a security
guard) whether the current user is allowed to call the functional operation. The
secure operation also verifies the authorization constraints, if they are defined in
the underlying permissions, and updates the assignment of roles when required.

Figure 4 shows the secure operation associated to Account_transferFunds.
The security guard is defined in clause SELECT. It verifies that the func-
tional operation belongs to set isPermitted[currentRoles], where definition cur-
rentRoles refers to the roles activated by currentUser (in a session) as well as their

Insider Threat Simulation Through Ant Colonies and ProB 5

super-roles. The security guard of secure_Account_transferFunds is strength-
ened with the authorization constraint of permission CustomerUserPerm2. For
a permission p associated to a role r and a constraint c, the tool adds guard
(r ∈ currentRoles ⇒ c) to all operations that are concerned with p. In this case
the constraint is: AccountOwner(aAccount) = currentUser.

secure_Account_transferFunds(aAccount, NB, m) =
PRE

aAccount ∈ Account ∧ NB ∈ N ∧ m ∈ N1 [∧ . . .]
THEN

SELECT
Account_transferFunds_ ∈ isPermitted[currentRoles]
∧ (CustomerUser ∈ currentRoles ⇒ AccountOwner(aAccount) = currentUser)

THEN
Account_transferFunds(aAccount, NB, m)

END
END;

Fig. 4. Secured operation

The B specifications generated by B4MSecure from a given class diagram
are designed to be animated using ProB [16]. This enables the observation of
the IS’s evolution and the impact of execution scenarios on its functional state.
B4MSecure generates all basic operations, including the creation/deletion of class
instances, creation/deletion of links between instances, and getters/setters for
attributes and links. Integrity constraints can be introduced using B invariants
and proof of correctness for invariant preservation can be done via a proof as-
sistant such as AtelierB.

2.3 Malicious behaviors

To identify malicious behaviors, we analyze the set of finite observable traces of
our B specification. The latter can be represented using trace semantics, which
consist of an initialization substitution init, a set of operations O, and a set of
state variables V. A functional behavior is an observable sequence Q defined as:

Q =̂ init ; op1 ; op2 ; . . . ; opm

such that ∀i.(i ∈ 1..m ⇒ opi ∈ O) and there exists a sequence P of states that
do not violate invariant properties:

P =̂ s0 ; s1 ; . . . ; sm−1

where s0 is an initial state, and each opi is enabled from state si−1, leading to
state si. P is called a path.

The security model filters functional behaviors by analyzing access control
premises, which are triplets (u,R, c) where u is a user, R is a set of roles assigned

6 Akram Idani, Aurélien Pepin, and Mariem Triki

to u, and c is an authorization constraint. An observable secure behavior is a
sequence Q, where for every step i, the premise (ui, Ri, ci) is valid (expressed
as (ui, Ri, ci) |= true). This means that the roles Ri activated by user ui grant
the right to execute operation opi, and any constraint ci must be satisfied. The
following sequence of premises must be valid for Q:

(u1, R1, c1) ; (u2, R2, c2) ; . . . ; (um, Rm, cm)

The search for a malicious scenario reduces to finding a specific state in the
state space. The path from the initial state to this target state represents the
sequence of operations required to execute the attack. Therefore, a malicious
behavior, done by a user u, considering an access control policy, is an observable
path P with m steps such that:

– opm is a critical operation associated with an authorization constraint cm.
– State sm−1 is called malicious and enables opm.
– User u is malicious and aims to execute opm by exploiting his roles Ru.
– s0 is an initial state where (u,Ru, cm) |= false.
– For every step i (i ∈ 1..m), the premise (u,Ru, ci) |= true.

In other words, malicious user u is not initially allowed to execute the critical
operation, but he is able to run a sequence of operations leading to a state from
which he can execute this operation. Suppose that s0 is as follows:

s0 =̂
Account = {cpt1, cpt2}
Customer = {Paul,Martin}
Account_balance = {(cpt1 7→ 300), (cpt2 7→ −100)}
AccountOwner = {(cpt1 7→ Paul), (cpt2 7→ Martin)}
Account_IBAN = {(cpt1 7→ 111), (cpt2 7→ 222)}
Account_overdraft = {(cpt1 7→ −100), (cpt2 7→ −100)}

In this state, Paul is a customer and owns account cpt1 with a balance of
300. Bob, as an AccountManager, cannot execute operations like transferFunds or
withdrawCash on cpt1. A static query such as “Is Bob able to transfer funds from
Paul’s account?” would return NO, since the permission granted to a manager
on the Account class only allows instance creation. The more pertinent question
is, “Is there a sequence of operations that Bob can execute to gain the ability to
transfer funds from Paul’s account?”. To answer this, one naive approach is to
use ProB’s model-checking feature to exhaustively explore the state space and
find states that satisfy property: AccountOwner(cpt1) = Bob. We are looking for
a sequence of operations executed by Bob that allows him to become the owner
of cpt1, thereby granting him the permission to execute an action he initially
could not. Sequence Q that we want to exhibit is represented in Figure 5.

The attacker (Bob) creates a fictitious customer profile and associates it with
a newly created bank account. To gain control over an existing customer account
(cpt1), Bob first assigns another dummy account (cpt4) to Paul. Then, Bob
removes the ownership link between Paul and cpt1, and assigns cpt1 to himself.

Insider Threat Simulation Through Ant Colonies and ProB 7

/* step 1: create customer Bob */
Connect(Bob, {AccountManager}) ;
setCurrentUser(Bob) ;
secure_Account_NEW(cpt3, 333) ;
secure_Customer_NEW(Bob,{cpt3}) ;

/* step 2: get the ownership of Paul’s Account */
secure_Account_NEW(cpt4, 444) ;
secure_Customer_AddAccount(Paul,{cpt4}) ;
secure_Customer_RemoveAccount(Paul,{cpt1}) ;
secure_Customer_AddAccount(Bob,{cpt1}) ;

/* step 3: attack */
disConnect(Bob) ;
Connect(Bob, {CustomerUser}) ;
secure_Account_transferFunds(cpt1, 333, 100) ;

Fig. 5. Malicious scenario

Bob logs in the system as a customer in order to transfer funds from cpt1. In
this example, ProB reached a timeout after exploring millions of transitions,
indicating that the state space is too large to be explored efficiently. To solve
this issue, we proposed in [11] a CSP||B that helps ProB searching in a subset
of the state space. ProB was able to exhibit the sequence above after exploring
about 70,000 states and 200,000 transitions. We also proposed a more generic
technique based on a backward symbolic search [23]. This approach follows a
two-step process: it first identifies symbolic functional executions that could
potentially lead to a malicious scenario using theorem proving, and then checks
their feasibility against the security model using constraint solving. While this
method is particularly useful for understanding the origin and structure of attack
scenarios, its main drawback lies in its low performance and interactive nature,
as many proofs and constraints require manual intervention. In the example
discussed, this approach required 38 minutes to identify the attack sequence.

3 Ant Colony Optimization − ACO

Ant colony algorithms [6,7] are a class of heuristic search algorithms inspired
by the foraging behavior of ants. Developed in the 1990s, these algorithms have
proven to be highly effective in solving combinatorial optimization problems,
where exhaustive search methods are often computationally prohibitive. Differ-
ent species of ants exhibit various behaviors, which have been modeled into a
range of algorithms with different objectives.

3.1 Ant-based Path Identification with Pachycondyla apicalis

This algorithm has been formalized by N. Monmarché in 2000 [21,20]. It is
inspired by Pachycondyla apicalis, a species of ants present in South America.
In most ant colony algorithms, the global solution is the one that attracts the

8 Akram Idani, Aurélien Pepin, and Mariem Triki

most individuals, this is called stigmergy. The search space is divided into several
regions, each of which is explored by a group of ants. The ants of a group are
attracted by the pheromones left by their congeners. The pheromones are a way
to communicate the quality of the solutions found. The more a region is visited,
the more the pheromones are deposited and the more the region is attractive. The
algorithm is iterative: ants explore regions, pheromones are deposited, regions
are updated and ants are attracted to regions with most pheromones.

The particularity of API species is that they live in small colonies (a few
dozen individuals), with an unstable habitat that is likely to evolve often, and
little direct communication between individuals. These characteristics have been
transcribed into the algorithmic that we are experimenting in this work. The
colony sends n ants a1, . . . , an (called foragers) around the nest. Each ant creates
and then stores in memory p hunting sites. In parallel with the other ants, the
ant randomly chooses one of its hunting sites, denoted S, and begins a local
exploration. If the exploration is successful, it replaces S with its new hunting
site S′. Otherwise, it counts an additional failure for the site S. If the number of
failures of S exceeds a threshold called local patience, it is forgotten and replaced
by a new random site. Patience allows to dig a track for a few turns rather than
abandoning it immediately. The colony regularly recalls its foragers and looks
at their results. If a hunting site of an ant is better than those of the other ants
and the current position of the nest, the whole nest moves and the memory of
all the ants starts from scratch. The procedure then starts again: the ants are
scattered around the nest again.

3.2 Algorithm

The API algorithm uses the following notations:

– S is a search space;
– N ∈ S is the position of the nest, initialized with the random operator Orand;
– Oexplo returns a point S′ in the neighborhood of a point S ∈ S;
– f : S → R is the objective function to minimize;
– ns(ai) is the number of hunting sites of ant ai;
– Asite and Alocale are the maximum amplitudes to create hunting sites;
– ej is the number of failures associated with hunting site sj for a given ant;
– Plocale is the threshold of failures before an ant abandons a site.

The algorithm is presented in Figure 6. First, it chooses the nest location N
using an operator Orand, which represents a random initialization function. A
variable T is initialized to keep track of the number of explorations and the loop
runs until the stopping condition is reached.

The stopping condition can be based on a maximum number of iterations,
convergence to an optimal solution, or performance metrics, etc. Each ant per-
forms an exploration process (API-FORAGING) searching for better solutions
and using pheromone updates. If a better solution (S+) is found, the nest is
moved to this new location and the memory of all ants is cleared so that they

Insider Threat Simulation Through Ant Colonies and ProB 9

Algorithm 1: API()
1 Choose the initial nest location : N := Orand;
2 T := 0; // Number of ant explorations
3 while The stopping condition is not met do
4 foreach ant ai do
5 API-FORAGING(ai);

6 if The nest must be moved then
7 N := S+; // Best solution found by an ant
8 Clear the memory of all ants;

9 T := T + 1

10 return (S+, f(S+))

Fig. 6. API Main Algorithm

can start fresh from the new nest. The algorithm returns the best solution found
(S+) along with its objective function value (f(S+)). Algorithm of Figure 7 sim-
ulates the behavior of a single ant ai in the search space. The ant has a memory
of p hunting sites. If the memory is not full, the ant creates a new hunting site
around the nest. Otherwise, it explores the neighborhood of the last site visited.
If the exploration is successful, the ant moves to the new site. Otherwise, it
counts a failure and may abandon the site if the number of failures exceeds a
threshold. The algorithm returns the best solution found by the ant.

3.3 Discussion

API has been applied in many optimization problems such as the traveling sales-
man problem, the quadratic assignment problem, and the job-shop scheduling
problem. It has also been used in various applications such as data mining [18],
image processing [8], and network routing [5]. In this work we use it to search
for malicious scenarios in the execution of a formal model of an IS. The applica-
tion of the algorithm requires only the knowledge of the exploration operators
Oexplo and Orand. The exploration operator Oexplo is specific to the problem to
be solved. It is a function that generates a new solution in the neighborhood of a
given solution. The random operator Orand is used to initialize the search space.

In our opinion, API is a good solution to identify insider threats because the
behavior of the ant colony is somehow close to that of an attacker. Attackers first
try to identify critical states of the software and then he/she concentrates his/her
efforts to find security flaws starting from these critical states. Similarly, API
ants focus on the most promising sites to find the best possible solution. Both
API ants and attackers adopt an incremental, exploratory approach. Indeed, API
ants begin by randomly exploring potential paths, but over time, they reinforce
the most promising routes based on pheromone trails (here function f). Insiders
follow a similar strategy: they first explore the system, looking for weaknesses;
once they find a critical state (e.g., a vulnerability or misconfiguration), they
focus their efforts on exploiting it. Furthermore, in API, ants are designed to

10 Akram Idani, Aurélien Pepin, and Mariem Triki

Algorithm 2: API-FORAGING(ai)
1 if ns(ai) < p then
2 // The ant’s memory is not full
3 ns(ai) := ns(ai) + 1;
4 Creation of a foraging site around the nest: sns(ai) := Oexplo(N,Asite);
5 Initialization of the failure counter for the site: ens(ai) := 0;
6 else
7 Let sj be the last site explored by the ant ;
8 if ej > 0 then
9 // The last exploration was unsuccessful.

10 Randomly select a foraging site sj(j ∈ {1, . . . , p})
11 Local exploration around sj : s′ := Oexplo(sj , Alocale) ;
12 if f(s′) < f(s) then
13 sj := s′;
14 ej := 0;
15 else
16 ej := ej + 1;
17 if ej > Plocale then
18 Delete site sj from the ant’s memory ;
19 ns(ai) := ns(ai) + 1;

Fig. 7. Simulation of a given ant ai

focus on highly probable paths that lead to optimal solutions, much like how
real ants reinforce the best paths to a food source. In cybersecurity, attackers
prioritize high-value targets, such as privileged data (e.g., account cpt1). They
start from accessible points and progressively refine their approach. Finally, API
ants adjust their search behavior dynamically, reacting to previous successes.
Attackers do the same by adapting their attack strategies based on the system’s
defenses, security policies, and feedback from failed attempts.

4 API and ProB to exhibit insider threats

The API algorithm is a generic algorithm. It only specifies how the ants are
organized. Here, we propose a modeling of our optimization problem for the
API algorithm based on the state space discovered by ProB.

4.1 State evaluation functions

The state evaluation function, denoted f , formalizes what is an “interesting state”
of the state space with regard to an insider attack. This function can be a binary
function that checks if a current state strictly approaches the malicious one. A
drawback is that a path can stagnate on few states or slightly regress before
being considered interesting. An evaluation in {0, 1} rejects all states that do not

Insider Threat Simulation Through Ant Colonies and ProB 11

advance. Our idea is to have a refined evaluation function. In the API algorithm,
the local patience of the ants allows to visit states that are not immediately
fruitful, that’s why we propose an evaluation function f with values in [0, 1].

Considering our formal B specification, S is simply the state space discovered
by ProB during the exploration process. We denote by s∗ the malicious state
and by s(v) the value of variable v (v ∈ V) in a given state s. Let wv ∈ R be a
weight associated with variable v to ponder its impact on the exploration. We
define the evaluation function as:

f : S → [0, 1]

f(s) =

∑
v∈V wv · δ(s∗(v), s(v))∑

v∈V wv

Function f is an objective function. It defines a weighted average of the distance
between the current values of the variables (in state s) and the desired ones (in
state s∗). Intuitively, a desired path P is a sequence of states whose variables
look more and more like those of the target state, until they match completely.
In our approach, the malicious state s∗ is a state that enables a critical operation
(e.g., transfer_Funds) and satisfies security premises of the attacker (i.e., Bob).
Note that we generate state s∗ using the constraint-solving feature of ProB, with
various strategies not detailed here for space reasons. State s∗ is:

s∗ =̂
Account = {cpt1, cpt2, cpt3, cpt4}
Customer = {Paul,Martin,Bob}
Account_balance = {(cpt1 7→ 300), (cpt2 7→ −100), (cpt3 7→ 0), (cpt4 7→ 0)}
AccountOwner = {(cpt1 7→ Bob), (cpt2 7→ Martin)(cpt3 7→ Paul), (cpt4 7→ Bob)}
Account_IBAN = {(cpt1 7→ 111), (cpt2 7→ 222), (cpt3 7→ 333), (cpt4 7→ 444)}
Account_overdraft

= {(cpt1 7→ −100), (cpt2 7→ −100), (cpt3 7→ −100), (cpt4 7→ −100)}

A state si where Account = {cpt1, cpt2, cpt3} is less distant from s∗ than a state
sj where Account = {cpt4}. This distance between s∗, si and sj is measured
with the evaluation function f . The similarity δ between two values is defined
according to the type of the variable. The objective is to minimize f as much as
possible and if f(s) = 0, then s is the target state. To this purpose we apply the
following measures, which are adapted from Jaccard’s Index of Similarity [12]:

– For a variable derived from a class or an association, we measure the distance
between two sets (A and A). Specifically, we compute 1 minus the ratio of the
size of their intersection to the size of their union. As a result, δ(A,A) = 0
when A = A, and δ(A,A) = 1 when A ∩A∗ = ∅.

δ(A∗, A) = 1− card(A ∩A∗)

card(A ∪A∗)

– For an integer variable, the comparison is bounded in an interval. The dis-
tance is defined as the difference between the two values divided by the

12 Akram Idani, Aurélien Pepin, and Mariem Triki

amplitude of the interval. Interval [Amin, Amax] is chosen such that it covers
all values of A and A∗.

δ(A∗, A) = 1− |A−A∗|
|Amin −Amax|

– For a boolean variable, the distance is 0 if the variable values are equal and
1 otherwise.

δ(A∗, A) =

{
0 if A = A∗

1 if A ̸= A∗

Function f computes a weighted average. Indeed, weights wv ∈ R depend on
the search strategy. By default, they are equal to 1. They are useful to limit the
impact of some variables compared to others during the search. For example, a
transition leading to a state where δ becomes 0 for a boolean variable decreases
f much more than the inclusion of a new value for a class variable of type set.
This can unbalance the search of the ants. One solution is to reduce the weight
of the boolean variable in comparison with a class variable.

4.2 Search heuristics

The movement of ants requires two operators: Orand to give an initial location
to the nest; and Oexplo to guide the ants in the search space. Since the search
space S is that of ProB, a natural choice for the nest is the root of the state
space. This choice removes randomness in the initial position of the nest.

Operator Oexplo is a heuristic for moving in the search space. It generates a
point s′ in the neighborhood of a point s ∈ S. Here, a point is a state explored
by the model-checker. The neighborhood corresponds to all the states that can
be reached in one transition from a given state. A chosen solution for Oexplo is
to return a random transition among those evaluated by ProB. All transitions
have the same probability of being chosen. Since transitions go in one direction,
ants may get stuck in a sub-search space that corresponds to a local minimum.
To address this issue, we add an artificial "backtracking" transition. Figure 8
represents a simplified ProB state space. Red arrows are transitions between
states already explored by the ants. Dashed red arrows represent the backtrack-
ing transitions that allow the ant to go back. Blue nodes are states that become
accessible to the ant due to the backtracking transitions. This mechanism leads
to the creation of a spanning tree for the already visited states.

A B C D G

H I J

Fig. 8. Backtracking activation on a simplified state space of ProB.

Insider Threat Simulation Through Ant Colonies and ProB 13

The API algorithm does not define any condition on the number of explo-
rations. At any time during execution, it may provide a valid solution in S. To
stop it, several strategies are possible. One may define a fixed number of explo-
rations Tmax, meaning as long as T < Tmax, a new exploration is started. This
solution has the disadvantage of not taking into account the number of ants.
Thus, for the same Tmax, an algorithm with ten ants will take twice as long to
execute as an algorithm with five ants. An other idea is to stop when the ants
find a solution that no longer improves. If the current solution does not change
after a certain number of explorations, the algorithm stops. In the same idea
one can stop when the algorithm reaches a solution close enough to the optimal
(f(S+) < ε). This corresponds to the case where state S+ is close to s∗ without
being identical. If only a few operations are missing to reach the optimal state,
a deterministic search algorithm can take over. This stopping condition should
only be triggered after a certain number T of iterations. Otherwise, API will
never reach the optimal state.

Another solution would be to define a maximum number of visited states. In
this solution, a common counter for all ants is added and when a state is visited
for the first time, the counter is incremented. An advantage of this solution
is that the execution time is less dependent on the number of ants. Also, the
number of visited states is an important criterion in model-checking algorithms.
ProB includes this data when animating a model. This choice therefore facilitates
comparisons between algorithms. For the example of this paper the stopping
criterion we use is the maximum number of state evaluations (in which a distance
is computed). As for the maximum number of visited states, a global counter
is added. We count the number of times a state is evaluated, whether for the
first time or not. The execution time is independent of the number of ants,
making it a good performance measure. Moreover, it is a relevant measure for
animating models in ProB. Indeed, evaluating a state is a very costly operation.
It represents 60% of the computation time in the implementation of API. The δ
functions presented in section 4.1 are first translated into the B syntax, and then
sent to ProB during exploration, evaluated, and returned back to the algorithm.
This criterion is combined with an option that allows the algorithm to stop
immediately if the final state is found (f(s) = 0). The state count is kept to
compare various executions of the API algorithm.

The nest movement criterion adjusts the frequency at which the colony recalls
its ants to check their solutions. If this delay between explorations is too long,
the ants may forget satisfactory solutions. Conversely, if it is too short, the ants
do not have time to explore the search space and the colony does not progress.
Based on local search, it is possible to use a patience factor for the nest, denoted
PN . Let p be the size of an ant’s memory and Plocale its local patience. In [20],
the nest’s patience is: PN = 2× (Plocale + 1)× p. The evaluation function f can
have significant variations with a few number of variables. For the example in
this article, we adapt the initial formula with: PN = (Plocale + 1)× p.

Amplitudes define the neighborhood area of a state during exploration. The
global amplitude, denoted Asite, provides an area to place the ants around the

14 Akram Idani, Aurélien Pepin, and Mariem Triki

nest at the beginning of the exploration. The local amplitude, denoted Alocale,
provides an area where the ants choose their hunting sites. The amplitude is
normally defined as a proportion relative to the search space (A ∈ [0, 1]). Since
the state space is discovered by ProB during exploration, its size is not known
in advance. Therefore, we represent the amplitude by a maximum number of
transitions (A ∈ N) between the starting state and the state to be explored. Our
experiments apply the following parameters:

– Number of ants: n = 5;
– Ant memory: p = 3;
– Amplitudes (local and global): Alocale = 3, Asite = 15;
– Patience (local and global): Plocale = 3, PN = (Plocale + 1)× p = 12;
– Maximum number of evaluations: 1000;

4.3 Results and discussion

The API algorithm is non-deterministic, as its efficiency depends on the random
exploration performed by the ants in the state space. Consequently, the number
of states visited before identifying a critical state can vary significantly between
executions. Table 1 presents the results of 20 independent executions of the API
algorithm on the example of this paper.

Run Nb of
evaluations

Length of
critical path

Transitions
(total)

Transitions
(unique) States Time

(s)
1 322 21 764 442 135 41.69
2 214 22 477 295 81 27.35
3 154 23 524 279 55 23.77
4 423 24 1006 708 187 59.57
5 323 22 821 564 158 51.58
6 426 29 1089 522 140 46.91
7 406 28 844 601 188 57.74
8 246 24 517 311 95 31.20
9 176 19 421 266 80 26.17
10 284 17 672 456 125 41.21
11 302 25 748 508 137 46.49
12 566 25 1270 900 242 75.30
13 282 20 761 490 111 39.65
14 298 20 772 523 139 46.30
15 420 19 1054 655 168 54.59
16 318 22 715 499 147 45.67
17 308 18 804 506 125 41.86
18 413 19 912 629 182 56.36
19 393 23 818 511 164 49.27
20 286 23 683 452 124 40.15

Avg: 321.4 21.6 782.0 518.8 134.7 44.62

Table 1. Summary of 20 runs.

Insider Threat Simulation Through Ant Colonies and ProB 15

These results are fully reproducible. The implementation, along with the B
models and automation scripts used in the experiments, is open-source and pub-
licly available at https://github.com/meeduse/insider_threats. Each row corre-
sponds to a complete run of the algorithm. The table reports: the number of
calls to the evaluation function f (even when a state is visitied several times),
the length of the reconstructed critical path, the total and unique number of
transitions executed, the total number of visited states, and the total execu-
tion time in seconds. The last row shows the average value for each metric over
the 20 runs. The execution traces reveal that the algorithm’s performance may
fluctuate, but remains consistently effective. In 100% of these executions, API
successfully reconstructs a path reaching the expected critical state.

Compared to exhaustive methods such as pure model-checking or the CSP||B
approach [11], API demonstrates a significant reduction in the number of visited
states. On average, only 321 states are explored per run to find the attack sce-
nario, whereas CSP||B required up to 70,000 states and 200,000 transitions. We
have also applied our symbolic search approach [23] to this simple example. Since
the method relies on symbolic states rather than concrete ones, it is difficult to
compare it directly using criteria such as the number of states or transitions.
However, in terms of performance, the symbolic search proved inefficient, re-
quiring 38 minutes to discover a single attack scenario, whereas the API-based
approach achieved the result in an average of 44 seconds. This shows the benefit
of API’s exploration strategy, which leverages heuristic search instead of system-
atic enumeration or constraint solving and symbolic proofs. The length of the
critical path also varies, ranging from 17 to 29 actions. The minimal length of 17
(highlighted in Table 1) is close to the optimal path of 11 operations identified
manually. On average, 22 actions are needed to reach a critical state.

These results support the conclusion that API has the potential to outper-
form traditional approaches by substantially reducing state-space exploration
and improving overall execution time. We experimented our approach on many
case studies: Medical IS [14], Meeting scheduler [3], Bank IS [2], Conference
Review [25]. API is more than 500x more efficient than pure model-checking.
However, the algorithm’s random nature introduces variability in the number of
steps required to reach the critical state. Furthermore, API parameters are cru-
cial in obtaining good results but there are no predefined rules for choosing their
values. Finding an optimal set of parameter values requires extensive testing.
The selected values provided a good balance between exploration and conver-
gence in our case study. In particular, setting the number of ants to n = 5 allowed
sufficient coverage of the state space while keeping the number of evaluations
per ant high enough for each to reach relevant areas. Interestingly, increasing
the number of ants does not always improve performance. For instance, set-
ting n = 50 while keeping the evaluation limit at 1000 drastically reduces the
number of evaluations available to each ant. In such settings, none of the ants
may explore deeply enough to discover the critical path. Finding the optimal
parameter configuration remains an open question. Our experiments show that
performance improves when the number of ants is increased moderately. For ex-

https://github.com/meeduse/insider_threats

16 Akram Idani, Aurélien Pepin, and Mariem Triki

ample, using n = 10 ants yields better results than n = 5, without compromising
the depth of exploration too severely. More systematic parameter tuning could
further enhance the algorithm’s efficiency.

5 Related works

As far as we know, works that addressed access control together with a formal
method did not deal with the insider threat problem such as discussed in this
paper. However, we can assume that this kind of threat is a typical reachability
problem. In [25], the authors proposed a plain model-checking approach built
on security strategies. A similar approach is proposed in [13] to validate access
control in web-based collaborative systems. Even though their experiments show
that they achieve better results compared to [25], the approach still has a partial
coverage of realistic policies. In [19], the authors proposed two approaches to
prove reachability properties in a B formal information system modelling, but
unlike our work, they do not search sequences leading to a goal state.

Ant Colony Optimization has also been successfully applied to software test-
ing problems. Several surveys explore this connection, including the work of
Suri and Singhal [24], which provides a classification of ACO-based techniques
for test case generation, test suite minimization, and prioritization. More recent
surveys, such as [4], further expand on the role of ACO and other metaheuris-
tics in automated test data generation. While these applications share with our
approach the principle of guided search in large input spaces, they differ in their
objectives and representations: our work focuses on local exploration guided by a
Jaccard-based distance metric, derived from formal specifications and evaluated
dynamically using the ProB model checker.

Another relevant line of research concerns directed model checking. In the
context of the B method and ProB, Leuschel and Bendisposto [15] introduced
heuristic-guided search strategies to steer the exploration toward goal states.
The ProB tool supports this approach through the HEURISTIC_FUNCTION fea-
ture, which allows users to define custom heuristics to influence transition pri-
oritization during state space exploration [22]. Although this technique shares
with our ant-based method the use of heuristic guidance, the two approaches
differ fundamentally in their mechanisms. API is a population-based, stochas-
tic metaheuristic that relies on memory and pheromone reinforcement to guide
exploration over time. In contrast, directed model checking in ProB follows a
deterministic or best-first strategy driven by a fixed heuristic function—either
statically defined or dynamically computed for each state.

6 Conclusion

Insider threats represent a major challenge in cybersecurity due to the legitimate
privileges and trust inherently granted to internal users. Formal methods, and in
particular model checking, have long been used to rigorously analyze system be-
havior. However, the state-space explosion problem often limits their scalability,

Insider Threat Simulation Through Ant Colonies and ProB 17

especially for realistic or evolving information systems. This paper shows that
combining formal verification with ant colony optimization offers a promising
direction for identifying malicious scenarios more efficiently.

We proposed an original method based on the API variant of ACO [21],
applied to formal models expressed in the B method and analyzed using the ProB
model checker [16]. To our knowledge, this is the first application of ACO to the
insider threat detection problem in a formal setting. Our experiments confirm
that the API algorithm can guide the exploration toward critical states using
a fitness function tailored to a target configuration. Compared to exhaustive or
symbolic search, our approach significantly reduces the number of visited states
while still reconstructing full attack paths.

Beyond the specific case study, the proposed method is more generally appli-
cable. The algorithm can be extended to handle more complex attacker models,
including coalitions of insiders. In this setting, the search would aim to dis-
cover coordinated sequences of actions performed by multiple users that lead
to policy violations. Regarding the specification of critical states, our current
implementation assumes a known target state (e.g., a policy breach where a
security constraint is violated). Another approach could be to detect when an
authorization constraint becomes unsatisfied. Such dynamic assertion checking
could serve as a trigger to automatically mark a state as "critical".

Future work will focus on these extensions: (1) integrating collaborative at-
tacker models and verifying multi-user attack strategies, (2) exploring automatic
generation of target states based on the negation of authorization constraints,
and (3) improving the scalability of the algorithm through parallel search and
adaptive pheromone strategies. We believe this opens a new path for bridging
formal policy analysis and heuristic-driven attack simulation.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. A. Bandara, H. Shinpei, J. Jurjens, H. Kaiya, A. Kubo, R. Laney, H. Mouratidis,
A. Nhlabatsi, B. Nuseibeh, Y. Tahara, T. Tun, H. Washizaki, N. Yoshioka, and
Y. Yu. Security Patterns: Comparing Modeling Approaches. IGI Global, 2010.

3. D. Basin, M. Clavel, J. Doser, and M. Egea. Automated analysis of security-design
models. Information & Software Technology, 51, 2009.

4. M. Chhillar and R. Bhatia. A systematic literature review on metaheuristic test
data generation techniques. ACM Computing Surveys, 54(2):1–37, 2021.

5. F. Debbat and F. T. Bendimerad. Assigning cells to switches in cellular mobile
networks using hybridizing api algorithm and tabu search. International Journal
of Communication Systems, 27(12):4028–4037, 2013.

6. M. Dorigo, M. Middendorf, and T. Stützle, editors. ANTS’2000 - From Ant
Colonies to Artificial Ants: Second International Workshop on Ant Algorithms,
Brussels, Belgium, September 8-9 2000.

7. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA,
2004.

18 Akram Idani, Aurélien Pepin, and Mariem Triki

8. A. M. Hannane and H. Fizazi. Supervised images classification using metaheuris-
tics. Computer Modelling & New Technologies, 20(3):17–23, 2016.

9. A. Idani. The B method meets MDE: review, progress and future. In R. S. S.
Guizzardi, J. Ralyté, and X. Franch, editors, 16th International Conference on
Research Challenges in Information Science (RCIS’22), volume 446 of LNCS, pages
495–512, Spain, 2022. Springer.

10. A. Idani and Y. Ledru. B for modeling secure information systems - the b4msecure
platform. In M. J. Butler, S. Conchon, and F. Zaïdi, editors, 17th International
Conference on Formal Engineering Methods, volume 9407 of LNCS, pages 312–318.
Springer, 2015.

11. A. Idani, Y. Ledru, and G. Vega. A process-centric approach to insider threats
identification in information systems. In 18th International Conference on Risks
and Security of Internet and Systems (CRiSIS’23), volume 14529 of LNCS, pages
231–247. Springer, 2023.

12. P. Jaccard. The probabilistic basis of jaccard’s index of similarity. Systematic
Biology, 45(3):380–385, 1996.

13. M. Koleini and M. Ryan. A knowledge-based verification method for dynamic
access control policies. In 13th International Conference on Formal Engineering
Methods, ICFEM, volume 6991 of LNCS, pages 243–258. Springer, 2011.

14. Y. Ledru, A. Idani, J. Milhau, N. Qamar, R. Laleau, J.-L. Richier, and M.-A.
Labiadh. Validation of IS security policies featuring authorisation constraints.
International Journal of Information System Modeling and Design (IJISMD), 2014.

15. M. Leuschel and J. Bendisposto. Directed model checking for b: An evaluation and
new techniques. In SBMF 2010: Formal Methods, volume 6527 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2010.

16. M. Leuschel and M. Butler. Prob: an automated analysis toolset for the b method.
International Journal on Software Tools for Technology Transfer, 10(2):185–203,
Mar 2008.

17. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In Proceedings of the 5th International Con-
ference on The Unified Modeling Language, UML ’02, London, UK, UK, 2002.
Springer-Verlag.

18. G. C. Luh and C. Y. Lin. Optimal design of truss structures using ant algorithm.
Structural and Multidisciplinary Optimization, 36(4):365–379, 2008.

19. A. Mammar and M. Frappier. Proof-based verification approaches for dynamic
properties: application to the information system domain. Formal Asp. Comput.,
27(2):335–374, 2015.

20. N. Monmarché. Algorithmes de fourmis artificielles : applications à la classification
et à l’optimisation. PhD thesis, Université François Rabelais, Tours, 2000.

21. N. Monmarché, G. Venturini, and M. Slimane. On how pachycondyla apicalis ants
suggest a new search algorithm. Future Generation Computer Systems, 16(8):937–
946, 2000.

22. ProB. Tutorial: Directed model checking. https://prob.hhu.de/w/index.php?title=
Tutorial_Directed_Model_Checking. Accessed: 2025-04-09.

23. A. Radhouani, A. Idani, Y. Ledru, and N. B. Rajeb. Symbolic search of insider
attack scenarios from a formal information system modeling. LNCS Transactions
on Petri Nets Other Models of Concurrency, 10:131–152, 2015.

24. B. Suri and S. Bawa. Literature survey of ant colony optimization in software
testing. International Journal of Computer Applications, 45(14):1–6, 2012.

25. N. Zhang, M. Ryan, and D. P. Guelev. Synthesising verified access control systems
through model checking. Journal of Computer Security, 16(1):1–61, 2008.

https://prob.hhu.de/w/index.php?title=Tutorial_Directed_Model_Checking
https://prob.hhu.de/w/index.php?title=Tutorial_Directed_Model_Checking

Developing safe exception recovery mechanisms
for CHERI capability hardware using UML-B

formal analysis

Colin Snook[0000−0002−0210−0983], Asieh Salehi Fathabadi[0000−0002−0508−3066],
Thai Son Hoang[0000−0003−4095−0732], Robert Thorburn[0000−0001−5888−7036],

Michael Butler[0000−0003−4642−5373], Leonardo Aniello[0000−0003−2886−8445], and
Vladimiro Sassone[0000−0002−6432−1482]

School of Electronics and Computer Science (ECS), University of Southampton,
Southampton, U.K.

{cfs, a.salehi-fathabadi, t.s.hoang, robert.thorburn, m.j.butler,

l.aniello, vsassone}@soton.ac.uk

Abstract. While detection of suspicious or erroneous CPU behaviour
can be achieved by generic mechanisms such as memory-safe processors,
recovering safely from the resulting exceptions is an application-specific
problem. The challenge is to ensure that a complex closed system in-
cluding the controller and its environment remain in a safe state while
undertaking abnormal state changes in the controller as part of its ex-
ception recovery process. Handling exceptional error events is a complex
task that requires insight and domain expertise to ensure that a process
is designed to recover from abnormal conditions and return the system
to a safe state. Exception handling relies on a notion of transactions in
order to identify how the system can be systematically returned to a con-
sistent state. Formal methods can address this complexity, by supporting
the analysis of transactions and exception handling at the abstract de-
sign stages utilising mathematical modelling and proofs. Event-B is a
state-based formal method for modelling and verifying the consistency
of discrete systems; however, it lacks explicit support for analysing the
handling of exceptions. UML-B is a diagrammatic front-end for Event-B
modelling which allows models to be constructed using class diagrams
and state machines. In this paper, we use UML-B state machines to sup-
port the modelling of normal behaviour, with a notion of consistency
and augment this with a technique for modelling ’transactions’ which
may either complete to reach a consistent state or encounter exceptional
errors that have to return the system to a consistent state despite the
non-completion of the transaction. We also discuss an implementation of
the modelled exception handling in the ‘C’ programming language as a
first stage towards automatic code generation of exception handlers.

Keywords: Exception handling · Formal methods · Event-B · UML-B

2 C.F.Snook et al.

1 Introduction

Our work is influenced by considering implementations on capability hardware
which provides hardware-level protection against incorrect memory access [17].
Capability hardware blocks unauthorised memory access at runtime, raising
hardware exceptions that should be handled by application code. Unauthorised
memory access might be caused by unintentional coding errors, such as out of
bounds array access, or malicious attacks, such as buffer overflow exploitation.
In principle, code that is developed formally will be free from incorrect memory
access. However, we assume the applications we develop will operate in soft-
ware environments where vulnerabilities remain, e.g., through use of untrusted
libraries.

Mechanisms for detecting exceptional erroneous behaviour are often generic
since they flag unusual activity in the underlying low-level machinery. An ex-
ample is the CHERI memory safe capability approach which is implemented
within general purpose electronic computing devices. In contrast, the design of a
suitable recovery response to the detected exception is usually application spe-
cific, or at least domain specific. In some cases a safe response might be to halt,
but this could play into the hands of a malicious attacker by providing an easy
vector to achieve denial of service attacks. In many cases, it is not safe for a
critical service to halt. Therefore, we believe that generic memory protection
mechanisms such as CHERI are only useful if they are complemented by tools
and techniques for application engineers to design and implement safe recovery
strategies that allow the system to continue its service as much as possible.

We already use formal modelling tools to support the rigorous analysis of
systems, ensuring that they meet important (e.g., safety and security) properties.
In the HDSEC project1 we have adapted these formal analysis tools to show how
they can be used to design and analyse exception recovery responses and verify
that they recover the system to a condition that satisfies the important system
properties. We focus on designing a safe recovery after an exception and abstract
away from the mechanisms that detect the exception.

We have also implemented the modelled system in order to demonstrate the
recovery responses in a real system running on a CHERI Morello PC2. The imple-
mentation is a demonstrator that also contains a simulation of the environment
and the user interfaces. The code is seeded to allow a capability exception to be
detected so that the recovery can be demonstrated.

Programming languages provide a framework for detection, notification and
handling of exceptions. Exception handling is a complex and error-prone activ-
ity, and systematic reasoning is needed to identify and characterise exceptions.
Formal analysis of the exceptional control flow provides a means to validate the
design of the exception handling recovery [4]. However, support for exceptions in
formal methods is less mature. This paper proposes an approach to systematic

1 https://hd-sec.github.io/
2 www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html

https://hd-sec.github.io/
www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html

Developing safe exception recovery mechanisms... 3

reasoning about exception handling at the design level using the UML-B and
Event-B formal method.

Event-B [2] is a formal method to model and verify correctness of safety/se-
curity critical systems. While exception handling can be modelled within the ex-
isting features of the Event-B toolkit, there is no explicit support for it. We use
UML-B [14] and Event-B to visualise and verify the normal expected behaviour
of a system and then add support for handling exceptions in safety/security
systems from the design level to the implementation. The encoding of state ma-
chine states provides (i) a mechanism for detecting where the exception occurred
and hence choosing the appropriate recovery, and (ii) for going into a suitable
recovery state. We propose extensions to the UML-B state machine notation
to facilitate the automatic deduction of which transitions represent exception
recovery and how system variables should be rolled back during a recovery. The
Event-B model generated by UML-B already has sufficient features to express
the recovery behaviour and does not need to be extended.

We illustrate our approach using a Smart Ballot System (SBB) [7], an in-
tegral part of some modern voting systems. Earlier research work [6] presented
a correct-by-construction secure SBB system using Event-B. Our proposed ap-
proach can address the robustness of SBB against exceptions in [6].

This work follows on from previous work presented at ABZ2024 [12]. We have
revised the way that we model and verify exception recovery so that it is better
integrated with the UML-B development of normal behaviour and is modelled
using state machine transitions. We have introduced a notion of transactions
and model these with superstates. This enables us to formally verify that excep-
tion recovery correctly rolls back any partially completed transaction behaviour.
We have also added a demonstration implementation which runs on a CHERI
Morello memory-safe PC.

The paper is structured as follows. Section 2 introduces the CHERI architech-
ture, POSIX signals, Event-B and the SBB case study. Our proposed approach
is described using the case study, firstly by modelling the normal behaviour in
Section 3, then by adding a concept of transactions in Section 4 and finally by
adding the exception recovery in Section 5. Section 6 summarises an overview
of the complete approach, Section 7 describes the implementation of the case
study on a Cheri Morello machine as a demonstration. In Section 8, we review
existing literature and research, highlighting key methodologies, findings, and
gaps that our study aims to address. Finally Section 9 discusses our plans for
the next steps and Section 10 summarises related works and concludes.

2 Background

Memory Safety and Capability-Based Hardware: Capability-based ar-
chitectures have shown promise in enhancing memory safety and preventing
unauthorized access at the hardware level. The CHERI (Capability Hardware
Enhanced RISC Instructions) architecture is a notable approach that provides
fine-grained memory safety guarantees by embedding capabilities into processor

4 C.F.Snook et al.

instructions. Watson et al. [17] present CHERI as a hybrid capability-system
architecture that allows scalable compartmentalization, enhancing the security
of software through pointer integrity and memory access control. Further refine-
ments to CHERI’s instruction set, as detailed in the technical report by Sewell et
al. [13], enable efficient enforcement of memory safety in complex, high-assurance
systems. These foundational works provide a hardware-level basis for secure ex-
ception handling, which our approach extends by focusing on application-specific
recovery mechanisms and maintaining system consistency after exceptions.

Signals are a mechanism for asynchronous event notification used in Unix-
based (POSIX-compliant) operating systems. Signals are used by the kernel to
interrupt (e.g. suspend, terminate or kill) a process. When an event occurs,
the operating system interrupts the target process’ normal flow of execution to
handle the signal. If the process has registered a signal handler, that routine is
executed. Otherwise, the default signal handler is executed. The CHERI-BSD
operating system [16] running on Morello hardware adds a new signal SIGPROT
which is used to notify the active process that the Morello hardware has detected
a memory protection error. In our example case study, we also use the standard
signal SIGALRM, which is used to notify that a timeout set by a process has
expired.

Event-B [2] is a refinement-based formal method for system development.
The mathematical language of Event-B is based on set theory and first order
logic. An Event-B model consists of two parts: contexts for static data and
machines for dynamic behaviour. Contexts contain carrier sets, constants, and
axioms that constrain the carrier sets and constants. Machines contain variables,
invariant predicates that constrain the variables, and events. In Event-B, a ma-
chine corresponds to a transition system where variables represent the states and
events specify the transitions. An event comprises a guard denoting its enabling-
condition and an action describing how the variables are modified when the event
is executed. Event-B is supported by the Rodin tool set [3], an extensible open
source toolkit which includes facilities for modelling, verifying the consistency of
models using theorem proving and model checking techniques. In this paper we
make extensive use of the UML-B plug-in [15] which provides a diagrammatic
modelling notation for Event-B in the form of state machines and class diagrams
that automatically generate Event-B models. The diagrammatic models relate
to an Event-B machine and generate or contribute to parts of it. For example,
a state machine will automatically generate the Event-B data elements (sets,
constants, axioms, variables, and invariants) to implement the states. Transi-
tions contribute further guards and actions representing their state change, to
the events that they elaborate.

SBB (Smart Ballot Box) [7] is a computerised system to automate election
voting. The SBB system inspects a ballot paper by detecting a barcode and
decrypting it to evaluate whether the ballot is valid. If the ballot is valid, then a
vote can be cast, spoiled or cancelled by the user and the ballot paper is sorted
accordingly into the storage boxes. If the ballot is not valid, the SBB rejects the

Developing safe exception recovery mechanisms... 5

paper. The key function of the SBB is to ensure that only valid ballot documents
are included in the ballot boxes.

3 Modelling normal-behaviour and verifying safety
invariants

Utilising UML-B, we model the SBB normal behaviour (without exceptions) as
a state-machine3. The normal-behaviour SBB case, presented in Figure 1 on
the following page, starts in the Waiting state and, in the case of accepting the
ballot, progresses through the following sequence of states: Waiting, BarcodeReading,
BarcodeProcessing, UserSelection, PrepareAccepting, Accepting, Waiting. There are
several functional variables (not shown in the state-machine diagram) which are ma-
nipulated by actions of the transitions. They are

– paper count - a count of the papers input to the roller (incremented by the tran-
sition ROLLER paper in),

– accepted count - a count of the papers categorized as accepted by the roller (in-
cremented by the transition ROLLER accept paper),

– spoilt count - a count of the papers categorized as spoilt by the roller (incremented
by the transition ROLLER spoil paper),

– rejected count - a count of the papers categorized as rejected by the roller (incre-
mented by the transition ROLLER reject paper),

– cast count - a count of the votes cast by the user (incremented by the transition
USER cast),

The Waiting state contains two desired safety properties that are expected to hold
when the SBB has completed the processing of any papers and is in the Waiting state:

– The count of votes cast by the user (cast count) should be the same as the count
of papers categorized as accepted by the roller (paper count).

– The count of papers input to the roller should be the same as the sum of papers
categorized as accepted, spoilt or rejected by the roller.

In general, a system may have important properties that are expected to hold
whenever the system is quiescent, but that are temporarily violated while the system
is engaged in active processing. We refer to properties that are expected to hold in
quiescent states as quiescent invariants and states that are not quiescent as active
states. Active states may contain intermediate invariants that describe the expected
progress during the activity. In fact, intermediate invariant properties are needed in
the active states to help the provers prove the quiescent invariants are re-established.
This is because the prover considers one transition at a time and attempts to infer
the invariants of the post-state (e.g. the desired quiescent invariants) from the known
pre-state (e.g. intermediate invariants) as well as any guards of the transition. Hence,
since the prover cannot ‘see’ back up the sequence of transitions, we have to provide
this sight via the intermediate invariants in the active states. Once this is done, the
proofs are automatically discharged by the Rodin provers. Notice how the intermediate
invariants document where the counts are out of step and by how much. For example in

3 The example models described in this paper are available here: https://doi.org/
10.5258/SOTON/D3452.

https://doi.org/10.5258/SOTON/D3452
https://doi.org/10.5258/SOTON/D3452

6 C.F.Snook et al.

Fig. 1. State Machine, normal-behaviour SBB

the Accepting state, cast count is one ahead of the accepted count because it has been
incremented by the transition User cast, but the Roller has yet to finish categorizing
the paper as accepted.

The UML-B tools automatically generate sets, constants and axioms in a newly
generated context component in order to represent the UML-B state machines us-
ing Event-B syntax. The SBB states are an enumeration of a carrier set where each
state (Waiting, BarcodeReading, ...), is specified as a constant and the set of states,
SBB STATES, are specified as an axiom using carrier sets. The enumeration is then
specified as a partition via the following axiom:

@axm1: partition(SBB STATES, {Waiting}, {BarcodeReading},{BarcodeProcessing},
{UserSelection}, {Accepting}, {Spoiling}, {Rejecting}, {PrepareRejecting}, {PrepareSpoiling},
{PrepareAccepting})

The dynamic behaviour of the state machine (Figure 1), is generated as part of the
containing machine component. Each event that represents a transition, checks, within
its guards, that the current state of the SBB is the transition source state, and changes
the state to the transition target state, within its actions. For example:

event BR reading succeeds
when

@grd1: SBB =BarcodeReading
<other guards about the functional vars>

then
@act1: SBB :=BarcodeProcessing
<other actions on the functional vars>

end

Developing safe exception recovery mechanisms... 7

4 Identifying and adding transactions

In Section 3, we saw how the verification of the quiescent (safety) invariants led us
to introduce intermediate invariants that document where (i.e., in which states) the
functional variables are out of step (i.e., do not satisfy the quiescent invariants). We
could think of these states and the transitions that are involved in passing through
them as a process or transaction which must be completed to bring the system back to
a safe state. In this section, we show how we identify such transactions and represent
them in the model.

4.1 Adding transactions to the state machine model

In UML-B we can arrange state machine states hierarchically by nesting a state machine
within a superstate. We use this superstate structure here to represent the transactions.
We introduce a transaction superstate to contain all the states that have a similar
same intermediate invariant. Some of the contained states may have other intermediate
invariants that differ within them.

For example in Figure 1, all of the states, i.e., BarcodeReading, BarcodeProcessing,
UserSelection, PrepareAccepting, Accepting, PrepareSpoiling, Spoiling, PrepareReject-
ing and Rejecting, have the same invariant:

paper count = accepted count + rejected count + spoilt count + 1.

This is because a paper has been fed in to the roller but since its processing is not
complete, none of the accepted, rejected or spoilt counts has been increased yet.
Hence this group of states form a transaction and we wrap them in a superstate Pa-
per in transaction. A useful feature of superstates is that they can contain invariants
that apply throughout all of their contained sub-states. Therefore we can move the
intermediate invariant that we used to identify the transaction up to the superstate
and remove all the repetitions of it in the sub-states.

The modified model is shown in Figure 2.

Fig. 2. State Machine, SBB with transactions

8 C.F.Snook et al.

Notice that another intermediate invariant: accepted count+1 = cast count iden-
tifies a transaction consisting of the states Prepare Accepting and Accepting (but not
the other sub-states of the previous transaction). Hence we have a nested transaction
and can introduce a further transaction superstate Cast count transaction to contain
those two sub-states and move the transaction intermediate invariant into it.

As soon as we re-generate the Event-B for the UML-B model, the automatic provers
re-prove the model and verify that the quiescent invariants are still satisfied. The
changes are superficial notational ones which do not change the semantic.

4.2 Adding rollback caching to transactions

Our model so far only deals with successful outcomes of transactions (even if it is a
successful rejection response by the controller). However, the aim of identifying trans-
actions is to consider failure cases where the transaction does not complete, which, by
definition, leaves the system in an invalid condition requiring some recovery process.
There are several possible approaches to recovering a safe and valid condition:

1. design specific compensation actions for each recovery (rollback is V = G(V ′),
where V ′ is the state of the variables V that may be altered in the transaction and
G is the transformation that had completed before the exception occurred),

2. modify temporary copies of the variables and only commit their values to the real
system variables when the transaction completes (no rollback is needed, but there
is a pre-transaction action V ′ = V to make temporary copies of V and there is a
commit action V = V T where V T is the value of the temporary copies of V),

3. save the values of system variables before the transaction and revert them if the
transaction does not complete. (Rollback is V = V ′ and there is a pre-transaction
action V ′ = V to make temporary copies of V),

We discount the first approach since it is difficult to know how much of the trans-
formation G had completed. There is not much to choose between the second and third
approaches. We have chosen to adopt the last approach so that the normal behaviour
uses the actual variables.

We first add a duplicate set of rollback variables to the Event-B machine for all
the variables that are altered during transactions. We then add entry actions to all the
transaction superstates to save the entry values of the variables that will be modified
by the transaction, in the rollback variables. We then add intermediate invariants to
the transaction superstate to confirm that the values in the rollback variables, satisfy
the quiescent invariant. That is, we make a copy of the quiescent invariants and replace
the variables with the rollback variables used by that transaction.

For example, in SBB, we add the invariant:

paper in rollback = accepted count + rejected count + spoilt count

to Paper in transaction, and

cast count rollback = accepted count

to the Cast count transaction. These will be needed in the next step to prove that
exceptions establish the quiescent invariants when they use the rollback variables to
restore the values of variables that have been changed in the transaction.

This process of adding rollback variables is done for each of the transactions, in-
cluding nested ones. Note that the rollback variable should be used by the lowest
level transaction possible. For example, in the SBB model, cast count is saved as roll-
back cast count by Cast count transaction, not by Paper in transaction.

Developing safe exception recovery mechanisms... 9

5 Adding exception handling to transactions

Having prepared by identifying transactions and their associated rollback requirements,
in the next step we identify where exceptions could occur and how the system should
recover from them. The model should be analysed state by state to identify negative
outcomes that could prevent the activities within the state from completing success-
fully. Since the model abstracts away from the details of these state activities, iden-
tification of exceptions is a subjective assessment of the concepts represented by the
state. As we are interested in the memory safety provided by CHERI hardware, we
might consider certain states to be particularly untrusted (whether malicious or acci-
dental). We may also wish to consider failures due to external system components such
as user mis-actions and machinery failures. For example, Table 1 outlines the potential
exceptions and their recovery strategy in the SBB system:

Exception Recovery

memory capability violation in
barcode software library

if occasional, reject the ballot, if
persistent, external maintenance

user does not enter selection within
timeout

reject the ballot

roller does not complete within
timeout

external maintenance

Table 1. Exceptions handled by the SBB system

The first exception is a memory capability violation in the barcode processing
software. This could be due to a simple software error or it could be due to a security
attack via virus software which is trying to use memory accesses to create an attack
vector. We could react by disabling the service immediately to ensure that the SBB
does not record invalid results. However, this could play into the hands of an attacker
trying to create denial of service attack. Therefore, we decided to adopt a two-phase
recovery strategy. For occasional exceptions, the paper is rejected and the user can try
again. It is the best we can do since the paper cannot be processed without a barcode.
If several exceptions are detected consecutively, then the service is aborted and the
system awaits external intervention.

The second exception is a timeout on the user choosing either to cast, spoil or
cancel their vote. In this case the recovery strategy is to default to rejecting the paper.
The third exception is a breakdown in the roller machinery that sorts the physical
papers into their respective categories. If the roller does not complete within a timeout,
it is assumed that manual maintenance will be required to fix the roller machinery.
(Note that we are not interested in quantifying intervals of time; only in an ordinal
arrangement of events and therefore, we do not need to model the tick of a clock).

Figure 3 shows the UML-B model with exception handling transitions added.

The first exception can occur either in the BarcodeReading or BarcodeProcessing
states and can result in two different exception handlers. If an exception counter (which
is not shown in the diagram) is below a threshold, exception handler1a recovers to the
PrepareRejecting state. This does not leave the transaction Paper in transaction so

10 C.F.Snook et al.

Fig. 3. State Machine, SBB with exception handling

does not need to use the rollback mechanism. However, the exception count is incre-
mented as part of the exception handling. If the exception count reaches the threshold
the exception is handled by exception handler1b which exits the Paper in transaction
and recovers to the Maintenance state. In this case the paper count is rolled back by
the action paper count := paper count rollback which is attached to the transition
exception handler1b. The second exception can occur in the state UserSelection and
is handled by the transition exception handler2 which recovers to PrepareRejecting
without any rollback actions. The third exception can occur in Accepting, Spoiling or
Rejecting and always recovers to Maintenance with the same paper in rollback action
as the first exception. However, in the case where it occurs in Accepting, the excep-
tion also exits the nested Cast count transaction and therefore must also roll back the
cast count via an action cast count := cast count rollback which is attached to the
transition exception handler3a. (Note that, in Event-B, conditional actions are only
possible using different guarded events for each condition hence the need for separate
transitions for exception handler3a and exception handler3b).

6 Overview of the method of modelling transactions and
exceptions in UML-B

The generic technique for modelling transactions and exceptions and analysing their
recovery using UML-B state-machines and Event-B verification is summarised in this
section.

1. Model the normal behaviour as a UML-B state-machine.
– Construct a UML-B state-machine to model the control modes (states) and

mode changes (transitions) of the system.
– In the containing machine, add additional variables involved in the functional-

ity. The variables may be used to control (guard) the firing of transitions and
be altered when transitions fire (actions).

Developing safe exception recovery mechanisms... 11

– Add quiescent invariants to the states to express desired safety properties
about the expected values of the variables in particular quiescent states4.

– Verify the model using the Rodin provers, adding intermediate invariants to
states in order to achieve the proofs.

2. Identify and represent any transactions in the model.
– Where intermediate invariants indicate that variables are out of step in a

sequence of states (i.e. are different from the quiescent invariants) a superstate
should be introduced to represent the transaction.

– The sequence of states containing the intermediate invariants is then contained
in a nested state-machine within the transaction superstate.

– The transition that enters the parent transaction superstate will contain an
action that alters the variable that is out of step (i.e. introduces the difference
from the quiescent invariant).

– The intermediate invariants expressing the difference from the quiescent invari-
ant are replaced by a single intermediate invariant in the parent transaction
superstate.

– Transactions may be nested within other transactions where a variable is
changed in a sub-transaction.

– Check that the model can still be verified by the Rodin provers. The changes
are superficial/structural so should not affect the validity of the proofs.

3. Add rollback caching of variables to support the transactions.
– In the containing machine, add rollback variables to store the entry state of

all of the ancillary variables that are altered during the transaction.
– Add entry actions to the transaction superstate to cache the value of the vari-

ables that will be changed by the transaction, in their corresponding rollback
variables.

– Add intermediate invariants to the transaction superstate to confirm that the
quiescent invariants, with variables replaced by rollback variables, obey the
quiescent properties. These will be needed in the next step to prove that excep-
tions re-establish the quiescent invariants when they use the rollback variables
to restore the values of variables that have been changed in the transaction.

– Check that the model can still be verified by the Rodin provers. The proofs
should be straightforward.

4. Add exception handling to the model.
– Consider each state in turn and identify any potential exceptions that could

occur in that states actions.
– Add transitions to represent exceptions that can occur from states within the

transaction.
– Their target (recovery) states can be within the transaction or external to the

transaction.
– Junctions can be used to merge transitions when the same exception handler

can handle an exception occurring in several source states. (The transition can
fire from either of the source states)

– Junctions can also be used to split a transition into several outcomes and hence
model alternative exception handlers (with different recovery target states) of
the same exception. In this case, guards on the final segments of the transi-
tion, can be used to distinguish the cases and they can have different rollback
actions.

4 We refer to these invariants as safety properties, however, we use safety in a very
broad way to represent any properties the modeller would like to remain true in this
model.

12 C.F.Snook et al.

– For exceptions that exit a transaction, add actions to the transition to roll
back the variables that have been changed (i.e. v := rv where rv is the rollback
variable for variable v).

– Exceptions must add rollback actions for each of the nested transaction super-
states that are exited.

– Verify the model using the Rodin provers.

7 Demonstration Implementation

We have implemented the modelled system in order to demonstrate recovery responses
from an exception signal in a real system running on a CHERI Morello PC. The imple-
mentation is a demonstrator that also contains a simulation of the SBB environment
(the roller machine) and the user interfaces. An invalid memory access is seeded in
the barcode processing simulation so that a SIGPROT signal can be induced as part
of the demonstration. The user simulation asks the tester to supply the expected user
responses and if this is delayed sufficiently, a SIGALRM is induced for demonstration
purposes. Although this is just a demonstrator program, we can envision the controller
code, including the exception handling, being generated automatically from the UML-B
model. In the following we use pseudo-code to illustrate the generic abstract structure
of the envisioned automatically generated code.

The processing of a state-machine state and firing of transitions, is wrapped in a
conditional sigsetjmp which acts as a kind of ‘try’. The following pseudocode shows
the generic structure of the controller code where ‘try’ is implemented with sigsetjmp.

do forever {
try {

set alarm timeout for the new state
repeat until the statemachine state changes

progress the environment
progress the statemachine }

//any exception handler will return to here}

The hand-constructed C code for the SBB example corresponding to the pseu-
docode above is in Figure 4 on the next page.

The function that progresses the statemachine selects the case based on the current
statemachine state and tests to see whether it has the necessary conditions to fire
any of its outgoing transitions. The conditions may involve trigger events from the
environment, user inputs, internal system variables or may be always true (i.e. the
next transition fires immediately).

switch state
case STATE1:

if can fire TRANSITION1
fire TRANSITION1

else if can fire TRANSITION2
fire TRANSITION2

etc.
case STATE2:

fire TRANSITION3
etc.

Developing safe exception recovery mechanisms... 13

Fig. 4. Code for the main SBB state-machine execution showing ‘sigsetjmp’

When fired, transition functions take any transition actions such as changing system
variables and then update the statemachine state to the new (target) state. If the source
state has any exit actions or the target state has any entry actions, these are also added
as transition actions.

If there is an exception (which could be any POSIX signal but we use SIGPROT
and SIGALRM as examples) the exception handler will be called to intervene with
any roll back actions and change the state to the appropriate recovery action. The
exception handler then exits (using a siglongjmp), to the end of the main try (sigsetjmp)
conditional block. This is also where main loop ends up after a normal transition in
order to enter a new state. Therefore the exception handler sets up the next state
variables to enter the designated recovery state depending on the exception that was
raised and the state that was executing when the exception occurred.

The exception handling is set up at intialisation using sigaction which is a facility
built in to POSIX signals library for this purpose. The sigaction assigns our exception
handler to the handled signals (see Figure 5).

Fig. 5. Code for setting up the exception handler using ‘sigaction’

Note that we use a single exception handler routine for both signals. The different
exception transitions of the UML-B model map to different condition branches within
the handler. (Event-B does not support conditional execution within an event).

14 C.F.Snook et al.

The exception handler, (see SBB example in Figure 6 on the facing page), contains
a switch case for each type of signal that is handled and each case contains conditional
branches for the state(s) that the signal has a defined recovery. The choice of recov-
ery state can also be conditional for a particular signal source state combination and
recovery may or may not require rolling back system variables.

switch signal type
case SIGNAL 1:

if current state = STATE1
if condition for recovery 1

change current state to recovery state 1
//possibly no rollback is needed for some recovery states

if condition for recovery 2
change current state to recovery state 2
rollback system variables to saved pre−transaction values

case SIGNAL 2: ... etc. ...
exit to end of main try block (using siglongjmp)

Of course the signal could occur in a state for which we did not model a recovery.
In this case the signal is ignored. The recovery for a particular signal and state may
also depend on further conditions. For example, exception 1 of the SBB depends on a
count and takes a different recovery of the exception occurs several times (which may
be a persistent attack). Each branch sets the appropriate recovery state in the state
machine control data structure and also rolls back any variables that were part of a
transaction where the recovery leaves that transaction.

To demonstrate the code and signal handling we have executed it on a CHERI
Morello PC. The code for the barcode reading and processing states is ‘seeded’ with an
invalid memory access (using a data value as a pointer) so that a SIGPROT exception
can be generated. SIGALRM timeouts are easily simulated by not responding to the
user interface simulation code. The console output provided by the demonstration
program provides a record of the occurrence of exceptions.

8 Related Work

This section reviews relevant research on exception handling and fault recovery mecha-
nisms, the application of formal methods in safety-critical systems, and recent advances
in code generation for safe exception handling.

Exception Handling and Fault Recovery in Safety-Critical Systems. Exception
handling is essential for robust system behaviour in safety-critical applications, where
maintaining a safe state during abnormal conditions is paramount. Julliand and Per-
rouin [8] discuss the complexities of exception handling in formal methods, emphasising
the challenges of fault tolerance when designing for systems that must adhere to strin-
gent safety standards. This work underscores the importance of domain expertise in
designing tailored recovery mechanisms that respond effectively to error events. Unlike
general-purpose error handling, safety-critical applications require a transactional ap-
proach to return systems to a consistent state, even under exceptional conditions. Our
work builds on this by incorporating formal methods to model transactional behaviour
that can systematically manage exceptions in a capability-based hardware environment.

Developing safe exception recovery mechanisms... 15

Fig. 6. Code for the common exception handler

Formal Methods for Exception Handling and Safety Assurance. Formal methods,
particularly Event-B, have proven valuable in the verification of safety-critical systems
by enabling mathematical rigour in system design and error detection. However, tradi-
tional Event-B lacks explicit support for exception handling and fault recovery. Snook
and Butler’s [14] UML-B framework extends Event-B with UML-like state machines,
allowing high-level modelling of system behaviour while maintaining consistency in the
presence of exceptions. Abdallah et al. [1] further adapt Event-B for handling excep-
tions, proposing a model for safe exception handling that ensures safety-critical systems

16 C.F.Snook et al.

can reliably transition to safe states. Our approach builds on these advancements by
using UML-B to model system consistency and integrating exception-handling trans-
actions that respond to non-completions and error states, contributing to the formal
analysis of capability-based hardware systems.

Transactional Models and Consistency Recovery. Maintaining a consistent system
state is crucial for safe exception handling in transactional models, particularly in dis-
tributed and embedded systems. Lamport’s [9] classic work on distributed systems
provides a foundational understanding of time and event ordering, which underpins
transactional recovery in complex systems. Lynch and Tuttle [10] introduce the in-
put/output automata model, highlighting the importance of input/output synchroniza-
tion for achieving reliable consistency in safety-critical applications. These foundational
models inform our approach by providing a theoretical basis for handling transactions
and error states within closed systems, which we implement in our UML-B framework
to manage exception recovery effectively.

Automatic Code Generation for Safe Exception Handling. Finally, translating for-
mal models into executable code is a significant step toward implementing safe ex-
ception handling in practice. Abrial [2] outlines techniques for generating code from
Event-B models, which can facilitate a direct path from formal design to application.
Dalvandi [5] proposes SEB-CG tool for extensible automatic code generation from
Scheduled Event-B (SEB), an extension of Event-B that augments models with con-
trol structures, to executable code in a target language. Mendes and Bensalem [11]
extend this to safety-critical applications, demonstrating that automated code genera-
tion can preserve the integrity of exception-handling logic across various system states.
Our work contributes to this body of research by developing an implementation of our
UML-B model in C, with the goal of enabling future automatic code generation for
exception handlers in CHERI-based systems.

Summary. The existing literature demonstrates the feasibility of using formal meth-
ods for exception handling in safety-critical systems, though there remains a gap in
capability-specific recovery models that address the unique needs of memory-safe hard-
ware like CHERI. By leveraging UML-B state machines and transactional recovery
modelling, our approach advances the formal analysis of exception handling mech-
anisms tailored for capability-based systems, ultimately contributing to safer, more
reliable embedded applications.

9 Future Work

We intend to develop a code generation tool that will convert our UML-B models into
C code with the exception handling functions automatically produced and populated
based on the transaction and exception transition detail in the models. In previous
work we have developed more general Event-B to C code generation tools based on our
Eclipse/Rodin plug-in tool framework. These tools can be extended to be more specific
to UML-B state-machines with exception handling. We would also like to develop
better tool support for the modelling proposed here. For example, special features
within UML-B to model transaction states and exception transitions would make the
modelling easier as well as providing better support for the code generation.

Developing safe exception recovery mechanisms... 17

The methods discussed here assume the use of POSIX signals and associated Unix-
based exception-handling infrastructure. The target hardware for the case study was
a CHERI Morello PC running a variant of the BSD operation system. We would also
like to support embedded systems which run on smaller real-time operating systems.
We are now investigating a new case study using the Sonata development board which
is based on an FPGA implementation of the CHERIoT processor running CheriRTOS.
A significant difference is that the POSIX signal infrastructure is not present in such
systems and the exception handling concepts are closer to hardware device level.

So far we have not considered compartmentalisation in our methods. CHERI com-
partments enhance the memory-safe capabilities of the hardware providing better de-
tection of suspicious behaviours. Compartmentalisation may require further modelling
features/techniques and improved code generation. Compartments also provide the ba-
sis of a hierarchical unwinding of un-handled exceptions (analogous to unwinding of the
call stack in some typical exception handling languages). We imagine that this could
be modelled using hierarchical statemachines.

10 Conclusions

Whereas the focus in hardware design is on generic mechanisms for detecting unusual
potentially erroneous or suspicious behavior, the design of safe exception handling af-
ter the detection, is application or domain specific and therefore generic solutions are
unattainable. Application engineers need supporting methods and tools to help them
design and verify that recovery mechanisms do not violate the safety or security of
the system. We provide a formal model-based analysis approach to achieve this by first
modelling and verifying the system in the absence of exceptions and then adding the ex-
ceptional behaviour and appropriate recovery mechanisms. The modelling approach is
based on discovering transactions which then suggest the necessary rollback of variables
that were involved in the transaction. Usually we promote the use of safety-preserving
refinement to incrementally develop the details of a system. However, a limitation of
the approach is that exceptions cannot be added as a refinement stage and instead
must be seen as a second stage within a single refinement. However, the first and sec-
ond stages are a relatively simple/methodical progression of the same refinement level
and therefore the consequences in terms of verifiability are not excessive. Furthermore,
the detail of the system can be expanded as several refinements that each contain
the two-stage approach. We have also demonstrated that an implementation can be
derived from the formal models. While this is handwritten for now, it would be rel-
atively straightforward to write a tool to automatically generate the code using our
Eclipse-based code generation frameworks.

Acknowledgement:

This work is supported by HD-Sec project, which was funded by the Digital Security
by Design (DSbD) Programme delivered by UKRI to support the DSbD ecosystem.

References

1. Abdallah, A., et al.: A formal model for safe exception handling in safety-critical
systems using Event-B. International Journal of Critical Computer-Based Systems
7(1), 64–85 (2017)

18 C.F.Snook et al.

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International journal on
software tools for technology transfer 12(6), 447–466 (2010)

4. Brito, P.H.S., de Lemos, R., Rubira, C.M.F., Martins, E.: Architecting fault toler-
ance with exception handling: Verification and validation. J. Comput. Sci. Technol.
24(2), 212–237 (2009)

5. Dalvandi, M., Butler, M.J., Fathabadi, A.S.: SEB-CG: Code Generation Tool with
Algorithmic Refinement Support for Event-B. In: FM 2019 International Work-
shops, Revised Selected Papers, Part I. Lecture Notes in Computer Science, vol.
12232, pp. 19–29. Springer (2019)

6. Dghaym, D., Hoang, T.S., Butler, M.J., Hu, R., Aniello, L., Sassone, V.: Verify-
ing system-level security of a smart ballot box. In: Raschke, A., Méry, D. (eds.)
Rigorous State-Based Methods - 8th International Conference, ABZ 2021, Ulm,
Germany, June 9-11, 2021, Proceedings. Lecture Notes in Computer Science, vol.
12709, pp. 34–49. Springer (2021)

7. Galois and Free & Fair: The BESSPIN Voting System. https://github.com/

GaloisInc/BESSPIN-Voting-System-Demonstrator-2019, accessed: 2024-02-07
8. Julliand, J., Perrouin, G.: Exception handling and fault tolerance in formal meth-

ods: From theory to practice. Formal Aspects of Computing 27(3), 497–509 (2015)
9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21(7), 558–565 (1978)
10. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-

terly 2(3), 219–246 (1989)
11. Mendes, M., Bensalem, S.: Automatic code generation for safety-critical applica-

tions. IEEE Transactions on Software Engineering 42(7), 650–666 (2016)
12. Salehi Fathabadi, A., Snook, C., Hoang, T.S., Thorburn, R., Butler, M., Aniello,

L., Sassone, V.: Designing exception handling using Event-B. In: Bonfanti, S.,
Gargantini, A., Leuschel, M., Riccobene, E., Scandurra, P. (eds.) Rigorous State-
Based Methods. pp. 270–277. Springer Nature Switzerland, Cham (2024)

13. Sewell, P., et al.: CHERI instruction-set architecture. Technical report, University
of Cambridge (2019)

14. Snook, C.F., Butler, M.J.: UML-B: formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

15. Snook, C.F., Butler, M.J.: UML-B: A Plug-in for the Event-B Tool Set. In: Börger,
E., Butler, M.J., Bowen, J.P., Boca, P. (eds.) Abstract State Machines, B and Z,
First International Conference, ABZ 2008, London, UK, September 16-18, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5238, p. 344. Springer (2008)

16. SRI International and the University of Cambridge: CheriBSD website. https:
//www.cheribsd.org/, accessed: 2025-02-20

17. Watson, R.N.M., Woodruff, J., Neumann, P.G., Moore, S.W., Anderson, J., Chis-
nall, D., Dave, N.H., Davis, B., Gudka, K., Laurie, B., Murdoch, S.J., Norton,
R.M., Roe, M., Son, S.D., Vadera, M.: CHERI: A hybrid capability-system archi-
tecture for scalable software compartmentalization. In: 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA. pp. 20–37. IEEE Computer
Society (2015)

https://github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019
https://github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019
https://www.cheribsd.org/
https://www.cheribsd.org/

Case Study: Safety Controller for Autonomous
Driving on Highways ?

Michael Leuschel , Fabian Vu , and Kristin Rutenkolk

Heinrich-Heine-Universität Düsseldorf
Faculty of Mathematics and Natural Sciences

Institute of Computer Science
{leuschel, fabian.vu, kristin.rutenkolk}@uni-duesseldorf.de

Abstract. This requirements document presents the case study for the
ABZ conference 2025. The case study is about a safety controller for
autonomous driving on a highway. The description contains two variations
of the case study. First, in the simpler setting, we just consider a single-
lane highway where each vehicle can accelerate and brake. The goal is to
keep a safe distance to the preceding car. Second, we consider a multi-lane
highway where each vehicle can also change lanes.
The challenge is to model the system and its environment, derive assump-
tions, and model a controller that guarantees safety. The challenge is also
to present the safety case in such a way that it is convincing to readers
not entirely familiar with the formal method employed.
The case study is designed so that the formal model can be used as
a safety shield within a highway simulation environment. We provide
pre-trained (unsafe) AI agents for experimental purposes. This part of
the case study is optional.

Keywords: Formal Methods, Autonomous Driving, Case Study, High-
way, Artificial Intelligence

1 Introduction and Motivation

This requirement document presents the case study for the ABZ conference 2025,
which is about a safety controller for driving vehicles on a highway (motorway
in UK English). In practical use, the safety controller could be employed as an
assistant for a human driver, or can also be added to an artificial intelligence
(AI) component to obtain a safe autonomous driving system.

In practice, the vehicle contains cameras and sensors to observe its envi-
ronment. In the case study, the perception system is abstracted away, i.e., the
controller has access to the vehicle’s position and the positions of all cars in the
vicinity. There are no other obstacles on the highway. The challenge of the case
? The work of Fabian Vu is part of the KI-LOK project funded by the “Bundesminis-
terium für Wirtschaft und Energie”; grant # 19/21007E, and the IVOIRE project
funded by “Deutsche Forschungsgemeinschaft” (DFG) and the Austrian Science Fund
(FWF) grant # I 4744-N.

https://orcid.org/0000-0002-4595-1518
https://orcid.org/0000-0003-2556-5553
https://orcid.org/0000-0002-6751-0369

study is to model the driving system with appropriate safety rules that guarantee
safety, i.e., the absence of collisions.

For demonstration and empirical evaluation purposes, the case study is
combined with a simulated highway environment along with trained reinforcement
learning AI agents based on [6]. We consider two environments specifically: a
single-lane highway where each vehicle can accelerate and brake, and a multi-lane
highway where each vehicle can also change lanes.

With this case study, we ask the following questions:

– Which strategy and assumptions do we need for safe driving?
– Under which conditions is it possible to guarantee complete safety?
– How can we implement those conditions on an autonomous driving system,

and verify and validate the safety?

2 Requirements

This section presents the details of the vehicles, the (single-lane and multi-lane)
environments, and the safety requirements that are considered for this case study.
We build on the highway environment presented by Leurent [6] and configure it
accordingly. The technical details and configuration of the parameters correspond
to [6] as well.

2.1 Vehicles

In the following, we provide environmental requirements for the vehicles.

– VEH1: Every vehicle has a length of l meters.
– VEH2: Every vehicle has a width of w meters.
– VEH3: A vehicle has a maximum speed of vmax m/s
– VEH4: A vehicle has a minimum speed of 0 m/s, i.e., it cannot move

backwards.
– VEH5: A vehicle has a maximum acceleration of amax m/s

2.
– VEH6: A vehicle has a maximum braking deceleration of bmax m/s

2.
– VEH7: A vehicle has a minimum guaranteed braking deceleration of bmin

m/s2, i.e., if it is braking, then the braking deceleration will be between bmin

and bmax, until the point it stops.

Concluding from VEH3, VEH4, and VEH5, the range for the speed is thus
[0, vmax] m/s. Concluding from VEH6 and VEH7, the range of the acceleration
is thus [−bmax, amax] m/s2, with bmax > 0 and amax > 0.

Note that there are edge cases where the acceleration can be in [−bmin, 0] as
well, e.g., when the difference between a full stop (0 m/s) and the current speed
is less than bmin. For all other cases, the acceleration is in [−bmax, bmin] when
braking and [0, amax] when accelerating.

When using the highway environment from [6], the concrete values for the
parameters above are:

– VEH1-ENV: Each vehicle has a length l of 5 meters.
– VEH2-ENV: Each vehicle has a width w of 2 meters.
– VEH3-ENV: Each vehicle has a maximum speed vmax of 40 m/s (= 144
km/h).

– VEH4-ENV: Each vehicle has a minimum speed of 0 m/s.
– VEH5-ENV: Each vehicle has a maximum acceleration of 5 m/s2.
– VEH6-ENV: Each vehicle has a maximum braking deceleration of 5 m/s2.
– VEH7-ENV: Each vehicle has a minimum guaranteed braking deceleration

of 3 m/s2.

In the following, we describe actions a controller can perform to control one
or multiple vehicles in the environment. We will use the term cycle as a time
interval in which a vehicle observes its environment and performs an action until
reaching the next cycle, i.e., until the next observation and decision.

– ACT1: Accelerate (FASTER): This action increases the speed (up to vmax)
with an acceleration up to amax m/s

2. Once the car reaches the vmax, the
acceleration is 0m/s2.

– ACT2: Brake (SLOWER): This action brakes with a braking deceleration of
bmin up to bmax m/s

2. Once the car stops, the braking deceleration is 0m/s2.
– ACT3: Idle (IDLE): This action reduces the (braking) acceleration close to 0
m/s2.

– ACT4: Change lane to left (LANE_LEFT): This action changes the current
lane of the vehicle to the lane directly left of it within the current cycle. The
acceleration behaves like IDLE.

– ACT5: Change lane to right (LANE_RIGHT): This action changes the current
lane of the vehicle to the lane directly right of it within the current cycle.
The acceleration behaves like IDLE.

Note that the other vehicles also perform these actions but at different
times. For example, another vehicle could brake for the first half of the cycle and
accelerate in the second half. In Section 3, we provide trained agents configured as
single agents. Instead/additionally, one can also train and configure multi-agents.

Also, note that there is no guarantee that FASTER will use the maximal
acceleration amax.

Regarding the controller, the following requirement applies:

– CON1: All controlled vehicles observe the environment in a specific time
interval of t, i.e., the response time is t seconds.

Concerning the environment, the requirement is:

– CON1-ENV: All controlled vehicles observe the environment every second,
i.e., the response time is 1 second.

2.2 Single-Lane Environment

Figure 1 shows a visualization of a single-lane environment. Regarding the
environment, the following assumption can be made:

– ENV1: At any time, there are nve vehicles on the highway with nve ≥ 1.
– ENV2: All vehicles drive in the same direction.

In the single-lane environment, the relevant actions are FASTER, SLOWER, and
IDLE.

Fig. 1: Visualization of Single-Lane Environment; figure is created while simulating
in [6].

2.3 Multi-Lane Environment

Figure 2 shows a visualization of a multi-lane environment (with 4 lanes). ENV1
and ENV2 also apply to the multi-lane environment. Additionally, the following
assumption can be made about the environment:

– ENV3: The multi-lane environment consists of a fixed number of lanes nla

with nla ≥ 2.

This means that the number of lanes does not change over time. In addition
to FASTER, SLOWER, and IDLE, actions to change lanes to the left (LANE_LEFT) or
the right (LANE_RIGHT) are also relevant.

Fig. 2: Visualization of Multi-Lane Environment (with 4 lanes); figure is created
while simulating in [6].

2.4 Safety Requirement

This section presents the main safety requirement and a formula to maintain the
safety distance. The safety requirement for the case study is:

– SAF: All controlled vehicles must avoid collisions.

One could achieve SAF by maintaining a safety distance. For the single-lane
environment, one must consider the distance to the vehicle behind and the vehicle
in front. For the multi-lane environment, one has to consider lane changes and
possibly even more rules. A model to maintain safety distances is Responsibility-
Sensitive Safety (RSS) [10].1. In particular, the first rule [10] of RSS defines the
computation of the safety distance as:

dmin = [vr ∗ ρ+ 1
2 ∗ amax ∗ ρ2 + (vr + ρ ∗ amax)2

2 ∗ βmin
−

v2
f

2 ∗ βmax
]+

using the notation [x]+ := max{x, 0} and with

– ρ - response time
– vr - speed of rear vehicle
– vf - speed of front vehicle
– amax - maximum acceleration of rear vehicle before braking
– βmax - maximum braking acceleration of front vehicle
– βmin - braking acceleration of rear vehicle (reaction to braking of front

vehicle)

This formula was, for example, used in [2] with Isabelle to prove safety or
combined with goals in [3, 4]. For the case study, one can also consider other
formulas or assumptions (additionally or instead of RSS) for computing the safety
distance.

3 Simulation in AI Environment

This section provides additional material, in case you wish to use and evaluate
your safety controller as a safety shield [5] for an AI system. As such, we provide
several reinforcement learning (RL) agents trained in the highway environment [6].
The requirements above were designed in such a way that the formal model
integrates with the abstraction provided by this highway environment.

1 More details available here: https://www.mobileye.com/technology/responsibi
lity-sensitive-safety/

https://www.mobileye.com/technology/responsibility-sensitive-safety/
https://www.mobileye.com/technology/responsibility-sensitive-safety/

Environment

Steering
System

Runtime
Observation

Decision
Making
System

(AI)

Safety
Controller

Action

Safety Enforcement
Act

Fig. 3: Components of Autonomous Driving System

3.1 Overview

Figure 3 depicts using a safety controller for an autonomous driving system. In
practice, the perception is done by cameras and sensors; this is abstracted away
in our case study. We suppose we obtain position and speed information about
vehicles in the vicinity (see Section 3.3 below).

Based on the observations, the decision-making system decides which actions
to execute next. The safety controller checks whether the actions made by the
decision-making system are safe and intervenes/corrects the decisions accordingly.
The corrected action is then provided to the steering system for execution.

3.2 Trained Agents

We trained agents for both the single-lane and the multi-lane environment with
Deep Q-learning (DQN) [7]. For both environments, we present two agents: an
agent trained with penalties for collisions, and another agent which behaves
adversarially, i.e., it is rewarded for collisions.2

The trained agents are available here: https://github.com/hhu-stups/a
bz2025_casestudy_autonomous_driving.

Single-Lane Environment. For the single-lane environment, we use the standard
configuration for training and modify them for both agents as follows:

– The first agent, called Base, is trained with a penalty for collisions and a
reward vcur/vmax for the current speed (the faster the better).

– The second agent, called Adversarial, is trained with a reward for collisions
and again a reward depending on the current speed.

2 Additionally, you can also train more agents if required.

https://github.com/hhu-stups/abz2025_casestudy_autonomous_driving
https://github.com/hhu-stups/abz2025_casestudy_autonomous_driving

Multi-Lane Environment. For the multi-lane environment, we also use the stan-
dard configuration for training and modify them for both agents as follows:

– The first agent, called Base, is trained with a penalty for collisions, a right-
lane reward (i.e., the agent is rewarded if it drives on the right to let other
cars pass), and again a reward for the current speed.

– The second agent, called Adversarial, is trained with a reward for collisions,
again a reward for the current speed, and no right-lane reward but a lane
change reward.

3.3 Observing and Controlling Vehicles in Highway Environment

In the following, we provide information that are only relevant to implement
Figure 3, i.e., to implement an adapter between the agents’ observations and
the safety controller. The details relate to how a controlled vehicle observes its
environment.

An agent observes the environment in each cycle (1 second by default) and
performs an action (ACT1–ACT5 from Section 2.1). Each observation contains
the presence, the positions, and the speeds of all vehicles. The position and speed
of the controlled vehicle are absolute, while the positions and speeds of the other
vehicles are relative to the controlled vehicle. Each vehicle’s position is defined
by its center. A controlled vehicle can observe other vehicles up to 200m, but
reliable perception is only guaranteed up to 100m.

P resence x y vx vy

ControlledV ehicle 1.0 0.89 0.50 0.31 0.0
V ehicle2 1.0 0.09 −0.50 −0.04 0.0
V ehicle3 1.0 0.21 0.00 −0.02 0.0
V ehicle4 1.0 0.33 0.00 −0.04 0.0
V ehicle5 1.0 0.43 −0.25 −0.04 0.0

Fig. 4: Example: Observation in Highway Environment

Such an observation for a single agent is shown in Figure 4. The observations
in the provided agents (and thus also Figure 4) are normalized. More details
about the environment are available here3:

https://highway-env.farama.org/observations/.

3 There is also a multi-agent setting to control multiple vehicles where the state is
represented by an array of observations: https://highway-env.farama.org/multi_
agent/.

https://highway-env.farama.org/observations/
https://highway-env.farama.org/multi_agent/
https://highway-env.farama.org/multi_agent/

3.4 Metrics

In the validation process, one can consider more metrics to evaluate the quality of
an autonomous driving system: the accident rate, the expected time until collision,
the distance traveled, the speed, the cumulative reward (of the reinforcement
learning agent), the time spent on right-most lane according to the keep right
requirement in many countries. Some metrics are described in [12]; they are only
relevant when the safety controller is adapted to the RL agents.

3.5 Some Related Works

The idea of using a simple system to control a complex system was introduced
by Sha [9], and later expanded to reinforcement learning applications [11] in the
neural simplex architecture [8]. Figure 3 works similarly to post-shielding [1],
where the AI’s decisions are corrected. Another approach is pre-shielding [1],
which provides safe actions for the AI to choose.

4 Summary

We expect contributions which

– formalise the behaviour of the vehicles and the effect of the different control
actions (FASTER, SLOWER, ...),

– derive a set of assumptions and rules for which the system is safe,
– formally show the safety for the system under these rules and assumptions.

For this case study, we would like to put particular emphasis on a clear
exposition of the models and the safety argument. Ideally, your argument should
convince somebody who is not familiar with the particular formal method used
for the safety of the system.

Your solution can target one or both of these settings:

– a single line setting without lane changes,
– a multi-lane setting with possible lane changes.

Another motivation for our case study is applying formal methods to AI to
improve the safety. The main goal here is to develop a formal model that can
supervise an existing AI system. To this end, we provide trained AI agents for our
case study, which can be run in a highway simulation environment and combined
with your formal model (or code generated from your formal model). We thus
encourage you to develop a solution

– that can be used as a safety shield for an AI agent in the highway environment,
– thereby improving safety or even guaranteeing safety,
– while achieving good practical performance (e.g., in terms of total distance

travelled).

Acknowledgements

We thank Amel Mammar, Atif Mashkoor, and Nico Pellegrinelli for useful feed-
back.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings AAAI. pp. 2669–2678. AAAI
Press (2018). https://doi.org/10.1609/aaai.v32i1.11797

2. Crisafulli, P., Taha, S., Wolff, B.: Modeling and analysing cyber-physical
systems in HOL-CSP. Robotics Auton. Syst. 170, 104549 (2023).
https://doi.org/10.1016/J.ROBOT.2023.104549

3. Hasuo, I., Eberhart, C., Haydon, J., Dubut, J., Bohrer, R., Kobayashi, T.,
Pruekprasert, S., Zhang, X.Y., Pallas, E.A., Yamada, A., Suenaga, K., Ishikawa,
F., Kamijo, K., Shinya, Y., Suetomi, T.: Goal-aware rss for complex scenarios via
program logic. IEEE Transactions on Intelligent Vehicles 8(4), 3040–3072 (2023).
https://doi.org/10.1109/TIV.2022.3169762

4. Kobayashi, T., Bondu, M., Ishikawa, F.: Formal modelling of safety architecture
for responsibility-aware autonomous vehicle via event-b refinement. In: Proceedings
FM’2023. pp. 533–549 (2023), https://doi.org/10.1007/978-3-031-27481-7_30

5. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield Synthesis for Reinforcement
Learning. In: Proceedings ISoLA. pp. 290–306. LNCS 12476 (2020), https://doi.
org/10.1007/978-3-030-61362-4_16

6. Leurent, E.: An Environment for Autonomous Driving Decision-Making. https:
//github.com/eleurent/highway-env (2018)

7. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529–533 (2015),
https://doi.org/10.1038/nature14236

8. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural
simplex architecture. In: Proceedings NFM. pp. 97–114. LNCS 12229 (2020), https:
//doi.org/10.1007/978-3-030-55754-6_6

9. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001).
https://doi.org/10.1109/MS.2001.936213

10. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and
scalable self-driving cars. CoRR abs/1708.06374 (2017), http://arxiv.org/ab
s/1708.06374

11. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

12. Vu, F., Dunkelau, J., Leuschel, M.: Validation of Reinforcement Learning Agents
and Safety Shields with ProB. In: Proceedings NFM. pp. 279–297. LNCS 14627,
Springer (2024). https://doi.org/10.1007/978-3-031-60698-4_16

https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1016/J.ROBOT.2023.104549
https://doi.org/10.1109/TIV.2022.3169762
https://doi.org/10.1007/978-3-031-27481-7_30
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1109/MS.2001.936213
http://arxiv.org/abs/1708.06374
http://arxiv.org/abs/1708.06374
https://doi.org/10.1007/978-3-031-60698-4_16

Safety enforcement for autonomous driving on a
simulated highway using Asmeta models@run.time

Andrea Bombarda1[0000−0003−4244−9319], Silvia Bonfanti1[0000−0001−9679−4551],
Angelo Gargantini1[0000−0002−4035−0131], Nico Pellegrinelli1[0009−0000−4944−6845],

and Patrizia Scandurra1[0000−0002−9209−3624]

University of Bergamo, Bergamo, Italy {andrea.bombarda, silvia.bonfanti,
angelo.gargantini, nico.pellegrinelli, patrizia.scandurra}@unibg.it

Abstract. Mission-critical systems, such as autonomous vehicles, oper-
ate in dynamic environments where unexpected events should be man-
aged while guaranteeing safe behavior. Ensuring the safety of these com-
plex systems is a major open challenge and requires robust mechanisms
to enforce correct behavior during runtime. This paper illustrates a run-
time safety enforcement framework for the output sanitization of an au-
tonomous driving agent on a highway. The enforcement mechanism is
based on a (formally validated and verified) Asmeta model representing
the enforcement rules and used at run-time to eventually steer the driving
agent to behave safely and avoid collisions. We demonstrate both effi-
cacy and efficiency of the proposed enforcement approach by conducting
an experimental evaluation. We connected our safety enforcer with the
highway simulation environment and co-executed it with the pre-trained
(unsafe) AI agents as provided by the ABZ 2025 case study. We consider
the single-lane case with the safety requirement and one scenario of the
multi-lane case about preferring the right-most lane.

Keywords: ASMs · Asmeta· Runtime Safety Enforcement · Safety shield

1 Introduction

Mission-critical self-adaptive systems, like autonomous vehicles (AVs), are capa-
ble of adapting their behavior at runtime in complex environments with little
to no human intervention. Given the critical roles these systems play, they are
expected to safely adapt to changes in their execution environment. Runtime
adaptation mechanisms of these systems can leverage formal models, referred to
as formal models@run.time [10]. The applicability of formal analysis techniques
can be extended to runtime environment to support adaptation decision-making
and applying safety assurance approaches in adaptive systems [2, 24].

Leveraging our previous approach in [7], in this paper, we present a safety
enforcement framework for the sanitization of the output control action of an
AI-based driving agent in a simulated highway [17]. The proposed enforcement
mechanism works as a safety controller (or safety shield): it observes the envi-
ronmental changes and the action decided by the controlled AV (referred to as

2 A. Bombarda et al.

the ego vehicle or the controlled vehicle throughout the text) that might lead to
potential safety violation (i.e., a collision), and then proactively elaborates and
actuates a proper answer to replace the AV control action (output sanitization).
The enforcement strategies are formally specified and served at runtime by an
Abstract State Machine (ASM) [8,9], developed using the Asmeta tool set [6].

Precisely, we validate and verify the correctness of the enforcement strategies,
as specified in the Asmeta enforcement model, against the safety requirement (see
Section 3). We keep this pre-analysis separated as an offline phase, where we can
execute demanding analysis activities (including model checking for the verifica-
tion of behavioral properties) without interfering with the system operation. For
the runtime execution of this Asmeta model within the enforcement framework
and its connection with the simulated highway environment and driving agents
(online phase), we use the simulation engine AsmetaS@run.time. The latter was
recently adapted for its use at run-time and for providing simulation-as-a-service
exposed via a REST API [2] of Asmeta models. We connect our safety enforcer
software with the pre-trained (unsafe) AI agents to work as a safety shield. We
consider the single-lane case, where agents can accelerate and brake and the
enforcement strategy is to maintain a safe distance without slowing down too
much, and one scenario of the multi-lane case where the enforcement goal is to
promote virtuous driving behavior by preferring the rightmost lane as required
in many countries. To demonstrate the efficacy and efficiency of our approach, we
conducted an experimental campaign using the highway simulation environment
as provided by the ABZ 2025 case study [18].
The main contributions of this paper are the following:
– The application of the Runtime Safety Enforcement (RSE) approach [7] to

the ABZ 2025 case study Safety Controller for Autonomous Driving [18];
– A RSE framework implemented using the Python programming language,

and causally connected and co-executing with the simulated highway and
driving AI-based agents;

– The evaluation of the RSE framework and of the Asmeta enforcement model
in terms of soundness and computational overhead.
This paper is organized as follows. Section 2 provides some preliminary con-

cepts. Section 3 illustrates the safety enforcement approach for AVs (including
addressed requirements and assumptions, details of the RSE framework and of
the Asmeta enforcement models). Section 4 reports the results of our evalua-
tion experiments, conducted both offline and online. Section 5 highlights related
work, and Section 6 concludes the paper.

2 Background

This section briefly introduces a mathematical model for AV safety, the Asmeta
tool set, and the runtime safety enforcement approach.

Safety enforcement for autonomous vehicles using Asmeta 3

2.1 Responsibility-Sensitive Safety for autonomous driving

Responsibility-Sensitive Safety (RSS) by Shalev-Shwartz et al. [21] is a mathe-
matical model suggested by the specification document of the ABZ 2025 case
study [18]. The RSS formula for calculating the (longitudinal) safety distance is:

dRSS =

[
vr · ρ+

1

2
· amax · ρ2 + (vr + ρ · amax)

2

2 · βmin
−

v2f
2 · βmax

]
+

where ρ is the response time, vr is the speed of the rear (the ego) vehicle, amax

is the maximum acceleration of the rear vehicle before braking, βmax is the max-
imum braking acceleration of the front vehicle, βmin is the braking acceleration
of the rear vehicle (reaction to braking of front vehicle), and the notation [x]+
denotes max{x, 0}. Collisions can be avoided by maintaining this safety distance.

2.2 ASMs and the Asmeta tool set

In this work, we adopt Abstract State Machines (ASMs) to devise the system.
They are an extension of Finite State Machines (FSMs) that replaces unstruc-
tured control states with states capable of handling arbitrarily complex data
represented with dynamic functions. The basic transition rules of ASMs con-
sist of guarded parallel function updates. Specifically, we leverage the features
provided by the Asmeta framework [2,6], which supports a comprehensive speci-
fication and analysis process encompassing the system life-cycle with three main
stages: design, development, and operation. Each stage is supported by a variety
of tools.

This work combines the design and operation phases, by exemplifying the
applicability of Asmeta models produced at design time to the runtime envi-
ronment [2]. In particular, we use the simulator AsmetaS@run.time to deploy
the Asmeta enforcement model as runtime model of the enforcement framework,
executing in tandem with the simulated highway environment.

2.3 Runtime Safety Enforcement (RSE)

A promising approach to managing complexity in runtime environments is to
develop adaptation mechanisms that leverage software models, known as mod-
els@run.time [4]. A model@run.time is a causally connected self-representation
of the associated system (its structure and behavior) or goals of the system from
a problem-space perspective. In this work, we use an ASM as enforcement model
to specify the strategies/policies to apply at runtime to assure safety. Essentially,
we implemented an enforcement mechanism from the framework presented in [7]
for the output sanitization of the ego vehicle’s control action before it is actuated.
The ego vehicle is simulated by a trained AI-based driving agent as provided by
the ABZ 2025 case study [18] for the driving simulation environment [17].

Borrowing the terminology used in [7], we apply a black-box enforcement
mechanism E, which treats the target system S as a black-box (indeed, the AI
agent is a black box) by observing only the input (I) and output (O). Formally:

4 A. Bombarda et al.

we denote by δ(I,O) an operational change made by S producing output O
in response to the input I. We denote by Σ the system state space and by
Σ \A(Σ) the subset of unsafe states where safety assertions A may be violated1.
If (σ, δ(I,O), σ′) is a state change of S from σ to σ′ with σ′ ∈ Σ \ A(Σ), then
E try to sanitize O in O′ = E(I,O) such that (σ, δ(I,O′), σ′′) is an operational
change with σ′′ ∈ A(Σ).

Note that in practice E may take more than one corrective step to effectively
bring back the system S to the safe region A(Σ). Moreover, at runtime there is
no guarantee that a safe state is always reached in all situations; the enforceable
properties are impacted by uncertain environmental factors or uncontrolled vari-
ables that may make not timely and ineffective the enforcer adjustment. These
factors include, for example, the monitoring frequency that may not be high
enough for having fresh observations of the surrounding environment (see exper-
iments in Section 4), and the abruptness with which the target entities in the
system environment change their behavior or appear/disappear.

To apply the RSE approach [7] to a target system, the following key steps
are to be carried out throughout the phases of the system life cycle:
1. Enforcement Strategies Definition. This involves defining safety asser-

tions, I/O interfaces, and enforcement goals and strategies (@design.time).
2. Formal Specification and Analysis. The enforcement model is formally

specified, validated and verified to ensure the safety assertions are correctly
enforced over the global state of the runtime model (@design.time).

3. RSE Framework Development and Binding. An enforcer framework is
developed, instantiated and connected to the target system, with the runtime
model for safety enforcement (@development.time).

4. Deployment and Running. The enforced system is deployed, set up, and
put into operation in its runtime environment (@run.time).

5. Runtime Model Evolution. Adaptation of safety assertions and enforce-
ment rules to accommodate new requirements (@design.time or @run.time).

The next sections illustrate these steps, except step 5, for the ABZ case study.

3 Safety modeling and enforcement approach

In this section, we describe the requirements we have chosen to model in our
Asmeta specification, our assumptions, and the RSE framework.

3.1 Considered requirements and assumptions

We consider the following goals (step 1 of the RSE process) in order to guarantee
the safety requirement SAF of the specification document (i.e., no collisions) [18],
good performance, and a virtuous driving behavior:
- G1: Maintain a safety distance;
- G2: Achieve a high total distance traveled safely ;
1 E.g., driving without maintaining the RSS safety distance may lead to a collision.

Safety enforcement for autonomous vehicles using Asmeta 5

Table 1: Enforcement goals, strategies and rules
Goal Strategy name Enforcement rule

G1 Go super safe Brake if the worst case safety distance is violated

G1 Go safe Brake if the safety distance is violated

G2 Go fast safely
Increase speed if far away, i.e. the distance to the
front vehicle is x% (e.g., 70%) greater than the
required safety distance

G3 Take the rightmost free lane Change lane to right if the lane directly right is free

- G3: Keep to the right-most free lane.
The enforcement strategies adopted by the enforcer to achieve such goals are

reported in Table 1. These strategies are examples of compensation actions that
the enforcer can put in place to achieve the prefixed goals. In order to achieve all
goals, more than one strategy must be used and combined. Note that for the same
goal G1 two alternative strategies can be adopted. Strategy Go super safe is the
most prudent; it aims to maintain an upper bound of the distance as calculated
by the RSS formula in the worst case scenario. Such an upper bound is calculated
using both the maximum speed and the maximum acceleration, and assuming
that the front vehicle speed is zero. Strategy Go safe, instead, maintains the
safety distance as calculated by the RSS formula (see Section 2.1).

To concretely implement these enforcement strategies in the simulated high-
way, we had to make some assumptions. Specifically, we considered all assump-
tions contained in the specification document: VEH1-ENV–VEH7-ENV for the con-
crete values of the vehicle parameters (length, width, maximum speed, etc.),
CON1 (all controlled vehicles observe the environment every t seconds), ENV1
(there is at least one vehicle on the highway), ENV2 (all vehicles drive in the
same direction), and ENV3 (the number of lanes does not change over time). We
also adhere to the cycle-based execution semantics of the specification document:
every time interval t (also called response time) a controlled vehicle observes its
environment, and decides to perform an action until reaching the next cycle; the
other vehicles may actuate actions at different times instead.2

In addition, we considered also the following assumptions, due in part to
constraints of the provided simulation environment [17] and its configuration
for agent training [18], as obtained by code inspection and direct and extensive
experimentation:

1. Within the simulation environment, the response time t of the controlled
vehicle depends on the policy frequency (expressed in Hz). Whereas, the time
interval between decisions made by other vehicles is determined by the simulation
frequency (expressed in Hz).

2. The runtime observation interface allows us to observe presence, positions,
and speeds of the controlled vehicle and of its four closest front vehicles up to a
range of 200m.

2 E.g., a vehicle braking in the first half of the cycle can accelerate in the second half.

6 A. Bombarda et al.

3. As required by ML models for a better accuracy, the observed features
are normalized (using the min-max method) in range [-1,1] and are relative to
the controlled vehicle, while those of the controlled vehicle are absolute. Note
that the RSS formula requires absolute values, therefore, the observations are
de-normalized before they are used by the enforcement model.

4. The maximum observable distance from the front vehicle may be smaller
than the safety distance, even with an infinitesimally small response time.

5. When calculating the safety distance RSS, three cases could be considered:
(i) the speed of the controlled vehicle is less than the maximum speed and, after
accelerating with the maximum acceleration during the response time, it is still
less than the maximum speed; (ii) the speed of the controlled vehicle is less than
the maximum speed, but when accelerating with the maximum acceleration it
reaches the maximum speed before the response time has elapsed; (iii) the speed
of the controlled vehicle is equal to the maximum speed. In the first case, the RSS
formula is used as it is. In the second case, the RSS formula could be adapted
to be more specific, but we use it as it is; therefore, a higher RSS value is used,
making the model more stringent. In the last case, the RSS formula is used by
setting the maximum acceleration to 0 m/s2.

6. In the multi-lane case, when considering which vehicles are occupying a
lane, the following assumptions are made:
– All vehicles traveling straight ahead in the lane occupy the lane;
– All vehicles leaving the lane but not yet traveling straight on the other lane

occupy the lane;
– All vehicles leaving another lane and just entering the lane but not yet

traveling straight on occupy the lane.
Consequently, it is possible for a vehicle to occupy multiple lanes.

7. In the multi-lane case, we consider a vehicle proceeding straight on a lane
when its y position is close enough to the ylane position associated to a lane with
a given tolerance Θ (default 0.1m):

ylane −Θ < y < ylane +Θ

8. When calculating the distance between two vehicles, the vehicle dimen-
sions, particularly the length, are considered. The x and y coordinates when
observing a vehicle refer to its center. Therefore, when considering the distance
between two vehicles, it is necessary to consider the front half of the length for
the rear vehicle and the rear half of the length for the front vehicle, i.e. the full
length of a vehicle must be removed from the observed distance between two
vehicles.

9. If there is no observable front vehicle (either because it is further than
the maximum observable distance or there are four closest vehicles in the other
lanes), the enforcer is not activated since not necessary. The enforcer is not
activated also when the controlled vehicle is changing lane until the maneuver is

Safety enforcement for autonomous vehicles using Asmeta 7

complete; this steady state ensures that any adaptation made by the enforcement
is based on a stable snapshot of the controlled vehicle’s status3.

10. The RSS safety distance refers only to longitudinal (X-axis) positions
and speeds. The lateral position (on the Y-axis) is used to determine which lane
each vehicle is in, while the lateral speed is not used. The Y-axis position and
speed could be used in some formulas such as the one defined in Lemma 4 in [21]
to calculate the lateral (Y-axis) safety distance, but some variables (e.g., the
maximum lateral acceleration) required by this formula are not provided.

11. We say that the lane directly right is free if no front vehicles would be
observed by the ego vehicle once changed lane to right maintaining the same
X-position.

3.2 Enforcement model details

We here illustrate excerpts of the Asmeta models specifying the enforcement
strategies reported in Table 1 (specification task of step 2 of the RSE process).
We incrementally defined various models to achieve all the three goals (goals G1
and G2 for both the single-lane and multi-lane cases, and G3 for the multi-lane
case only). A replication package containing these models, all software artifacts,
and data sets used in the evaluation of our approach is available online at [5].

For this case study, the enforcement rules are extremely intuitive and take
the form of an ASM conditional rule if cond then updates. They are actually
aimed at correcting the output (0-ary) function outAction representing the final
decision, i.e. the control action (chosen from the set {FASTER, SLOWER, IDLE,
LANE_LEFT, LANE_RIGHT}) that replaces the one chosen by the AI agent and is
actuated on the ego vehicle until the next observation and decision.

Case single-lane. To achieve G1, first we introduced the Asmeta model for the Go
super safe strategy. Essentially, to promote a super safe policy we introduced the
threshold dRSS_upper_bound denoting an upper bound on the safest distance
observable in the worst-case scenario and calculated setting vr to vmax and vf
to 0:

dRSS_upper_bound =

[
vmax · ρ+

1

2
· amax · ρ2 + (vmax + ρ · amax)

2

2 · βmin

]
+

where vmax is the maximum speed of the ego vehicle. The corresponding en-
forcement rule is reported in Code 1. The rule is triggered when the actual lon-
gitudinal distance to the front vehicle (the 0-ary function actual_distance)4
is less than dRSS_upper_bound. In this case, the enforcement model prescribes
slowing down. An alternative way to achieve G1 is by maintaining the RSS dis-
tance (Go safe strategy) as specified by the enforcement rule reported in Code

3 In a self-adaptive system, it is usually assumed that the target system is in a steady
state before an adaptation is triggered in response to environmental changes [23].

4 In all models, the actual_distance is a derived function defined using the X-axis
positions of the vehicles: actual_distance = x_front - x_self - l_vehicle.

8 A. Bombarda et al.

macro rule r_unsafeDistanceSuperSafe =
if actual_distance <= dRSS_upper_bound

then outAction := SLOWER endif

Code 1: Enforcement rule for goal G1,
strategy Go super safe.

macro rule r_unsafeDistanceSafe =
if actual_distance <= dRSS

then outAction := SLOWER endif

Code 2: Enforcement rule for goal G1,
strategy Go safe.

macro rule r_goFast =
if actual_distance > dRSS ∗ gofast_perc

then outAction := FASTER endif

Code 3: Enforcement rule for goal G2,
strategy Go fast.

macro rule r_keepRight = if rightLaneFree
then outAction := LANE_RIGHT
endif

Code 4: Enforcement rule for goal G3,
strategy Take the rightmost free lane.

2, where the (0-ary) function dRSS is calculated from the observations of the
current cycle using the formula described in Section 2.1.

To achieve goal G2, we introduce the enforcement rule shown in Code 3 that
prescribes to speed up safely, i.e. when the front vehicle is more than a certain
percentage of the dRSS distance (e.g., 70%).

Case multi-lane. Enforcement rules introduced for goals G1 and G2 in the single-
lane case can be used also in the multi-lane setting, where each vehicle can also
change lanes. Additionally, we introduce the enforcement rule shown in Code 4 to
achieve goal G3, namely to promote a virtuous driving style by preferring the lane
directly right when free (as by our assumption 11). We postpone dealing with
more complex multi-lane scenarios to future work (step 5 of the RSE process).
framework. Note that the enforcement model can evolve and be re-engineered
separately, and re-deployed easily without re-building the component framework.
This is the main flexibility of using runtime models that are causally linked to
the target system, rather than integrated into the system via embed code or
model synthesis.

To combine enforcement rules we use the ASM par-rule constructor in the
main rule (entry point of execution) of an Asmeta model as shown in Code 5,
where we select one rule per each goal. Moreover, since the main rule consists of
guarded parallel updates of the same out function outAction, in order to avoid
inconsistent function updates we applied the semantic pattern mutual exclusive
guards5 by making the guards of the enforcement rules mutually exclusive. As an
example, Code 6 shows how the r_unsafeDistance rule has been restructured
after applying such a pattern. Note that in the proposed rule scheduling, we
prioritize the change to the right lane rather then other actions, whenever it is
possible to do it safely (i.e., the lane directly right is free).

5 The workflow of the machine follows only one of the possible parallel execution paths.

Safety enforcement for autonomous vehicles using Asmeta 9

main rule r_Main = par
r_unsafeDistance[]
r_goFast[]
r_keepRight[]

endpar

Code 5: Main rule of the Asmeta
enforcement model

macro rule r_unsafeDistance =
if actual_distance <= dRSS

if not rightLaneFree then
outAction := SLOWER

endif endif

Code 6: Enforcement rule for goal G1,
strategy Go safe (refined).

3.3 RSE framework for driving agents on a simulated highway

According to step 3 of the RSE process, we designed the enforcer mechanism to
act as a proxy system which wraps the controlled AI driving agent. We developed
it using the Python programming language and embedded it into a closed loop
setting with the AI agent in the simulated highway environment of AVs.

Figure 1 shows an overview of the architecture of the enforcer component
(the subsystem Enforcer Framework) once instantiated and bound to the sim-
ulated highway environment, using a UML-like notation. The I/O interfaces6
used by the ego AI agent (the subsystem Autonomous Driving System) and
by the Enforcer are as follows: the input interface I corresponds to the AVs
observations as provided by the simulated environment, while the output inter-
face O is the action decided by the ego autonomous agent. The Observation
Processor is responsible for de-normalizing run-time observations and making
them absolute (see assumption 3 of Sect. 3.1). The interface I’ corresponds to
the de-normalized and absolute observations and the interface O’ corresponds
to the sanitized action to actuate. The Configuration Manager initializes the
environment and framework using the configuration file Config.json, setting pa-
rameters like the number of highway lanes and the vehicle’s policy frequency. The
Model Uploader and the Enforcer interact with the ASM@run.time Simulator
via its AsmetaS REST API. The Model Uploader is responsible for uploading the
proper Asmeta enforcement model into the online simulator, while the Enforcer
is in charge of starting, executing (one single step per cycle), and stopping
the Asmeta model. Finally, the Experiment Data Exporter and the Logging
Manager collect quality metrics and logging data for debugging/manual inspec-
tion, respectively.

4 Evaluation

In this section, we evaluate our proposed approach. Our benchmark contains 4
enforcement models, listed in Table 2 along with the strategies they implement
and the goals they address. The first three models (SafetyEnforcerSuperSafe,
SafetyEnforcerSlower, and SafetyEnforcerFaster) were applied on a single-
lane highway. The fourth model, SafetyEnforcerKeepRight, was applied on
6 The circle (or ball) indicates input events or data that the component can handle;

the semi-circle (or socket) indicates output events or data from the component.

10 A. Bombarda et al.

«subsystem»
Enforcer Framework

Logging
Manager

Configuration
Manager

Experiment
Data Exporter

Administrator

Enforcer

Observation
Processor

\«subsystem»
ASM@run.time

Simulator
«artifact»

Asmeta Model

«subsystem»
Autonomous Driving System

AI Agent

I' O

AsmetaS
REST API

O'

I

Config
Data

Log
Data

Experiment
Data

O'

Model
Uploader

Stats.xlsx

Log.log

Simulated
Highway

Environment

Config.json
«artifact»

Fig. 1: RSE framework for simulated AVs driving on a highway.

Table 2: Mapping of Asmeta models to driving strategies and safety goals.
Asmeta Enforcement Model Strategies Goals

SafetyEnforcerSuperSafe.asm Go super safe G1
SafetyEnforcerSlower.asm Go safe G1
SafetyEnforcerFaster.asm Go safe, Go fast safely G1, G2
SafetyEnforcerKeepRight.asm Go safe, Go fast safely, G1, G2

Take the rightmost free lane G3

a 3-lane highway where all vehicles travel in the same direction. We start by
presenting the offline validation and verification activities and, then, we discuss
the experiments we run to assess the efficiency and efficacy of our framework.

4.1 Offline validation & verification

We here report on the validation and verification results (analysis task of step
2 of the RSE process) for the functional correctness of the enforcement models.
This stage is carried out offline (i.e., at design-time) before releasing the Asmeta
enforcement model in production with the enforcer framework and letting them
co-operate at runtime. To ensure that an enforcement model behaves as expected,
i.e. it achieves the enforcement goal(s) for which it was designed, we carried out
both model validation by scenarios using the validator AsmetaV, and property
verification using the Asmeta model checker AsmetaSMV.

We run different scenarios on each model to cover all rules. In Figure 2 we
report an example of scenario execution on the SafetyEnforcerFaster.asm
specification. After a few steps, where the safety distance was violated and the
enforcer forces the ego vehicle to go slower (outAction=SLOWER), once the front
vehicle is far enough the strategy G2 is implemented (outAction=FASTER). Note
that AsmetaV does not support natively approximate comparison among real
numbers, so we had either to specify the values with all decimal digits (like in
Fig. 2) or use the abs function explicitly.

Safety enforcement for autonomous vehicles using Asmeta 11

Fig. 2: Scenario execution for the SafetyEnforcerFaster.asm specification.

Regarding the verification process, we have used AsmetaSMV by invoking
NuXmv [12], the symbolic model checker to analyze synchronous finite-state and
infinite-state systems. This choice became necessary because the specification in
Asmeta makes use of real, hence infinite, domains. At first, we started by proving
Linear Temporal Logic (LTL) properties, with these general forms:

LTLSPEC g(ϕ implies φ)
LTLSPEC g(ϕ implies x(φ))

However, the model checker was not able to prove their correctness. Due to their
form, we expressed properties as invariants, propositional formulas that must
always hold in the model. As an example, we report the invariants of the model
SafetyEnforcerFaster we have verified using IC3 engines [13].

/∗If the ego vehicle is close to the front vehicle, break (go SLOWER)∗/
INVARSPEC NAME invar_01 := (actual_distance<=dRSS) −> next(outAction=SLOWER)

/∗If the front vehicle is far enough from the ego vehicle, increase the speed (go FAST)∗/
INVARSPEC NAME invar_02 := (actual_distance>(dRSS∗gofast_perc)) −> next(outAction

=FASTER)

/∗If there is no risk of collision, keep the action decided by the agent∗/
INVARSPEC NAME invar_03 := (actual_distance>dRSS and actual_distance<=(dRSS∗

gofast_perc)) −> next(outAction=currentAgentAction)

4.2 Online validation

Once in operation in the simulated highway (step 4 of the RSE process), we
check whether our enforcement framework, based on the enforcement rules as
served at run-time by the Asmeta model, is able to ensure under change the
required safety and the other considered driving requirements. Specifically, we
address the following Research Questions (RQs):
RQ1 How effective is the enforcer in ensuring safety while adjusting speed and

driving style?
RQ2 What is the computation overhead of running the enforcer in combination

with the simulated system?

12 A. Bombarda et al.

RQ1 investigates how well the corrective measures of our enforcement frame-
work are able to deliver the intended behavior by enhancing three key outcomes:
It ensures safety by avoiding collisions, travels a significant distance, and spends
a significant time on the rightmost lane. RQ2 is regarding the cost, in terms
of computation time (the wall-clock time), of the enforcement software. This
section reports on the design of the evaluation and the major results.

4.3 Design of the evaluation

To answer RQ1 and RQ2, we compared the enforced driving agent of the con-
trolled vehicle with the non-enforced one (baseline system). Both RQs are ad-
dressed with the same setup. The experiments were performed on a PC with
Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz and 16 GB RAM, running Win-
dows 11. The server exposing the Spring REST API of AsmetaS was executed
natively on Windows 11, while the enforcement framework was executed on the
same machine via WSL (Windows Subsystem for Linux) running Ubuntu 24.04,
within a Python virtual environment using Python 3.11 as the runtime platform.

For both lane configurations (single-lane and multi-lane), the case study [18]
provides two agents trained using Deep Q-learning (DQN): A base agent, which
receives penalties for collisions and rewards for maintaining high speed and stay-
ing in the right lane, and an adversarial agent, which is rewarded for collisions,
high speed, and frequent lane changes. This setup results in 8 different config-
urations for the single-lane scenario: no enforcement and 3 enforcement models
applied to both the base and adversarial agents; and 4 configurations for the
multi-lane scenario: no enforcement and the multi-lane enforcement model ap-
plied to both agent types.

The experiments were conducted extending the test run duration from 40
simulation seconds, as defined in the case study, to 100 simulation seconds.
This duration was chosen based on manual observations of the agent’s behavior
executing without the enforcer. In the single-lane configuration, the base (non-
adversarial) agent’s performance deteriorates due to poor decision-making. A
longer duration allows us to quantitatively assess this decline in performance.
A test run concludes in one of two cases: either the ego vehicle crashes or the
simulation duration ends. The experiments were initially conducted with a policy
frequency of 1 Hz, which means that the agent made one decision per simulation
second, resulting in a response time of 1 sec. The experiments were then repeated
with a doubled policy frequency (2 Hz), reducing the response time to 0.5 sec.
The simulation frequency was set to the default value of 15 Hz. Therefore, a
total of 24 configurations were tested, with 50 test runs each, and metrics were
recorded during every run.

Our efforts to introduce enforcement techniques aims to enhance the safety
of autonomous vehicles. To evaluate this in RQ1, we meticulously record the
number of crashes that occurred in various scenarios and with different enforce-
ment models. More specifically, for each simulation run, we recorded whether it
terminated because of a crash or because the simulation duration expired. Con-
sidering that one of our objective, beyond the safety, is to let the vehicle travel

Safety enforcement for autonomous vehicles using Asmeta 13

the longest distance, we also recorded the distance traveled by the ego vehicle
during the test run, expressed in kilometers and computed by multiplying speed
by the simulation time. Furthermore, in our experiments we favor scenarios in
which the vehicle travels in the rightmost lane. Thus, we record (only when mul-
tiple lanes are available) the distance traveled on the rightmost lane by the ego
vehicle during the test run, expressed in kilometers.

Additionally, in RQ2, we are interested in evaluating the overhead introduced
by the enforcement framework. To measure the impact of enforcer interventions
on output sanitization, we calculated the percentage of times the interventions
changed the agent’s action compared to the total number of actions performed
by the ego vehicle (i.e., the product of the effective durations by the policy
frequency). Moreover, we collected, for each test run, the total execution time
and the enforcement overhead introduced by the enforcer, consisting of the time
required to start and stop the execution of the Asmeta model and the time
required to perform all output sanitizations. Both times are measured in wall-
clock seconds. The overhead measurements include the time associated with
the HTTP request and the execution time of the Asmeta model, which serves
as the run-time model for enforcement. To collect the wall-clock time we used
time.perf_counter() to capture high-precision timestamps.

4.4 Results

Table 3 reports the results of our statistical tests. In the following, we discuss
them for the two proposed research questions separately.

RQ1 - Effectiveness. To assess the effectiveness of our enforcement approach, we
have measured, for each test run, the number of crashes, the traveled distance
and, in case multiple lanes were available, the distance traveled on the rightmost
lane (see Table 3). The box plot depicted in Figure 3 visually shows the results.

Regarding the number of crashes (see Figure 3a), our results confirm the posi-
tive impact of enforcement techniques: regardless of the enforcement model, only
one crash were registered when the enforcer was activated, while 210 happened
if no enforcer was used. The only crash reported when using the enforcement
framework happened in the multi-lane scenario with adversarial agents, when
using the lowest policy frequency (i.e., 1 Hz). A manual inspection revealed that
the limited observation interface that allows to observe only the four closest
front vehicles, as described in assumption 2 of Sect. 3.1, made it possible to
observe the nearest vehicle on the same lane only when overtaking a vehicle in a
different lane. This limitation, combined with a high response time, ultimately
resulted in a crash. Increasing the policy frequency, i.e., reducing the response
time, allowed us to solve this limitation and to avoid any crash. To further val-
idate this finding, we ran 50 additional experiments with the KeepRight model
for the multi-lane scenario with the adversarial agent and a policy frequency of
2 Hz, which resulted in no occurrence of crashes. However, we acknowledge that
rare failure cases may still be possible. Interestingly, reducing the response time
never reduced the number of crashes when no enforcement was used. Overall, we

14 A. Bombarda et al.

Table 3: Effectiveness and efficiency of the safety enforcement models.
Policy Lane Agent Enforc. Number Distance Distance on Enforc. Execution Enforc.
Freq. Config. Model of [km] Right Lane Interventions Time [s] Overhead
[Hz] Crashes [km] [%] [s]
1 Single-lane Base — 0 0.97 ± 0.17 — — 11.34 ± 1.52 —

SuperSafe 0 0.08 ± 0.00 — 14.70 ± 0.58 12.21 ± 1.30 0.70 ± 0.50
Slower 0 0.89 ± 0.09 — 21.14 ± 0.93 13.94 ± 0.95 2.23 ± 0.28
Faster 0 1.44 ± 0.02 — 40.28 ± 1.53 14.10 ± 1.59 2.42 ± 0.37

Adversarial — 50 0.08 ± 0.01 — — 0.29 ± 0.06 —
SuperSafe 0 1.34 ± 0.04 — 63.04 ± 1.48 13.47 ± 0.60 1.93 ± 0.18
Slower 0 1.47 ± 0.02 — 51.00 ± 0.00 14.53 ± 0.32 2.92 ± 0.06
Faster 0 1.47 ± 0.02 — 51.00 ± 0.00 13.89 ± 0.39 2.33 ± 0.06

Multi-lane Base — 4 1.97 ± 0.46 1.79 ± 0.58 — 13.61 ± 3.14 —
KeepRight 0 2.01 ± 0.07 1.34 ± 0.87 48.62 ± 5.15 17.53 ± 0.75 2.21 ± 0.26

Adversarial — 50 0.35 ± 0.18 0.09 ± 0.08 — 1.46 ± 0.73 —
KeepRight 1 1.97 ± 0.26 0.83 ± 0.97 50.15 ± 2.55 17.46 ± 2.37 2.23 ± 0.31

2 Single-lane Base — 0 0.99 ± 0.15 — — 11.99 ± 0.46 —
SuperSafe 0 0.06 ± 0.00 — 14.56 ± 0.41 13.98 ± 0.40 1.02 ± 0.05
Slower 0 0.98 ± 0.11 — 15.53 ± 2.48 18.71 ± 0.77 4.88 ± 0.44
Faster 0 1.45 ± 0.02 — 32.51 ± 1.45 18.55 ± 0.55 4.87 ± 0.13

Adversarial — 50 0.08 ± 0.01 — — 0.28 ± 0.06 —
SuperSafe 0 1.32 ± 0.03 — 59.02 ± 0.73 17.47 ± 0.32 3.65 ± 0.08
Slower 0 1.48 ± 0.02 — 50.50 ± 0.00 19.78 ± 0.17 6.07 ± 0.06
Faster 0 1.47 ± 0.02 — 50.50 ± 0.00 19.04 ± 0.48 4.85 ± 0.13

Multi-lane Base — 6 1.96 ± 0.41 1.58 ± 0.72 — 15.83 ± 3.25 —
KeepRight 0 2.03 ± 0.05 1.49 ± 0.82 46.53 ± 8.78 22.85 ± 1.13 4.53 ± 0.74

Adversarial — 50 0.44 ± 0.20 0.09 ± 0.11 — 2.01 ± 0.93 —
KeepRight 0 2.04 ± 0.06 0.89 ± 0.96 48.21 ± 6.08 22.22 ± 0.37 4.67 ± 0.15

Values report mean ± standard deviation, except for ‘Number of Crashes’ which is reported as
the total count; Times values refer to clock-wall time. The prefix SafetyEnforcer is omitted from
filenames, as well as the suffix .asm.

can state that adopting our Asmeta-based enforcement framework is effective in
reducing the number of crashes of the considered agent.

When it comes to the traveled distance (see Figures 3b and 3c) we can see
that its value increases as the goal moves from G1 to G2/G3, i.e., from Super
safe to the Go fast safely/Take the rightmost free lane strategy. As for the num-
ber of crashes, using our proposed solution allows for improving the measured
results. Moving towards G2/G3 increases the speed of the vehicle, but this does
not influence its safety. Interestingly, when considering the distance traveled on
the rightmost free lane, using the safety enforcement strategy leads to different
results depending on the agent type. On the one hand, when the agent is non-
adversarial, using a safety enforcement model leads to a decrease in the distance
traveled on the rightmost lane, while still traveling a higher total distance. This
is because the agent was trained with a reward for staying in the right lane,
whereas the safety enforcer prioritizes the driving safety, changing to the right
lane only when it is completely free. Consequently, the vehicle may spend less
time in the rightmost lane when doing so helps to avoid crashes. On the other
hand, if the agent is adversarial (trained without a reward for staying in the
right lane), the vehicle spends more time on the rightmost lane when under
enforcement.

Safety enforcement for autonomous vehicles using Asmeta 15

NONE KeepRight
Enforcement model

0

25

50

75

100

125

150

175

200
Nu

m
be

r o
f c

ra
sh

es

(a) # Crashes

NONE SuperSafe Slower Faster
Enforcement model

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
av

el
ed

 d
ist

an
ce

 [k
m

]
Policy frequency [Hz]

1
2

(b) Distance with Single-lane

NONE KeepRight
Enforcement model

0.5

1.0

1.5

2.0

Tr
av

el
ed

 d
ist

an
ce

 [k
m

]

Policy frequency [Hz]
1
2

(c) Distance with Multi-lane

Fig. 3: Effectiveness analysis.

RQ1 Summary. The Asmeta-based RSE framework effectively reduces the
number of collisions, while favoring the right lane (when safe) and often
achieving a higher distance traveled within the simulation time than driving
without safety enforcement.

RQ2 - Efficiency. To assess the efficiency of the proposed enforcement framework
and models, we have recorded (see Table 3), for each test run, the percentage of
enforcer interventions (i.e., the number of times in which the enforcer changed the
decision previously made by the agent divided by the total number of decisions),
the total execution time, and the overhead due to the use of the enforcer. The
overhead does not include the time to de-normalize and convert the observations
to absolute values, as this computation is also necessary to collect metrics when
the enforcer is not running. For the sake of completeness, we report that this
computation is approximately 70-80% less costly than the enforcement overhead.

For what concerns the number of interventions we can observe that, both
in single-lane and multi-lane scenarios, the number of interventions is greater
with the adversarial agent. This is because the adversarial agent makes more
dangerous decisions, which must be sanitized to return the AV to a safe state.
Furthermore, in the single-lane scenario, we can observe two different trends,
depending on the agent type. On the one hand, when the agent behaves as non-
adversarial, we can see that the number of interventions increases as the goal
moves from G1 to G2, i.e., from Super safe to the Go fast safely strategy. This is
due to the fact that, if no front vehicle is observed, the enforcer is not activated,
as described in assumption 9 in Section 3.1, and the agent slows down until the
vehicle stops. In such a case, both the Super safe and Go safe strategies do not
intervene, but the Super safe strategy brings the simulation to such a case earlier,
resulting in fewer interventions. Meanwhile, the Go fast safely strategy actively
intervenes even when the front vehicle is far, resulting in an increased number

16 A. Bombarda et al.

of interventions. On the other hand, with an adversarial agent, the number of
enforcement interventions decreases when switching from the Super safe to the
Go safe strategy and remains stable when adding the Go fast safely strategy.
This is due to the fact that such an agent always tries to increase the speed.
Therefore, at the beginning of the simulation, the Super safe strategy requires
more interventions to ensure a safe state compared to the Go safe strategy and,
after that, the two strategies will behave very similarly. In addition, the Go fast
safely strategy is never activated, therefore it does not increase the number of
interventions. In all cases, however, using one of the enforcement models allows
for higher execution time w.r.t. the baseline scenario in which no enforcer is used.
This result is compliant to what we observed in RQ1: with the enforcer active,
the number of crashes is lower, and the AV can proceed more often till the end
of the simulation time. Furthermore, the overhead introduced by the enforcer is
negligible in all analyzed scenarios and does not exceed an average of 6.07 sec in
any configuration.

RQ2 Summary. The Asmeta-based RSE framework does not introduce sig-
nificant time overhead compared to driving without safety enforcement.

5 Related Work

The complexity of AI-based systems can hinder safety assurance for testers and
developers. Some literature suggests using simple techniques to control these
systems. For instance, [20] proposes leveraging a simple and verified controller
taking control over an unverified system to enforce safety properties. Similarly,
in this paper, we use a simple Asmeta model to force unsafe AI-based agents
to behave in a safe and predictable manner. Our approach, presented in [7], is
inspired by the RSS properties suggested in [21] and acts as a safety shield.

Runtime assurance for neural controllers is crucial in software engineering.
In [19], the authors introduce Neural Simplex Architecture for potentially unsafe
neural controllers, improving safety through online retraining without signifi-
cantly impacting performance. Two different approaches are analyzed in [1], in
which the safety shield is placed either before (pre-shielding) or after the sys-
tem under control (post-shielding), and our approach is comparable with this
last post-shielding technique. In the future, we may explore if corrective actions
from an Asmeta model can aid in retraining AI-based controllers.

The approach in [22] uses a ProB specification alongside a reinforcement
learning (RL) agent as a safety shield. Unlike this solution implemented in ProB,
which requires the RL agent to receive a set of enabled operations and to chose
among them, our approach uses an Asmeta model for correcting the output of
the agent. The formulas we adopted are derived from those presented in the
case study description and in [14], where the authors used them to prove safety
properties through model-based assurance cases in Isabelle, or in Event-B [16].

In [7], we proposed a gray-box approach to safety enforcement. In addition to
the I/O, this mechanism can observe specific system’s operational changes and

Safety enforcement for autonomous vehicles using Asmeta 17

compute more effective enforcement actions to maintain safety through prob-
ing and effecting interfaces provided by the target system. This mechanism uses
Asmeta enforcement models and the MAPE-K feedback loop [15] to architect the
enforcer as an autonomic manager for self-adaptation. We here adopted a black-
box enforcement mechanism instead, as no probe/effector interfaces (and/or ex-
planation facilities about the agent behavior [3,11]) are available to monitor and
adapt the AV; we treated it as a black box by observing only its I/O.

6 Conclusion

We presented a RSE framework for the output sanitization of the AI-based ego
AV of the highway simulation environment [17] for the ABZ 2025 case study [18].
The main enforcement goals consist in maintaining safety while achieving good
performance in terms of total distance traveled and time spent on the right-
most free lane. The enforcer wraps the ego vehicle agent and, using decisions
made by an Asmeta runtime model, adjusts the agent’s control action to meet
enforcement goals and, possibly, overrides agent’s decisions when they are con-
sidered to be unsafe. Though the case study is based on a simulated environment
and we considered a limited number of scenarios, the two forms of analysis we
conducted, @design.time and @run.time, suggest a new way of analyzing safety-
critical software. This new approach combines the rigor of formal safety-critical
analysis environments during system design or development with the benefits of
run-time analysis when the system is in operation and more realistic evidence is
available.

Acknowledgments. This work has been partially funded by PNRR - ANTHEM
(AdvaNced Technologies for Human-centrEd Medicine) - Grant PNC0000003 – CUP:
B53C22006700001 - Spoke 1 - Pilot 1.4. and by project SERICS (PE00000014) under
the NRRP MUR program funded by the EU - NGEU and by the European Union -
Next Generation EU. We also acknowledge financial support of the project PRIN 2022
SAFEST (Trust assurance of Digital Twins for medical cyber-physical systems), funded
by the European Union - Next Generation EU, Mission 4, Component 2, Investment
1.1, CUP F53D23004230006, under the National Recovery and Resilience Plan (NRRP)
– Grant Assignment Decree No. 959 adopted on 30 June 2023 by the Italian Ministry
of University and Research (MUR).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
Reinforcement Learning via Shielding. Proceedings of the AAAI Conference on
Artificial Intelligence 32(1) (Apr 2018). https://doi.org/10.1609/aaai.v32i1.
11797

https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797

18 A. Bombarda et al.

2. Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra,
P.: The ASMETA Approach to Safety Assurance of Software Systems. In: Logic,
Computation and Rigorous Methods - Essays Dedicated to Egon Börger on the
Occasion of His 75th Birthday. Lecture Notes in Computer Science, vol. 12750, pp.
215–238. Springer (2021). https://doi.org/10.1007/978-3-030-76020-5_13

3. Bersani, M.M., Camilli, M., Lestingi, L., Mirandola, R., Rossi, M.G., Scandurra,
P.: Architecting Explainable Service Robots. In: Tekinerdogan, B., Trubiani, C.,
Tibermacine, C., Scandurra, P., Cuesta, C.E. (eds.) Software Architecture - 17th
European Conference, ECSA 2023, Istanbul, Turkey, September 18-22, 2023, Pro-
ceedings. Lecture Notes in Computer Science, vol. 14212, pp. 153–169. Springer
(2023). https://doi.org/10.1007/978-3-031-42592-9_11

4. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(2009). https://doi.org/10.1109/MC.2009.326

5. Bombarda, A., Bonfanti, S., Gargantini, A., Pellegrinelli, N., Scandurra, P.:
Replication Package for the Paper: Safety Enforcement for Autonomous Driving
on a Simulated Highway Using Asmeta models@run.time. https://github.com/
foselab/abz2025_casestudy_autonomous_driving (2025)

6. Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra, P.: AS-
META Tool Set for Rigorous System Design. In: Formal Methods - 26th Interna-
tional Symposium, FM 2024, Milan, Italy, September 9-13, 2024, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 14934, pp. 492–517. Springer (2024).
https://doi.org/10.1007/978-3-031-71177-0_28

7. Bonfanti, S., Riccobene, E., Scandurra, P.: A Component Framework for the Run-
time Enforcement of Safety Properties. Journal of Systems and Software 198,
111605 (2023). https://doi.org/https://doi.org/10.1016/j.jss.2022.111605

8. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Berlin, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

9. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level Sys-
tem Design and Analysis. Springer Verlag (2003). https://doi.org/10.1007/
978-3-642-18216-7

10. Calinescu, R., Kikuchi, S.: Formal Methods @ Runtime. In: Foundations of Com-
puter Software. Modeling, Development, and Verification of Adaptive Systems. pp.
122–135. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21292-5_7

11. Camilli, M., Mirandola, R., Scandurra, P.: XSA: eXplainable Self-Adaptation.
In: 37th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2022, Rochester, MI, USA, October 10-14, 2022. pp. 189:1–189:5. ACM
(2022). https://doi.org/10.1145/3551349.3559552

12. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic Model Checker. In: Biere,
A., Bloem, R. (eds.) CAV. Lecture Notes in Computer Science, vol. 8559, pp. 334–
342. Springer (2014). https://doi.org/10.1007/978-3-319-08867-9_22

13. Cimatti, A., Griggio, A.: Software Model Checking via IC3. In: Madhusudan, P., Se-
shia, S.A. (eds.) Computer Aided Verification. pp. 277–293. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_
23

14. Crisafulli, P., Taha, S., Wolff, B.: Modeling and analysing Cyber–Physical Systems
in HOL-CSP. Robotics and Autonomous Systems 170, 104549 (2023). https://
doi.org/10.1016/j.robot.2023.104549

15. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1)
(Jan 2003). https://doi.org/10.1109/MC.2003.1160055

https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-031-42592-9_11
https://doi.org/10.1007/978-3-031-42592-9_11
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1109/MC.2009.326
https://github.com/foselab/abz2025_casestudy_autonomous_driving
https://github.com/foselab/abz2025_casestudy_autonomous_driving
https://doi.org/10.1007/978-3-031-71177-0_28
https://doi.org/10.1007/978-3-031-71177-0_28
https://doi.org/https://doi.org/10.1016/j.jss.2022.111605
https://doi.org/https://doi.org/10.1016/j.jss.2022.111605
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1145/3551349.3559552
https://doi.org/10.1145/3551349.3559552
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1016/j.robot.2023.104549
https://doi.org/10.1016/j.robot.2023.104549
https://doi.org/10.1016/j.robot.2023.104549
https://doi.org/10.1016/j.robot.2023.104549
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055

Safety enforcement for autonomous vehicles using Asmeta 19

16. Kobayashi, T., Bondu, M., Ishikawa, F.: Formal Modelling of Safety Architec-
ture for Responsibility-Aware Autonomous Vehicle via Event-B Refinement. In:
Chechik, M., Katoen, J.P., Leucker, M. (eds.) Formal Methods. pp. 533–549.
Springer International Publishing, Cham (2023). https://doi.org/10.48550/
arXiv.2401.04875

17. Leurent, E.: An Environment for Autonomous Driving Decision-Making. https:
//github.com/eleurent/highway-env (2018)

18. Leuschel, M., Vu, F., Rutenkolk, K.: Case Study: Safety Controller for Au-
tonomous Driving on Highways – Specification document v3. https://abz-conf.
org/case-study/abz25/ (2025)

19. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neu-
ral Simplex Architecture. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou,
D. (eds.) NASA Formal Methods. pp. 97–114. Springer International Publishing,
Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_6

20. Sha, L.: Using Simplicity to Control Complexity. IEEE Software 18(4), 20–28
(2001). https://doi.org/10.1109/MS.2001.936213

21. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a Formal Model of Safe and
Scalable Self-driving Cars (2018). https://doi.org/10.48550/arXiv.1708.06374

22. Vu, F., Dunkelau, J., Leuschel, M.: Validation of Reinforcement Learning Agents
and Safety Shields with ProB. In: NASA Formal Methods: 16th International Sym-
posium, NFM 2024, Moffett Field, CA, USA, June 4–6, 2024, Proceedings. p.
279–297. Springer-Verlag, Berlin, Heidelberg (2024). https://doi.org/10.1007/
978-3-031-60698-4_16

23. Weyns, D.: Introduction to Self-Adaptive Systems: A Contemporary Software En-
gineering Perspective. Wiley (2020)

24. Weyns, D., Bencomo, N., Calinescu, R., Cámara, J., Ghezzi, C., Grassi, V.,
Grunske, L., Inverardi, P., Jézéquel, J., Malek, S., Mirandola, R., Mori, M.,
Tamburrelli, G.: Perpetual Assurances for Self-Adaptive Systems. In: Software
Engineering for Self-Adaptive Systems III. Assurances - International Seminar,
Dagstuhl Castle, Germany, December 15-19, 2013, Revised Selected and Invited
Papers. Lecture Notes in Computer Science, vol. 9640, pp. 31–63. Springer (2013).
https://doi.org/10.1007/978-3-319-74183-3_2

https://doi.org/10.48550/arXiv.2401.04875
https://doi.org/10.48550/arXiv.2401.04875
https://doi.org/10.48550/arXiv.2401.04875
https://doi.org/10.48550/arXiv.2401.04875
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://abz-conf.org/case-study/abz25/
https://abz-conf.org/case-study/abz25/
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.48550/arXiv.1708.06374
https://doi.org/10.48550/arXiv.1708.06374
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-319-74183-3_2
https://doi.org/10.1007/978-3-319-74183-3_2

Enhancing Decision-making Safety in
Autonomous Driving Through Online Model

Checking⋆

Duong Dinh Tran , Akira Hasegawa , Peter Riviere , Takashi Tomita , and
Toshiaki Aoki

Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
{duongtd, akira.hasegawa, priviere, tomita, toshiaki}@jaist.ac.jp

Abstract. While artificial intelligence (AI) offers promising approaches
for developing intelligent autonomous driving (AD) agents, ensuring the
safety of these AI-driven AD systems is a critical challenge. This paper
proposes an approach to enhancing AD safety through the development
of a safety shield based on online model checking. The safety shield acts
as a real-time verification layer, monitoring and validating the actions
proposed by the AI agent before execution. We demonstrate the prac-
ticality and efficiency of our approach through a highway driving case
study with different AI agents trained. We construct a formal model
of the driving environment, capturing the states and behaviors of the
ego vehicle and surrounding traffic, and specify the safety requirements
within this model. For each proposed action, we leverage Maude’s invari-
ant model checker to determine if executing the action would violate the
safety requirements. Our experimental results demonstrate the capability
of online model checking to enhance the safety of AI-driven autonomous
vehicles.

Keywords: safety shield · autonomous driving · model checking · rein-
forcement learning · AI.

1 Introduction

Autonomous driving (AD) represents a paradigm shift in transportation, promis-
ing increased efficiency, accessibility, and potentially increased safety. Achieving
this vision requires the development of sophisticated systems capable of navigat-
ing complex and dynamic environments. The rise of artificial intelligence (AI)
and machine learning (ML) has demonstrated their capabilities in developing in-
telligent controllers for such AD systems. Techniques like reinforcement learning
(RL) [22], with algorithms like Deep Q-Networks (DQN) [15] and Proximal Pol-
icy Optimization (PPO) [20], have enabled the creation of AD agents capable of
learning diverse driving behaviors [11,18]. These learning-based approaches offer

⋆ This work was supported by JST, CREST Grant Number JPMJCR23M1.

https://orcid.org/0000-0001-7092-2084
https://orcid.org/0009-0003-6853-3989
https://orcid.org/0000-0002-2644-7471
https://orcid.org/0000-0003-1249-7862
https://orcid.org/0000-0002-1209-6375

2 D. D. Tran et al.

advantages in efficiency and robustness compared to traditional rule-based meth-
ods. However, despite their potential, ensuring the safety of decision-making in
these AI-driven AD systems remains a critical challenge [3]. The inherent com-
plexity of RL models, coupled with the stochastic nature of their learning process,
makes it difficult to provide rigorous guarantees of safe operation.

One promising approach to mitigate this challenge is the concept of a safety
shield [2]. This shield acts as an intermediary layer between the AI agent’s
decision-making process and the actual control of the vehicle. Its primary func-
tion is to monitor and validate the actions proposed by the AI agent to prevent
dangerous situations. Typically, a set of safety rules, which can encompass differ-
ent aspects of safe driving, such as maintaining safe distances from other vehicles,
are defined in advance, and once the AI agent’s proposed action violates any of
these safety rules, the safety shield intervenes, either by modifying the action to
a safe alternative or by preventing its execution altogether.

In this paper, we propose leveraging online model checking [24] to develop a
safety shield for AD. Online model checking is a lightweight runtime verification
technique designed to ensure the correctness of a system’s execution trace as it
runs. Unlike traditional model checking, which exhaustively explores the entire
state space, online model checking operates incrementally by analyzing only a
partial model space corresponding to the system’s current execution. Thus, it
mitigates the state space explosion problem that often hinders the application
of model checking to complex systems. This characteristic makes online model
checking particularly well-suited for developing a safety shield in AI-driven AD.
At each verification cycle, by synchronizing the current state of the formal model
with the driving environment, irrelevant states can be eliminated from the search
state space. Furthermore, since it suffices to ensure safety only until the next ver-
ification cycle, we can limit the search depth, ensuring that the model-checking
process always succeeds within a short amount of time. To the best of our knowl-
edge, this work represents the first application of online model checking to safety
verification in the AD domain.

In this work, we demonstrate our approach through a highway AD case
study [13], which is the challenge proposed for the ABZ 2025 conference. A
safety shield is developed and evaluated with several RL agents. Specifically, we
construct a formal model that captures the real-time driving environment, in-
cluding the statuses and behaviors of the ego vehicle and surrounding Non-Player
Characters (NPCs). The desired safety requirements are formally specified with
respect to (w.r.t.) this model. For each action proposed by the RL agent, we lever-
age the Maude tool [4] to perform online model checking with a bounded depth,
determining whether executing the action would violate safety constraints. To
mitigate the state space explosion issue, we introduce several optimization tech-
niques in the formal model, such as abstracting NPC kinematics and preventing
unnecessary interleaving. The experimental results demonstrate that our safety
shield effectively prevents collisions and maintains compliance with the specified
safety requirements. While minor performance trade-offs exist, their impact on
overall efficiency is negligible.

Enhancing Decision-making Safety in AD Through Online Model Checking 3

The formal model, shield implementation, RL agents, experiment traces,
and other supporting materials are available at https://github.com/fomaad/
OnlineMC-SafetyShield.

Organization. The remainder of this paper is organized as follows. Section 2
briefly introduces background information. Section 3 presents an overview of the
proposed safety shield based on online model checking and describes the highway
AD case study. Section 4 details the construction of the formal model, while
Section 5 reports the experimental results. Section 6 discusses closely related
work and Section 7 summarizes our study.

2 Background

2.1 Maude in a nutshell

Maude [4] is a high-performance reflective language and system based on rewrit-
ing logic, allowing both functional and concurrent system specifications. Maude
offers a variety of formal analysis tools, including reachability analysis (search-
ing) and LTL model checking, making it ideal for specifying and analyzing var-
ious systems. In the following, we briefly introduce some of the core concepts of
Maude that are relevant to this work.

Modules. Maude’s primary unit of specification and programming is the module.
Maude has two types of modules. A functional module M specifies an order-
sorted equational logic theory (Σ,E) with the syntax: fmod M is (Σ,E) endfm,
where Σ and E are an order-sorted signature and set of equations, respectively.
In Σ, we can declare sorts (or types), operators, and importations of previously
defined modules. A system modules R specifies a rewrite theory (Σ,E,R) with
the syntax: mod R is (Σ,E,R) endm, where Σ and E are the same as those in
an equational theory, while R is a set of rewrite rules, which describe dynamic
system behavior.

Operators and equations. In Maude, operators (or function symbols) are
declared with the op keyword. They define functions and constants in the system
and specify their input and output sorts. Equations can be unconditional or
conditional with the eq and ceq keywords, respectively.

The following functional module VECTOR2 defines the 2D vector data structure
with the addition function:

1 fmod VECTOR2 is

2 pr FLOAT .

3 sort Vector2 .

4 op vector2 : Float Float -> Vector2 [ctor] .

5 op _+_ : Vector2 Vector2 -> Vector2 [assoc comm] .

6 vars X X2 Y Y2 : Float .

7 eq vector2(X, Y) + vector2(X2, Y2) = vector2(X + X2, Y + Y2) .

8 endfm

https://github.com/fomaad/OnlineMC-SafetyShield
https://github.com/fomaad/OnlineMC-SafetyShield

4 D. D. Tran et al.

It first imports the predefined module FLOAT, introduces sort Vector2, and
defines the constructor of Vector2 (lines 2–4). Line 5 declares the signature of the
addition, while line 7 defines its semantics.
Rewrite rules. Rewrite rules in system modules specify state transitions and
allow dynamic behaviors to be modeled. Rewrite rules are non-deterministic and
describe how the system evolves. An unconditional rewrite rule is in the form of
rl [label] : u => v ., where label is a name (can be omitted), u and v are terms.
Model checking Invariants. Model checking of invariants can be done through
the search command. The following command searches for a state reachable from
state t such that the state matches pattern p and satisfies condition c:

search [n,m] in MOD : t =>* p such that c .
where MOD is the name of the Maude module concerned, and n and m are op-
tional arguments specifying a bound on the number of desired solutions and the
maximum depth of the search, respectively.

Given an invariant property, we can verify it using the search command,
where t represents the initial state of the state machine formalizing the system
and p is the negation of the property. While Maude also includes an LTL model
checker, we do not discuss it here, as invariants are sufficient to express the safety
requirements in this work.

2.2 Reinforcement learning and Safety shields

Reinforcement learning (RL) [22] is a machine learning paradigm where an agent
learns to interact with an environment by taking actions and receiving rewards
(or penalties) as feedback. The agent’s goal is to learn a policy—a mapping
from states to actions—that maximizes its cumulative reward over time. Unlike
supervised learning, which relies on labeled data, RL learns through trial and
error, exploring different actions and refining its policy based on the resulting
rewards. In the context of AD, the RL agent may still make dangerous decisions
despite the reward function usually being designed to promote safety.
Safety shields. Safety shields can serve as an additional layer of safety in
autonomous systems by preventing the system from executing unsafe actions
that could lead to hazardous situations. Depending on when they intervene in
the decision-making process, safety shields can be classified into pre-shields and
post-shields [9]. Pre-shields enforce safety by filtering a set of safe actions, from
which the AI agent selects an action for execution. Post-shields, on the other
hand, evaluate the agent’s chosen action after selection but before execution,
intervening if it is unsafe by modifying or replacing it. Our proposed shield in
this work belongs to the post-shields.

3 Decision-making Safety Shield based on Online model
checking

In an RL-based AD system, the RL agent controls the ego vehicle by continuously
selecting and executing actions in a cycle-based process. A cycle refers to the

Enhancing Decision-making Safety in AD Through Online Model Checking 5

Environment RL agent Ego vehicle
observation

actions

apply action

safe action

Shield
Formal model

observation

observation + actions

safe action

Model checker

Fig. 1. Decision-making safety shield for autonomous driving based on online model
checking.

time interval in which the vehicle observes its environment, makes a decision,
and executes an action until the next observation occurs.

Specifically, at the beginning of each cycle, the driving environment is ob-
served, generating a state representation known as an observation. This observa-
tion includes key information about nearby vehicles, such as their positions and
velocities, which can be collected through onboard sensors like radar and LiDAR.
In a standard RL-based decision-making process (without shielding), the trained
RL agent then selects an action, such as accelerating or braking, based on the
current observation and sends it to the ego vehicle. The chosen action is then
applied to the ego vehicle, updating its state, while the environment naturally
progresses, initiating the next cycle.

3.1 Safety shield Overview

We propose an online model-checking-based safety shield to enhance the decision-
making safety of RL-based AD systems. Fig. 1 provides an overview of our
approach, illustrating how the shield operates at each cycle.

In essence, the safety shield intervenes before executing the RL agent’s chosen
action. Instead of blindly applying the top-ranked action, our shield validates
and selects the safest option from a ranked list of candidate actions proposed
by the RL agent. To achieve this, a formal model is maintained, specifying the
environment’s state, including the status of the ego and NPC vehicles, as well
as vehicle kinematics that govern their motion (e.g., speeding up and slowing
down). Safety requirements for AD can be expressed as invariant properties w.r.t.
this model.

Specifically, at each cycle, our method follows these steps:

1. The RL agent generates a ranked list of candidate actions, sorted from high
to low (ordinarily, the first action in this list would be executed directly),
passing to the shield.

2. The shield updates the encoded system state within the formal model based
on the current observation and the RL agent’s proposed actions.

3. For each candidate action (starting from the highest-ranked one), we per-
form online model checking against the negation of the invariant property

6 D. D. Tran et al.

specifying the safety concerned. If a counterexample is found, it indicates
that executing this action may lead to an unsafe state (w.r.t. the safety
requirements concerned).

4. The shield iterates through the ranked list until it finds an action with no
counterexample—this action is then passed to the ego vehicle as the safe
action for execution.

Safety requirements. In the context of AD, safety requirements must go be-
yond simply avoiding collisions. A common approach to enhancing safety is to
enforce the ego vehicle to maintain a safe distance from surrounding vehicles.
This can be quantified using metrics such as Time-To-Collision (TTC) and mod-
els like Responsibility-Sensitive Safety (RSS) [21] (will be discussed in Section 6).
In this work, we define the safety requirements for AD based on TTC as follows:

SR: The TTC with any other vehicle must never be lower than 2 seconds.

The two-second threshold aligns with the safety standard [7], and the United
Nations Regulation (UNR) collision warning guidelines, which define the bound-
ary for emergency action at a TTC of two seconds. This guideline establishes a
standardized risk evaluation boundary for maintaining safe distances from other
vehicles. By adopting this criterion, we ensure that the ego vehicle has sufficient
reaction time to avoid hazardous situations in dynamic driving environments.

3.2 Highway Autonomous Driving Case study

In this paper, we demonstrate the efficiency and practicability of our proposed
approach with the highway AD case study [13]—the challenge proposed for the
ABZ 2025 conference. In the following, we borrow some description from [13] to
elaborate on this case study.

This case study focuses on a mechanism for the safe operation of AD on
a highway. Two different environments are considered: a single-lane highway
where each vehicle can accelerate and brake, and a multi-lane highway where
each vehicle can also change lanes. The AD system is RL-driven, i.e., a trained
RL agent controls the ego vehicle’s operation. A cycle duration is set to 1 second.
The perception system is abstracted away, assuming that the agent has access to
the ego vehicle’s position as well as the positions of all nearby vehicles. The safety
goal is to ensure that the ego vehicle avoids collisions and dangerous situations.
The environment assumes that all vehicles drive in the same direction without
reversing and that there are no obstacles other than vehicles. Each vehicle has
a length of 5 meters, a width of 2 meters, a maximum speed vmax of 40 m/s,
and maximum acceleration and deceleration amax of 5 m/s2. Highway-env [11]
is provided as the simulated 2D environment to execute the experiments.

In the single-lane environment, there are three possible actions for the ego
vehicle as follows:

– ACT1 (FASTER): This action increases the speed (up to vmax) with an accel-
eration up to amax.

Enhancing Decision-making Safety in AD Through Online Model Checking 7

– ACT2 (SLOWER): This action brakes with a deceleration up to amax.
– ACT3 (IDLE): This action reduces the (braking) acceleration close to 0.

In the multi-lane environment, in addition to the three actions above, the
ego vehicle can also perform the following two actions:

– ACT4 (LANE_LEFT): This action changes the current lane of the vehicle to the
adjacent lane on the left within the current cycle.

– ACT5 (LANE_RIGHT): This action changes the current lane of the vehicle to
the adjacent lane on the right within the current cycle.

NPC vehicles also perform these actions, but potentially at a higher fre-
quency. For instance, an NPC vehicle might brake during the first half of a cycle
and then accelerate in the second half.

4 Formal model

The formal model is designed to capture the state and behavior of the ego
vehicle and surrounding NPCs in the highway driving scenario. It serves as the
foundation for online model checking, enabling the safety shield to verify the
safety of proposed actions in real time.

4.1 Model construction

We formally specify the ego vehicle, the NPC vehicles, and their behaviors as
a state machine, specified in Maude. Each state captures the status of the ego
vehicle and all NPC vehicles, while transitions specify their motions. In the
following, we describe how vehicles are encoded, how states are represented, and
how vehicle motions are specified.
Vehicle encoding. Vehicles are represented using the sort Vehicle, which cap-
tures key attributes such as the identifier, position, velocity, and heading angle
(in degrees). The following code snippet declares the sort Vehicle, defines its
constructor and a projection function to extract the vehicle’s position:

sort Vehicle .

op veh : Int Vector2 Vector2 Float -> Vehicle [ctor] .

op position : Vehicle -> Vector2 .

--- ID, POS, VEL, ANGLE are variables of the corresponding sorts

eq position(veh(ID,POS,VEL,ANGLE)) = POS .

The term veh(ID,POS,VEL,ANGLE) represents a vehicle object with its unique iden-
tifier (ID), current position (POS), velocity (VEL), and heading angle (ANGLE). The
POS attribute refers to the middle center point of the vehicle, which serves as the
reference point for position calculations. Here, vehicle positions and velocities are
represented in 2D, as the highway AD case study considers a two-dimensional
space, not 3D. Note that --- denotes a Maude comment.

Given two vehicles, we implement a collision detection function that deter-
mines whether the two vehicles collide based on their positions, heading angles,

8 D. D. Tran et al.

and sizes. In this implementation, Maude is used as a functional programming
language. Given two vehicles, our formal model also implements a TTC calcu-
lation between them, based on the algorithm [8].

For the ego vehicle, we additionally encode its current action and the re-
maining duration of the current cycle, making its representation in the form of
VEH # ACTION # T.
State representation. The formal model encodes a concrete state as a tuple:
ID | EGO | NPCs, where ID is the ID of the last NPC vehicle that took an action,
EGO represents the ego vehicle’s state, and NPCs denotes a set of NPC vehicles.

Since the safety requirement considered in this work are defined in terms
of TTC, which depends solely on the positions, velocities, and heading angles
of the vehicles, our formal model does not require encoding other information,
such as lane making and road geometry. Consequently, while demonstrated in a
highway setting in this paper, the formal model and our approach are not tied
to this environment and could be generalized to other driving scenarios.
NPC vehicle action specification. In our formal model, an NPC can take
three actions ACT1–ACT3 without changing its current direction of motion.
Direction changes are not specified in the formal model for a reason that will
become clear later (Section 4.2).

Maude rewrite rules are used to specify the vehicle’s actions. For instance,
the action ACT3 (IDLE) is specified by the following rewrite rule:

rl [npc-idle] :

ID | EGO | (veh(ID, P, V, ANGLE) & VEHs)

=> ID | advance(EGO) | (veh(ID, P + V * simulationStep, V, ANGLE) & VEHs) .

Here, simulationStep represents the time interval between two consecutive simu-
lation steps (it is different from the cycle duration). In this work, we configure
it as 0.25 seconds. The rule says that in the successor state, the position of the
NPC vehicle identified by ID is updated based on its current position and ve-
locity as well as the simulation step size, while its velocity and heading angle
remain unchanged. Other NPC vehicles (VEHs) are unaffected. The symbol & acts
as the concatenation symbol of the vehicle set and variable VEHs represents other
NPC vehicles. In the source state pattern of the rewrite rule, the variable ID

constraints that only the last vehicle that executed an action can proceed with
the specified action. This constraint prevents unnecessary interleaving, which
will be discussed in Section 4.3.

The ego vehicle kinematic should be updated simultaneously with that NPC
motion, and it is achieved using the function advance(EGO). Specifically, this func-
tion computes the next state of the given ego vehicle EGO according to its encoded
action.

4.2 Model checking and Integration with the shield

Online model checking w.r.t. the formal model is used to verify that a proposed
action from the RL agent does not violate the safety requirement at each cycle.

Enhancing Decision-making Safety in AD Through Online Model Checking 9

NPC1
FASTER

NPC1
IDLE

NPC1
SLOWER

NPC2
actions

Shield currentState

 Ego:
NPC1:
NPC2: ...

...

...

...
depth <= 4

...

...

Fig. 2. State synchronization and Search state space with bounded depth 4.

The safety shield leverages this verification process to ensure that only safe
actions are executed.

Safety requirement checking. The formal model provides a function ttc,
which computes the minimum TTC between the ego vehicle and all NPC vehicles
in a given state, provided that all vehicles keep going with their current velocities.
The function returns a tuple < T ; ID >, where T is the smallest TTC value, and
ID identifies the NPC vehicle associated with this value. This function is a key
to specify SR—the safety requirement considered in this work.

Fig. 2 illustrates how the formal model is synchronized with the simulated
environment and how the search space is explored with a bounded depth. At
each cycle, the safety shield updates the encoded system state within the formal
model based on the latest observation and the RL agent’s proposed actions. The
updated state (currentState in Fig. 2) serves as the initial state for invariant
model checking, which verifies whether any reachable state within a predefined
depth violates SR. This model-checking process is conducted using the following
Maude command:

search [1, depth] in PROPOSITIONS : currentState =>* S:Sys

such that < T:Float ; ID:Int > := ttc(S:Sys) /\ T:Float < 2.0 .

Here, Sys and PROPOSITIONS are the sort of states and the name of the module
containing the formal model, respectively. depth is the desired bounded depth
for the search (set to 4 in this study). The command tries to find a state S:Sys

reachable from the current state with a depth up to the given depth such that
in that state, the minimum TTC between the ego vehicle and NPC vehicles is
less than two seconds. As explained above, T:Float and ID:Int are the minimum
TTC value and the ID of the NPC vehicle associated with this value. Note that
the symbols := and /\ represent pattern matching and Boolean conjunction in
Maude, respectively.

10 D. D. Tran et al.

If such a state is not found, the candidate action under consideration is
regarded as safe and it passes the shield. Otherwise, the action is deemed unsafe
and rejected. The shield iterates through the remaining candidate actions until
it finds one that is safe.

During state space exploration, while the ego vehicle’s action is predeter-
mined, each NPC vehicle can non-deterministically select any action from ACT1–
ACT3. In this sense, the formal model provides an over-approximation of the
NPC’s behavior. In other words, there are cases where the safety shield may
classify an action as unsafe, even though it would be safe if executed. This oc-
curs because the NPC vehicles’ actions in the actual execution may differ from
those in the path leading to the found unsafe state.

Fallback action. If none of the candidate actions pass the safety shield, the
shield selects SLOWER as the fallback action. While abrupt braking on highways
can increase rear-end collision risk, the following vehicle is primarily responsible
for maintaining a safe distance. In our case study, the ego vehicle’s maximum
deceleration is limited to 5 m/s2, which does not constitute sudden braking. We
emphasize that more sophisticated and/or heuristic-based fallback strategies can
be implemented and incorporated into the shield.

Ignoring NPC direction changes. Our formal model omits direction-changing
behaviors of NPC vehicles to avoid overly conservative AD strategies. Encoding
such behaviors would restrict the ego vehicle from accelerating whenever an NPC
is present in adjacent lanes, reducing efficiency. Instead, we assume that NPCs do
not make abrupt steering maneuvers when the ego vehicle approaches, aligning
with typical real-world behavior. Note, however, that unchanging direction does
not imply never changing lanes. For instance, if an NPC’s velocity is currently
directed diagonally to the left, it will eventually move into the left lane.

Integration of the Shield with the Formal model. The connection between the
safety shield, implemented in Python, and the formal model, specified in Maude,
is established through the Python bindings for Maude [19]. This tool provides a
general programming interface to Maude from Python as well as several other
programming languages. It allows loading Maude specifications, manipulating
Maude terms and modules, and performing various Maude functionalities, in-
cluding term rewriting, searching, and LTL model checking, directly from Python
code.

4.3 Techniques for mitigating state space explosion

State space explosion is widely known as the most challenging issue in model
checking. In the context of online model checking, this challenge becomes even
more pronounced due to the stringent time constraints imposed on each verifi-
cation cycle. To mitigate the state space explosion issue, we incorporate several
techniques in the formal model construction and the model-checking process.

NPC kinematic abstraction. In fact, an NPC vehicle’s acceleration can take
continuous values within the range [−amax; amax]. However, in our formal model,
we discretize this range to only three values: {−amax, 0, and amax} (i.e., {−5, 0, 5}).

Enhancing Decision-making Safety in AD Through Online Model Checking 11

CBA

Fig. 3. Kinematic abstraction results in only three discrete positions of an NPC vehicle.

Table 1. Number of reachable states w.r.t. our formal model and two other variants
up to depths 2–5 when there are 4 NPC vehicles. With depth 4 (used in our shield),
the times to solely iterate all states and to model check SR are also recorded.

Model Depth 2 Depth 3 Depth 4 Depth 5

Our optimized model 53 145 314, 11ms, 118ms 705
Adding two rules 125 593 2541, 86ms, 868ms 7841
Interleaving relaxing 103 627 3190, 134ms, 1091ms 14174

This abstraction in the modeling process reduces the number of possible succes-
sor states, making state exploration more efficient.

As illustrated in Fig. 3, the vehicle’s next position in the successor state is re-
stricted to three discrete points: A (SLOWER), B (IDLE), and C (FASTER). In contrast,
the actual position could be anywhere within the continuous range between A
and C. Note that abstraction based on the upper and lower bounds (like points
A and C in the figure) may omit critical intermediate states, potentially missing
cases where a collision/dangerous situation could occur between these points.

To assess the impact of this technique, we tried to modify the formal model
to include two additional rewrite rules, allowing acceleration and deceleration
at an intermediate value of 2.5 m/s2. Using an initial state extracted from the
experiments reported in Section 5, we measured the resulting increase in the
number of states and model-checking time, as shown in Table 1. The third row
presents another variant of the model, which will be described shortly.

Up to depth 4, there are 314 reachable states in total in the original formal
model. It takes 11 and 118 milliseconds (ms) to solely iterate and to model check
the TTC constraint SR, respectively. Meanwhile, if the two rewrite rules were
added, the number of reachable states and the time required for model checking
increased nearly eightfold. In the context of AD, 868 ms is unacceptable for
real-time decision-making.

From a kinematic perspective, this abstraction in the modeling process re-
sults in an under-approximation of NPC’s motions. However, as demonstrated
in Section 5, the shield still works effectively in avoiding dangerous situations.
Recall that the formal model provides an over-approximation of the NPC’s be-
haviors in terms of the actions they can take. Consequently, the formal model
represents a combination of under-approximation and over-approximation.

Preventing unnecessary interleaving. We are only concerned about the col-
lisions and/or dangerous situations between the ego vehicle and some NPC ve-
hicle. Since NPC vehicles do not interact with each other, their actions can be
modeled independently.

12 D. D. Tran et al.

NPC2 ACT

NPC1 IDLE
NPC1 FASTER

NPC2 FASTER NPC2 IDLE

...NPC1 ACT

...

NPC1 IDLE NPC2 FASTER NPC1 IDLE

Fig. 4. Transitions on the left are allowed, while transitions on the right are not allowed.

To minimize unnecessary interleaving of actions from different NPC vehicles,
our formal model includes a vehicle ID constraint (the first entry in the model’s
state representation), which ensures that only the last NPC vehicle that exe-
cuted an action can proceed in the next transition (see an illustration in Fig. 4).
This constraint effectively reduces the number of interleaved transitions between
NPCs, significantly limiting redundant state combinations.

To quantify the efficiency gain, we conducted another experiment where we
modified our model to relax this constraint, allowing unrestricted interleaving
(the transition sequence like on the right-hand side of Fig. 4 will become valid).
The results in Table 1 indicate that, at depth 4, the number of reachable states
and model checking time increased nearly tenfold compared to our optimized
model, highlighting the importance of limiting unnecessary interleaving. Note
that the state space also grows as the number of NPC vehicles increases. However,
this can be effectively managed by ignoring NPCs that are too far from the ego
vehicle.

State synchronization and Bounded search depth. By synchronizing the
current state of the formal model with the simulated environment at each cy-
cle, the model-checking process does not need to explore the entire state space
but only the sub-state space expanded from the current state (see Fig. 2). Ad-
ditionally, since it is sufficient to ensure safety only until the next cycle, we
limit the search depth to an appropriate value. In our implementation, a search
depth of 4 and the simulation step of 0.25 seconds were determined to provide
a practical balance between computational efficiency and verification accuracy,
ensuring that online model checking can meet the strict constraints of real-time
decision-making.

5 Experiments

We conducted a series of experiments in the simulated environment [11] with two
different road configurations: a single-lane highway and a three-lane highway.

5.1 RL Agent training and Experiment Setup

To evaluate the effectiveness of the safety shield, we trained a total of eight RL
agents by combining two environment settings (single-lane and three-lane), two
RL models (DQN and PPO), and two types of agent behaviors, which are as
follows:

Enhancing Decision-making Safety in AD Through Online Model Checking 13

– Good agent (GA): Trained to drive safely. During training, the agent re-
ceives penalties for collisions and rewards for maintaining high speed and
driving in the right-most lane (the reward configuration is available in the
supplementary material on GitHub repository: https://github.com/fomaad/
OnlineMC-SafetyShield).

– Adversary agent (AA): Trained to behave adversarially. The agent is re-
warded for causing collisions, performing lane changes, and driving at high
speeds, while no reward is given for staying in the right-most lane.

We selected DQN and PPO algorithms because they represent two funda-
mentally different RL paradigms—DQN as a value-based approach and PPO as a
policy-based approach. Evaluating both ensures that the safety shield’s effective-
ness is not limited to a specific type of RL agent and can be generalized across
different decision-making models used in AD. Note, however, that this study
does not aim to compare the performance of these two algorithms in the AD
domain. For the training process, we leverage the Stable Baselines3 (SB3) [18],
a collection of pre-implemented RL algorithms. To train the DQN agents, we
adopted the script provided in [13], while for the PPO agents, we adapted the
script from [10]. We also note that tuning hyperparameters to maximize the
performance of RL agents for AD is beyond the scope of this work.
Experiment setup. We conducted 1000 tests for each combination of agent,
environment (single-lane and three-lane), and safety shield status (enabled and
disabled). Each test lasted for 30 seconds unless a collision occurred. The simula-
tion execution traces, including vehicle trajectories, were logged and are available
at our GitHub repository.

5.2 Results and Analysis

Table 2 presents the experimental results for the three-lane environment. The
results for the single-lane environment are available in the supplementary ma-
terial. The table includes the number of collisions, the average per test of the
travel distance, speed, and reward received, the percentage of environment ob-
servations where the TTC between the ego vehicle and an NPC was below 2
seconds, the approval ratios of LANE_RIGHT and FASTER actions by the shield. Re-
call that each test lasts for 30 seconds and environment observations are made
every second; thus, a total of 30 observations were recorded per test. Since the
AAs were not trained to avoid collisions or drive on the right lane, their reward
and right lane change approval ratio are not shown in the table.

Unshielded GAs exhibited collisions in the three-lane environment. The in-
troduction of the safety shield completely eliminated collisions across all tests.
Interestingly, in the experiments with the PPO-based agents, the shielded GA
achieved even higher travel distance and reward than unshielded ones, suggest-
ing that enforcing safe decision-making did not necessarily reduce driving per-
formance. With the DQN-based GA, the shield contributed to a slight increase
in the agent’s reward, while its impact on the travel distance was very minor
(reduced by 0.11%).

https://github.com/fomaad/OnlineMC-SafetyShield
https://github.com/fomaad/OnlineMC-SafetyShield

14 D. D. Tran et al.

Table 2. Three-lane experiment results. x±y denotes the average value and standard
deviation.

DQN model PPO model

Unshielded GA Collisions 38/1000 34/1000
Distance (m) 648.01 ± 60.64 623.41 ± 84.05
Speed (m/s) 21.84 ± 1.23 21.20 ± 1.10
Reward 23.01 ± 1.86 22.78 ± 2.94
TTC < 2 (%) 1.31 1.00

Shielded GA Collisions 0/1000 0/1000
Distance (m) 647.32 ± 33.65 630.52 ± 37.10
Speed (m/s) 21.58 ± 1.12 21.02 ± 1.24
Reward 23.04 ± 0.57 23.08 ± 0.57
TTC < 2 (%) 0.48 0.30
Right lane change approval (%) 64.48 44.19
Faster approval (%) 55.05 69.83

Shielded AA Collisions 2/1000 9/1000
Distance (m) 675.70 ± 45.85 678.73 ± 62.06
Speed (m/s) 22.57 ± 1.48 22.80 ± 1.67
TTC < 2 (%) 0.89 0.96
Faster approval (%) 25.18 31.43

The safety shield also significantly improved TTC performance. The per-
centage of observations where TTC fell below 2 seconds was noticeably lower
in shielded tests, confirming that the shield effectively maintained safer driving
distances.

The right lane change and faster approval rates in the shielded tests confirm
that the shield still permitted a significant number of these actions, ensuring a
balance between safety and maneuverability.

A total of 11 collisions were observed in shielded AA tests, a significantly
lower rate compared to unshielded tests, where collisions occurred in approxi-
mately 97% of cases (not shown in the table). Analyzing the vehicle trajectories
from these 11 collisions, we found that 7 collisions occurred despite at least three
consecutive SLOWER actions being applied immediately beforehand, while 4 colli-
sions resulted from NPC vehicles spawning within the ego vehicle’s occupied
region. Our shield was not responsible for all of these collisions. A more detailed
discussion is provided in the supplementary material.

A closely related work is [23], which presented a safety shield using the B
method and ProB [1,12] (their approach is discussed in Section 6). Their experi-
mental results showed that the safety shield prevented collisions in 91.8% of 1000
tests when used with a DQN agent trained to drive safely, similar to our GAs.
To measure our shield’s performance against theirs, we conducted additional
experiments. We cloned their DQN agent and ran 1000 tests under the same
conditions but with our shield. The results revealed that our shield prevented
98% of collisions and achieved a higher average reward per test (45.48 vs. 42.88).

5.3 Validity and Trade-Offs

The experimental results highlight several key insights. First, the safety shield
successfully eliminated collisions for GAs across all test scenarios, demonstrat-

Enhancing Decision-making Safety in AD Through Online Model Checking 15

ing its effectiveness in enforcing safe driving, which would not be achieved with-
out the shield. Second, the shield proved robust against adversarial behaviors,
preventing AAs from causing collisions despite their incentive to do so. This
is particularly important since RL agents may sometimes fail to make optimal
decisions or behave unpredictably. Third, the shield played a crucial role in main-
taining the predefined safety requirement, which is usually stricter than collision
avoidance, ensuring that the ego vehicle always kept a safe TTC or distance from
surrounding traffic.

While the shield significantly improves safety, it introduces a slight trade-off
in driving efficiency. When enabled, the total distance traveled and the total
reward received were slightly reduced in some cases. This reduction tends to be
attributed to the shield restricting certain high-risk actions, such as accelerations
or lane changes that could lead to unsafe situations. However, the impact on
efficiency was minimal, indicating that the shield does not overly constrain the
ego vehicle’s ability to progress effectively. The non-conservativeness of the safety
shield is further evidenced by the right lane change and speeding up approval
rates.

6 Related Work

Vu et al. [23] presented an approach to validating RL-based autonomous agents
and a safety shield using the formal method tool ProB [12]. Similar to our
approach, they constructed a formal model of the environment using the B
method [1]. However, unlike our work, they encoded many specific safety rules as
guards in their formal model, such as prohibiting the ego vehicle from changing
lanes to the left if a vehicle is present in the left lane within 10 meters behind
and 10 meters ahead. While these rule-based constraints enforce safety, they also
increase model complexity and limit generalizability, as the predefined distances
may be too short at high speeds or too long at low speeds. In contrast, our ap-
proach defines safety requirements based on the TTC metric, which provides an
adaptable safety criterion applicable across various driving environments. Addi-
tionally, unlike our online model-checking approach with Maude, their method
did not use the ProB model checker for verification. Instead, safety assessment
was performed by directly evaluating the encoded guards, which can be imple-
mented in any programming language without the need for formal verification
techniques. Our approach, however, leverages reachability analysis, a technique
that cannot be efficiently replicated within conventional programming languages.

Fulton and Platzer [6] presented an approach that combines formal verifi-
cation with runtime monitoring to ensure the safety of RL-based controllers in
safety-critical systems including AD. They used Differential Dynamic Logic [16]
to model the hybrid system (discrete decision-making of the RL agent and con-
tinuous dynamics of the driving environment) and prove safety properties like
collision avoidance. Their method integrated formal proofs from the hybrid sys-
tem verification with real-time monitoring using ModelPlex [14] to check whether
the observed system behavior aligns with the verified model. Compared to our

16 D. D. Tran et al.

work, their approach relies on offline formal verification and runtime monitor-
ing, whereas we employ online model checking to verify actions dynamically. The
runtime monitor continuously checks system behavior but reacts after a viola-
tion is detected, whereas our online model-checking approach verifies one step
ahead, determining whether a candidate action would lead to an unsafe state
before execution. Furthermore, their method follows a pre-shielding strategy,
where verification produces a set of safe actions from which the RL agent selects
an action for execution. In contrast, our approach functions as a post-shield.

In addition to manual implementation, a shield can also be synthesized from
a formal abstraction of the environment and a safety specification [9]. In this
approach, the shield is precomputed offline and used to prevent unsafe actions
during both the training and execution phases. In contrast, our online model-
checking approach dynamically verifies actions at runtime without interfering
with the training phase. As a result, our shield can be applied to existing RL
agents without requiring retraining. Shield synthesis is particularly useful when
safety requirements are defined by a set of specific rules, as in [23]. However, in
our work, we adopt a more general TTC-based safety criterion that is applicable
across various environments. This eliminates the need for manually specifying
numerous safety rules, as the only requirement is the implementation of the TTC
calculation. Thanks to Maude’s powerful functional programming capabilities,
this can be done efficiently and seamlessly.

RSS [21] is a rigorous mathematical model that defines the safety distance
that the ego vehicle needs to maintain in order to achieve safety. Five safety rules
are defined for five different scenarios, such as when two vehicles traveling on
the same lane or when a vehicle traveling on the adjacent lane cuts into the ego
vehicle. This means that RSS requires explicit encoding of further information
like vehicle lanes, adding complexity to the formal modeling process. In contrast,
we adopt the TTC metric as our safety criterion because it can be computed
solely based on vehicle positions, velocities, and heading angles, without the need
to explicitly model lane structures. This allows for a more general and flexible
formal model, making it applicable to a wider range of driving scenarios beyond
highway environments.

Online model checking has been explored in prior studies [17,24]. However,
these studies primarily focused on demonstrating its applicability to some mu-
tual exclusion algorithms and communication protocols. Our work explores this
lightweight verification technique in the AD domain.

7 Conclusion

This paper has presented an online model-checking-based safety shield to en-
hance the decision-making safety of RL-based AD systems. The proposed ap-
proach integrates a formal model that captures the real-time driving environment
and verifies each RL-proposed action against predefined safety requirements us-
ing Maude-based model checking. To address the state space explosion problem,

Enhancing Decision-making Safety in AD Through Online Model Checking 17

we have introduced some optimization techniques such as NPC kinematic ab-
straction and restricted interleaving.

Experimental results have demonstrated that the safety shield effectively
prevents collisions and improves adherence to safety constraints. By validating
actions before execution, the safety shield ensures that decision-making remains
within predefined safety requirements. While minor trade-offs in driving effi-
ciency were observed, their impact was minimal, and the shield successfully
balanced safety and maneuverability.

To the best of our knowledge, this study is the first to demonstrate the online
model-checking technique’s applicability as a practical and effective safety mech-
anism in the AD domain. Future work will extend this approach beyond highway
driving to further environments, such as merging regions and intersections, which
are supported by the Highway-env [11], making this exploration a natural next
step. Additionally, we plan to explore alternative formal methods, such as nar-
rowing [5], as a potential replacement for the invariant model-checking approach
used in this work. As described in [4, Chapter 20], narrowing-based reachability
analysis is considered a more powerful technique than search-based reachability
analysis, offering greater expressiveness and the potential for improved verifica-
tion efficiency.

References

1. Abrial, J.: The B-book - assigning programs to meanings. Cambridge University
Press (1996). https://doi.org/10.1017/CBO9780511624162

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: 32th AAAI Conference on Artificial Intel-
ligence. pp. 2669–2678 (2018). https://doi.org/10.1609/AAAI.V32I1.11797

3. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety (2016), https://arxiv.org/abs/1606.06565

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.L. (eds.): All About Maude (2007). https://doi.org/10.1007/978-3-540-71999-1

5. Escobar, S., Meseguer, J., Thati, P.: Narrowing and rewriting logic: From foun-
dations to applications. In: Proceedings of the 15th Workshop on Functional
and (Constraint) Logic Programming WFLP. vol. 177, pp. 5–33. Elsevier (2006).
https://doi.org/10.1016/J.ENTCS.2007.01.004

6. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: 32th AAAI Conference on Artificial
Intelligence. pp. 6485–6492 (2018). https://doi.org/10.1609/AAAI.V32I1.12107

7. Japan Automobile Manufacturers Association: Automated driving safety eval-
uation framework ver 3.0. Tech. rep. (December 2022), https://www.jama.or.
jp/english/reports/docs/Automated_Driving_Safety_Evaluation_Framework_
Ver3.0.pdf

8. Jiao, Y.: A fast calculation of two-dimensional Time-to-Collision (Mar 2023), https:
//github.com/Yiru-Jiao/Two-Dimensional-Time-To-Collision

9. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: 9th International Symposium on Leveraging Applications of For-
mal Methods. vol. 12476, pp. 290–306. Springer (2020). https://doi.org/10.1007/
978-3-030-61362-4_16

https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1609/AAAI.V32I1.11797
https://doi.org/10.1609/AAAI.V32I1.11797
https://arxiv.org/abs/1606.06565
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1016/J.ENTCS.2007.01.004
https://doi.org/10.1016/J.ENTCS.2007.01.004
https://doi.org/10.1609/AAAI.V32I1.12107
https://doi.org/10.1609/AAAI.V32I1.12107
https://www.jama.or.jp/english/reports/docs/Automated_Driving_Safety_Evaluation_Framework_Ver3.0.pdf
https://www.jama.or.jp/english/reports/docs/Automated_Driving_Safety_Evaluation_Framework_Ver3.0.pdf
https://www.jama.or.jp/english/reports/docs/Automated_Driving_Safety_Evaluation_Framework_Ver3.0.pdf
https://github.com/Yiru-Jiao/Two-Dimensional-Time-To-Collision
https://github.com/Yiru-Jiao/Two-Dimensional-Time-To-Collision
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16

18 D. D. Tran et al.

10. Leurent, E.: PPO-based agents for autonomous driving. https://github.com/
Farama-Foundation/HighwayEnv/blob/master/scripts/sb3_highway_ppo.py

11. Leurent, E.: An environment for autonomous driving decision-making. https://
github.com/eleurent/highway-env (2018)

12. Leuschel, M., Butler, M.J.: Prob: A model checker for B. In: FME 2003: Formal
Methods, International Symposium of Formal Methods Europe. vol. 2805, pp. 855–
874. Springer (2003). https://doi.org/10.1007/978-3-540-45236-2_46

13. Leuschel, M., Vu, F., Rutenkolk, K.: Case study: Safety controller for autonomous
driving on highways. In: Proceedings of the Rigorous State-Based Methods 11th
International Conference, ABZ 2025. Springer (2025)

14. Mitsch, S., Platzer, A.: Modelplex: Verified runtime validation of verified cyber-
physical system models. In: Runtime Verification - 5th International Conference,
RV 2014, Canada, Sep 22-25, 2014. vol. 8734, pp. 199–214. Springer (2014). https:
//doi.org/10.1007/978-3-319-11164-3_17

15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nat.
518(7540), 529–533 (2015). https://doi.org/10.1038/NATURE14236

16. Platzer, A.: A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reason. 59(2), 219–265 (2017). https://doi.org/10.1007/
S10817-016-9385-1

17. Qanadilo, M., Samara, S., Zhao, Y.: Accelerating online model checking. In: Sixth
Latin-American Symposium on Dependable Computing, LADC 2013. pp. 40–47.
IEEE Computer Society (2013). https://doi.org/10.1109/LADC.2013.20

18. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
Baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research 22(268), 1–8 (2021), http://jmlr.org/papers/v22/20-1364.html

19. Rubio, R.: Maude as a library: An efficient all-purpose programming interface. In:
14th Rewriting Logic and Its Applications Workshop, Apr 2-3, 2022. vol. 13252,
pp. 274–294. Springer (2022). https://doi.org/10.1007/978-3-031-12441-9_14

20. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017), https://arxiv.org/abs/1707.06347

21. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and
scalable self-driving cars (2018), https://arxiv.org/abs/1708.06374

22. Sutton, R.S., Barto, A.G.: Reinforcement learning - an introduction. Adaptive
computation and machine learning, MIT Press (1998), https://www.worldcat.org/
oclc/37293240

23. Vu, F., Dunkelau, J., Leuschel, M.: Validation of reinforcement learning agents
and safety shields with ProB. In: NASA Formal Methods - 16th International
Symposium, NFM 2024. vol. 14627, pp. 279–297. Springer (2024). https://doi.org/
10.1007/978-3-031-60698-4_16

24. Zhao, Y., Rammig, F.J.: Online model checking for dependable real-time systems.
In: 15th IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing, ISORC 2012. pp. 154–161 (2012). https://doi.
org/10.1109/ISORC.2012.28

https://github.com/Farama-Foundation/HighwayEnv/blob/master/scripts/sb3_highway_ppo.py
https://github.com/Farama-Foundation/HighwayEnv/blob/master/scripts/sb3_highway_ppo.py
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-319-11164-3_17
https://doi.org/10.1007/978-3-319-11164-3_17
https://doi.org/10.1007/978-3-319-11164-3_17
https://doi.org/10.1007/978-3-319-11164-3_17
https://doi.org/10.1038/NATURE14236
https://doi.org/10.1038/NATURE14236
https://doi.org/10.1007/S10817-016-9385-1
https://doi.org/10.1007/S10817-016-9385-1
https://doi.org/10.1007/S10817-016-9385-1
https://doi.org/10.1007/S10817-016-9385-1
https://doi.org/10.1109/LADC.2013.20
https://doi.org/10.1109/LADC.2013.20
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1007/978-3-031-12441-9_14
https://doi.org/10.1007/978-3-031-12441-9_14
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1708.06374
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1109/ISORC.2012.28
https://doi.org/10.1109/ISORC.2012.28
https://doi.org/10.1109/ISORC.2012.28
https://doi.org/10.1109/ISORC.2012.28

Polychronous RSS in a Process-algebraic
Framework - A Case Study

Paolo Crisafulli1, Adrien Durier2, Benjamin Puyobro3[0009−0006−0294−9043], and
Burkhart Wolff4[0000−0002−9648−7663]

1 IRT SystemX, Palaiseau
paolo.crisafulli@irt-systemx.fr

2 LMF, Université Paris-Saclay, Paris, France
adrien.durier@lmf.cnrs.fr

3 LMF, Université Paris-Saclay, IRT SystemX Paris, 91120 Palaiseau, France
bpuyobro@lmf.cnrs.fr

4 LMF, Université Paris-Saclay, Paris, France
wolff@lmf.cnrs.fr

Abstract. The ABZ 2025 conference case study focuses on developing
a safety controller for autonomous highway driving. Within this context,
we present a model of interacting agents that synchronize with a global
state at specific points in time. These agents follow the differential equa-
tions of standard kinematics, operating within a physical environment.
They can make non-deterministic decisions regarding acceleration and
follow strategies to avoid collisions.
We instantiate our model according to the Responsibility-Sensitive
Safety (RSS) setting. By defining agent properties such as extensions,
cycle times, and acceleration limits, we concentrate on the single-lane
model specified in the case study requirements document.
We also consider a polychronous setting, i.e. we demonstrate that the
safety invariants still hold if agents have mutually independent and un-
known clocks. This enhances the model’s realism and makes it well-suited
for refinement into implementations using synchronous languages.

Keywords: Process-Algebra, Semantics, Concurrency, Computational
Models, Theorem Proving, Isabelle/HOL

1 Introduction

As Cyber-Physical Systems (CPS) such as robots or Autonomous Vehicles
(AV) are a developing industrial field, the need for safety certification is widening.
Therefore, there is an important opportunity for formal methods to address this
type of systems and a need to meet the respective scientific challenges.

Recently, a process-algebraic approach to verify various properties of CPSs
has been proposed [10]. Based on HOL-CSP [40,39,41], an embedding of the

2

process algebra CSP [36], this approach allows for the modeling of the dynamics
of physical states in dense time, exploring uncountably many possible acceler-
ations for the cyber-agents, as well as digital communication between actors
(other vehicles, gates, traffic-lights, ...).

A global system state (called scene) is constructed via synchronization of
local actor states. Exploiting CSP’s compositional view on non-deterministic
processes and their interaction, actors can be specified and analyzed in a modular
way. The diagram Fig. 1(left) introduces some of the key concepts:

(a) Demon, actors, ... (b) ... and their formalization.
Fig. 1: The overall Process Architecture

The demon process emits repeatedly arbitrary time-intervals 𝛿t and forces
the actors to agree on a global state after 𝛿t. The actors are also CSP processes,
parameterised by a driving strategy. This abstract control algorithm proposes,
depending on the current scene, a set of possible accelerations that are constant
during 𝛿t. Then, the proposed acceleration and current physical state allow the
computation of the actor’s next state (i.e. position, speed, acceleration, etc). This
creates a set of possible futures, and, inductively, sets of traces, capturing the
possible runs of a given scenario. The right part of Fig. 1 shows the corresponding
CSP formalization, as detailed in section 3.

In this paper, we instantiate the formal theory of [10] to meet the require-
ments of the ”Safety Controller for Autonomous Driving on Highways” case
study for ABZ 2025. We consider a single-lane scenario where an AI component
proposes acceleration values, verified by a formally proven safety controller to
ensure non-collision. The requirements, inspired by [37], assume perfect sensor
accuracy, absence of external forces, and constant acceleration effects. They also
emphasize a key feature: actors operate on independent schedules. Our model
builds on this by allowing different, unsynchronized cycle times, resulting in
a polychronous system [25,16,17]. Our formal proof confirms that independent
cycle times do not compromise collision avoidance.

The paper proceeds as follows : after a background chapter introducing to
CSP and its formalized theory HOL-CSP, we outline our CPS framework, and
come to our safety controller instances and proofs of non-collision. In a final
section, we inject the formally proven driving strategy into the simulation envi-
ronment provided by the organizers of the ABZ 2025 case study, evaluating its
shielding effectiveness and impact on vehicle performance.

3

2 Background

2.1 Classic CSP Syntax and Semantics
At a glance, the syntax of the classical CSP core language reads as follows :

P ∶∶= SKIP | STOP | P 2 P ′ | P ⊓ P ′ |P [[A]] P ′ | P ; P ′ |
P \ A | a → P | 2a∈A → P(a) | ⊓a∈A → P(a) | 𝜇 X . f (X)

SKIP signals termination, STOP denotes a deadlock. CSP possesses two distin-
guished choice operators :
1. the external choice -2-, which forces a process ”to follow” whatever its con-

text requires,
2. the internal choice -⊓-, which imposes on the context of a process ”to follow”

the non-deterministic choices made.
With the prefix operator a → P which signals a and continues with P (where a
is an element of a set Σ of events), generalized choices of the form 2a∈A → P(a)
resp. ⊓a∈A → P(a) are constructed (A is originally a finite set). When events
are tagged with channels, i. e. Σ = CHANNELS × DATA, syntactic sugar like
c?x∈A→P(x) or c!!x∈A→P(x) is added; the former reads intuitively as ”x is
read from channel c” while the latter means ”x is arbitrarily chosen from A and
sent into c” (where c ∈ CHANNELS and x ∈ DATA).

CSP describes all communication with one single primitive: the synchronized
product written P [[A]] P ′. Note that interleaving P ∣∣∣ P ′ stands for P [[{}]] P ′,
whereas the parallel operator P ∣∣ P ′ is a shortcut for P [[{x. True}]] P ′.

2.2 Classic CSP Semantics
The traditional denotational semantics (following [36]) comes in three layers: the
trace model, the failures model and the failure/divergence model.

In the trace semantics model, the behaviour of a process P is denoted by a
prefix-closed set of traces (i.e., sequences of events), denoted 𝒯 P. Since traces
are finite lists, and infinite behaviour is thus represented via the set of approx-
imations, an additional element tick (written ✓) is used to represent explicit
termination (signalized by SKIP).

In order to distinguish external and internal non-determinism, [5] proposed
the failure semantics model, where traces were annotated with a set of refusals,
i. e. sets of events a process can not engage in. This leads to the notion of a
failure (t, X) ∈ ℱ P which is a pair of a trace t and a set of refusals X. Consider
for example the process P = (a → SKIP) 2 (a → STOP). The traces 𝒯 P will
non-deterministically lead to a situation where the process accepts termination
(but refuses everything else) or just refuses everything. So, if we assume Σ =
{a, ✓}, then the traces 𝒯 P will be {[], [a]}. The failures ℱ P are then {([],
{{✓}}), ([a], {Σ, {a}})} (plus all subsets of the respective refusal sets, which is
required for the recursion ordering).

Finally, [5] enriched the semantic domain of CSP with one more element, the
set of divergences (written 𝒟 P), in order to distinguish deadlocks from lifelocks.

4

CSP comes with a refinement notion: P refines Q iff P is more deterministic
and more defined [36]. Depending on the semantic model, this results in the
following formal definitions: the trace refinement is defined by P ⊑𝑇 Q ≡ 𝒯 P ⊇
𝒯 Q, and the failures refinement ⊑𝐹 and failure-divergence refinement ⊑𝐹𝐷 are
constructed analogously. It turns out that beyond common protocol refinement
proofs and test-problems, many properties such as deadlock or lifelock freeness
can be expressed via a refinement statement. This is also the case for the desired
safety of autonomous vehicles.

2.3 Isabelle, HOL, and HOL-CSP

Isabelle is a major interactive proof assistant implementing higher-order logic
(HOL). The Isabelle distribution comes with a number of library theories con-
structed solely from definitional axioms; among them basic data-types for sets,
lists, arithmetics, analysis and - particularly relevant here - Scott domain theory
(HOLCF) [33]. HOLCF provides the concept of a complete partial ordering -⊑-, con-
tinuity, and admissibiblity, for the fixed-point induction principle. In particular,
this gives semantics to the fixed-point 𝜇 X . f (X) verifying the property (𝜇 X .
f (X)) = f (𝜇 X . f (X)). Basic key theorems of the HOL-CSP theory include the
continuity of the CSP operators.

Of course, except in foundational proofs, the denotational semantics of HOL-
CSP is not used directly: rather, about 200 rules derived from the denotational
semantics are together with the fixpoint induction the weapons to reason ’alge-
braically’ over infinite processes. Just for one example out of many, the basic
synchronization rule looks as follows:

(∀ y. c y ∈ S) ⟹ c?x → P x [[S]] c?x → Q x = c?x → (P x [[S]] Q x)

The interested reader is referred to [36], or [40] for their formal proofs in HOL.

3 The Framework and its Rationale

In Fig. 1, we introduced the key-concepts of our framework : the demon,
the actors with their dynamics captured in motions and the non-deterministic
driving-strategy, a specification of an algorithm that computes the set of possible
accelerations. In this section, we will explain in more detail the right part of
Fig. 1: how these concepts were formalized in HOL-CSP, how they combine to
a process architecture, and the proof technique establishing non-collision in all
possible scenarios.

3.1 Discretization and Decision Points: The Demon

Models for cyber-physical systems, be them time- or event-triggered, allto-
gether insist on a discretization of the timeline, on concrete decision points of
the agents. This snapshot view of the system model is captured by a process

5

that we call the ‘Demon’ 5. This demon makes an arbitrary, non-deterministic
and unilateral choice of the time-step 𝛿t and forces individual actors to agree
with each other’s local physical state within a global state 𝜎𝑔∈Σ (also called the
scene). The time-step 𝛿t is a strictly positive real, and is upper bound by the
model parameter Δt, useful for forcing finer discretizations.

demon Δt ≡ ⊓𝛿t∈]0,Δt[→ 2𝜎𝑔∈Σ → demon Δt

3.2 An Extensible Model of Scenes

We formalize the basic actor state via the record construct, similar in Is-
abelle/HOL to its homonymous in other programming languages; the actor state
contains fields for the position, the speed, and the acceleration of the agent.

Actor states are explicitly parameterized by the type variable ′𝜐 which is
constrained by the type-class real-normed-vector (from the HOL library). This
class provides a theory for vector spaces such as,e. g., IR𝑛, that possess a scalar
product in IR. HOL also supports extensible records which allow to refine actor
states at need. It is thus possible to give an actor an extension field, a set of
possible accelerations, or a specific reaction time.

Repeated extensions allow for building up an actor family with different char-
acteristics and specific elements in their local state. 6 We define the concept of
a global state 𝜎 of the cyber-physical system (or scene) as a map from the set
actor identifiers to the actor state space:

type-synonym (′𝜐, ′𝛼) scene = ‹id𝑎𝑐𝑡𝑜𝑟 ⇒ (′𝜐, ′𝛼) as𝑒𝑥𝑡›

3.3 Formally Defining Actor Behaviour

We can now describe the definition from the introduction in more detail:
actor 𝑖𝑑 ds 𝜎𝑔 ≡ 2𝛿t∈IR+ → 2𝜎 ′

𝑔 ∈ {Σ ∣ Σ[id]∈motion} → actor 𝑖𝑑 ds 𝜎 ′
𝑔

where a motion is constructed as a composition of the driving strategy ds, which
computes a set of possible accelerations, and the kinematics, which translates
this into the future actor states: motion ≡ (kinematics (𝜎𝑔[id]) 𝛿t) ∘ (ds id 𝜎𝑔).
(Both driving strategies and kinematics will be discussed later in detail.)

Actually, motions are a fairly general concept in our theory, which can be
combined by a number of elementary operators to more complex motions:

type-synonym (′v, ′𝛼)motion = time ⇒ (′v, ′𝛼)scene ⇒ id𝑎𝑐𝑡𝑜𝑟 ⇒ (′v, ′𝛼) as𝑒𝑥𝑡 set

5 ... inspired by “Maxwell demon” of thermodynamics who knows everything
6 Such subclass hierarchies are used in common simulator technology in the au-
tonomous car domain for the modeling of so-called “ontologies” for the actor states
in, e. g., the MOSAR platform 7 or ASAM’s OpenSCENARIO 2.0 8.

6

Recall that ′v are usually restricted to real-normed-vector ’s and ′𝛼 are the pos-
sible extensions of actor-states and therefore (′v, ′𝛼) scenes. In particular, we
optionally allow motions to produce the empty set of local states in order to
delete impossible branches of the scenario (such as, for instance, not allowing an
agent to react within its allowed time reaction – although this does not need to
happen in the models presented in this paper).

3.4 Kinematics

Since the HOL-Analysis-library provides the theory for the derivation and
integration operators, written deriv and integrate, it is perfectly possible to define
the concept of a kinematics as the solution of a differential equation system:

SOME X . deriv X = F t X ∧ X(0) = X0

where SOME is the Hilbert choices operator that just returns a solution of a
vector X of functions over a matrix F whenever it exists.

In the concrete application of our theory, i.e. the requirements stated in the
ABZ case-study such as no external forces and constant acceleration in Δt, this
leads to a kinematics that we call standard kinematics:

pos ′ = pos + 𝛿t ∗ speed + (𝛿t2/2) ∗ a0,
speed ′ = speed + 𝛿t ∗ a0,
acc ′ = a0

Since the local physical state consists of a triple of the real-vector functions
(pos,speed,acc), then the future state (pos ′,speed ′,acc ′) can be computed via
the chosen constant acceleration a0. The astute reader will recognize the usual
Newtonian laws underlying the RSS driving strategy. We actually prove that
these laws follow from the instantiation of the above concept of kinematics.
Note, however, that it is perfectly possible to model accelerations like, e.g., air-
resistance (depending on speed2) or slopes (depending on pos) in our framework.

3.5 Actors and Demon Combined

Since any real positive value (smaller than Δt) can be non-deterministically
chosen by the Demon for the time-step 𝛿t, all possible discretizations are con-
sidered. Different parameters correspond to different execution traces within a
single scenario, i.e., a combined process that integrates Demon and actors.

Definition 1 (Scenario) A scenario is defined as the parallel composition of
the demon and actors, synchronized over scenes and timing choices:

scenario ds Δt 𝜎0 ≡ (demon Δt ∣∣ (∣∣ id ∈# SID. actor 𝑖𝑑 ds 𝜎0))

This definition gives access to the usual process-algebraic definitions like “the
set of traces‘’ 𝒯(scenario ds Δt 𝜎0) or the theory over refinement.

7

3.6 Safety-Proofs by Refinement

Safety properties are a well-known class of trace properties (originating from
concurrency theory), which can be described as sets of authorized traces [8]. For
instance, in the case of autonomous vehicles, the ’non-collision’ safety property
can be described as the set of all traces that do not contain any collision, for
any possible discretization of time (be aware that ’safety’, in the general sense,
may have a very different meaning than what is implied by a safety property,
although in our case, ’non-collision’ is indeed a safety property).

We abstract this notion of safety properties as a fully non-deterministic pro-
cess, defined relative to subsets of actors, that can pick, at any step and for any
𝛿t, all possible scenes that do not contain collision (with no regard to any kine-
matics, driving strategy, or even any degree of spatial or physical consistency).

Definition 2 (Safety Process) The safety process is recursively defined as:

safety-process P SID = 2𝛿t∈IR → 2𝜎𝑔 ∈ (P 𝜎𝑔 SID) → safety-process P SID

A typical instance of P in our application scenario RSS is that the positions
of actors are distinct, their extension fields do not overlap pairwise, etc. We
instantiate the safety property P as the desired non-collision property.

Inclusion of trace properties and the ensuing lattice therefore translates to
the refinement pre-order over safety processes. This motivates the following:

Definition 3 (Safe) Safety of a scenario or a driving strategy can thus be de-
scribed as a trace refinement over processes. More formally, we will define the
concept safe-scenario by:

safety-process P sid ⊑𝐷𝑇 scenario motion Δt g0

Note that we restrict ourselves to the ’Divergence-Trace’ pre-order over processes
⊑𝐷𝑇 defined by P ⊑𝐷𝑇 Q ≡ 𝒯 Q ⊆ 𝒯 P ∧ 𝒟 Q ⊆ 𝒟 P. The reason for this is
that the synchronization between demon and actor ’s is inherently deadlocking:
any global state where the actors did not agree represents a deadlock. This is the
price we have to pay for the fact that the execution of demons represents some
form of “true concurrency”. However, agents can communicate along protocols
with each other over own channels, which can be analysed with the full machinery
of the failure divergence refinement (⊑𝐹𝐷).

The safety-process-predicate enjoys a number of useful properties such as
monotonicities between them. In the context of the ABZ-Case-Study, the most
relevant is the following theorem, which allows to break down a reasoning over
refinements into the (more conventional) reasoning over state-invariants:

Theorem 1 (Safety Proof By Invariant) Assuming the following holds:

1. P𝑖𝑛𝑣 𝜎0 sid: P𝑖𝑛𝑣 is true for the initial scene,

8

2. P𝑖𝑛𝑣 𝜎 sid ⟹ P 𝜎 sid: P𝑖𝑛𝑣 implies the safety property we aim to prove,
3. P𝑖𝑛𝑣 𝜎 sid ⟹ ∀ 𝜎 ′∈move-sid ℳ 𝛿t 𝜎 sid. P𝑖𝑛𝑣 𝜎 ′ sid: the invariant is

preserved by any single motion step,
4. and sid ≠ ∅: actors exist

Then the resulting scenarios are P-safe: safe-scenario P sid ℳ Δt 𝜎0

4 A Safety Controller for Single Lane Scenarios

In this section, we will present our solution to the ABZ case study challenge
[28], which focuses on designing a formally verified safety controller to prevent
collisions in autonomous highway driving. The controller must ensure safety in
both single-lane and multi-lane environments, functioning as an AI safety shield
[1]. We focus on the single-lane scenario, demonstrating how our framework is
particularly well-suited to the case study’s requirements.

4.1 Safety Requirements and Assumptions

The ABZ case study challenge [28, Section 2.4], suggests the use of the
Responsibility-Sensitive Safety (RSS) model ([37]) in order to provide a verified
safety shield for autonomous vehicles, assuring the primary safety requirement
of this case study: “All controlled vehicles must avoid collisions” (SAF).

The chosen set of parameters, assumptions, and vehicle behavior require-
ments align closely with the RSS safety distance and prescribed behavior for
longitudinal single-lane scenarios, as defined in [37]. In Sect. 4.2, we will present
an specialized version of our work [10], which satisfies the primary requirement
SAF. Then, we will shift our focus to a secondary yet fundamental requirement
stated in [28, Section 2.1]:

Note that the other vehicles also perform [...] actions, but at different times.

In other words, we must account for the coexistence of multiple independent
clocks – a requirement which is referred to as polychrony. Finally, we demonstrate
how our formal model provides a verified safety shield for single-lane scenarios.

4.2 A First Safety Controller Formal Model

In this section, we will build upon the results presented in [10] to address the
main safety requirement SAF: ”All controlled vehicles must avoid collisions.” As
previously stated, our approach is grounded in the RSS model. It asserts that
when vehicles follow the standard kinematics of piecewise constant acceleration
motions, a minimal distance exists that guarantees collision-free safety. This
principle serves as the foundation for designing our safety controller model.

Vehicles requirements. [28, Section 2.1] defines the dimensioning require-
ments for the case study, including dynamics (VEH3 to VEH7), and the response

9

Fig. 2: Formalization of the Vehicles Requirements

time of the controlled vehicle (CON1). In Isabelle/HOL, provides a mechanism
for parameterized theories [21]. The parameters for our case study theory are
shown here:

In Fig. 2, we capture most of the aforementioned dimensioning requirements,
while adhering to the case study naming conventions. We will later instantiate
the more general theorem proved in [10] in this locale, showcasing the modularity
that locales bring to our framework.

Choosing a Safety Model. The RSS is our selected safety model because
it is grounded in worst-case considerations ([37, Definition 1]: In this always
achievable worst-case scenario, vehicles initially exactly distant by the RSS safety
distance come to a stop with their separation reduced to zero. Thus, if the RSS
driving strategy is not adhered to at any point, a collision will not necessarily
occur in the actual continuation of the scenario; however, from that moment
onward, an inevitable collision scenario can always be constructed based on the
worst-case assumptions defined by RSS. In conclusion, deviations from the safety
envelope established by the RSS driving strategy can be considered a definitive
measure of unsafety.

RSS-related distances. We can now proceed to formalize the RSS distance-
thresholds definitions:

Fig. 3: Distance definitions in the RSS environment.

– d𝑟𝑒𝑎𝑙 is the difference between the positions of two consecutive vehicles.
– d𝑟𝑠𝑠 is the RSS safe distance over which braking is not necessary [37].
– d𝑚𝑖𝑛 is the required minimal distance at the end of the cycle time. This

corresponds to the to the difference between the distances traveled by the
two vehicles in case of braking until they come to a stop.

– no-𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 expresses the safety criterion: the distance between consecutive
vehicles remains strictly positive.

10

The safety controller. We define the kinematics of our vehicles as described
in Sect. 3. The controller is formally defined as follows:

Fig. 4: Formal model of the controller
Fig. 5: Standard kinematics

drive𝑅𝑆𝑆 is our driving strategy; it essentially serves as the controller of the
vehicle. It must be interpreted as follows:

– If the vehicle is closer than d𝑟𝑠𝑠, braking is enforced. The applied acceleration
will be chosen non-deterministically within {−b𝑚𝑎𝑥 i .. −b𝑚𝑖𝑛 i}. This
corresponds to the controller SLOWER action.

– Otherwise, we let the vehicle choose non-deterministically within {−b𝑚𝑎𝑥
i .. a𝑚𝑎𝑥 i}. Both IDLE and FASTER actions are encompassed within
this choice, along with non required actions (negative accelerations): non-
deterministic choice allows for simpler models by subsuming a broader range
of behaviors without requiring additional proof effort.

Our goal is to determine the minimal condition for a scenario to evolve while
remaining refined as a safety process (as defined in Definition 3).

A common formal method is to reason via invariant over the state of an
evolving system as seen in Theorem 1:

Fig. 6: The synchronous safety invariant

Fig. 7: Locale Safe Sync, can be used as instantiation
We now aim at establishing that the scene defines a safe scenario regarding

collision, as explained in Theorem 1. The property safe-scenario is a safety prop-
erty that ensures that ”something bad never happens” concerning the proposition
no-𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛, meaning that no collision can occur, and thus satisfying SAF.

Fig. 8: The refinement theorem
This generalizes a two-car scenario into a formal model involving N vehicles.

The key idea of the proof is to show that the minimum distance d𝑚𝑖𝑛 is preserved
between successive vehicles when all follow the RSS driving strategy, which we
establish in the following theorem:

The proofs of 8 and 9 are available at [9, Sections 4.1 4.2]

11

Fig. 9: The preservation of d𝑚𝑖𝑛 through time.
The technical aspect of demonstrating theorem 8 is to show that if the in-

variant holds at initialization, it still holds after evolving the physical state of
the agents. The challenging is ensuring that the safety distances are maintained
within a given time step, which is precisely what 9 establishes.

By proving this, we validate theorem 8 and guarantee that the safety condi-
tion SAF is satisfied.

Numerical application. The locale environment allows us to simulate sim-
ple scenarios. As an example, we can analyze what happens when two vehi-
cles travel at 130 km/h with parameters VEH3-VEH7, as described in [28, Sec-
tion 2.1].

Fig. 10: An example for vehicles going at 36m.s−1

We compiled some relevant data from our calculations over safe distances in
the following tables:
Ego ↓ Other→ 50 (km.h−1) 100 (km.h−1) 130 (km.h−1)

50 20m 6m 6m
100 117.5m 60m 7.1m
130 203m 144m 92.5m

Table 1: Safe distances at initialization - CON1-ENV

cycle time↓ speed→ 50 km.h−1 100 km.h−1 130 km.h−1

0.5 (s) 20m 60m 92.5m
1 (s) - CON1-ENV 20m 60m 92.5m
1.5 (s) 20m 60m 92.5m

Table 2: Safe distance at initialization

In 1, we observe that the safe distance strongly depends on the speed of both
vehicles. The distance evolves intuitively: the faster the ego vehicle is, the larger
the safe distance becomes, while the faster the front vehicle is, the smaller the
safe distance gets.

In 2, we see that the cycle time has no effect on safe distances. This suggests
that the model is not sufficiently realistic, as both intuition and mathematical
analysis indicate that the safe distance for a car making decisions ten times per
second should differ from that of a car making decisions once per second. This
limitation motivates an improvement to our model, leading us to the next version
that we will now introduce.

4.3 A Refined Safety Controller: Achieving Polychrony

In this section, we introduce a polychronous time-triggered scenario for au-
tonomous cars. This approach considers autonomous cars as systems that com-
plete a full sense-plan-act sequence within the constraints of a fixed periodic

12

cycle. Our model does not require these cycles to be aligned, making it inher-
ently polychronous ([42,43]).

Fig. 11: Extending actor-state record with
time parameters

demon
𝑡𝛿𝑡1 𝛿𝑡2 𝛿𝑡3 𝛿𝑡4 𝛿𝑡5 𝛿𝑡6 𝛿𝑡7 𝛿𝑡8

ego 𝑑 𝑑 𝑑 𝑑 𝑑

other 𝑑 𝑑

Fig. 12: A polychronous scenario.

In order to be able to model time we add the parameters 11 to the cars.
In the synchronized scenario described in Sect. 4, actors were required to

make a decision after every 𝛿t elapsed. In contrast, in this scenario, actors are
expected to make decisions only when they have reached the end of their cy-
cle-time, indicated by their deadline reaching 0. This removes the restrictive
assumption that actors are synchronized at every new time interval defined by
the demon, as illustrated in Figure 12. The primary objective of this analysis is
to demonstrate that the corresponding driving strategy continues to ensure car
safety.

(a) Polychronous kinematic (b) Polychronous driving strategy
Fig. 13: The polychronous setting

– polychronous-drive𝑅𝑆𝑆 is the new controller, our polychronous driving strat-
egy:

• If the vehicle is at deadline, it selects an acceleration based on the driving
strategy, using the controller defined in the previous section Sect. 4.1.

• If the vehicle has not yet reached its deadline, it continues with the last
chosen acceleration, as given by the function acc (car i).

– polychronous-kinematics is the function that describes the movement of the
vehicle:

• If a deadline is missed, it returns an empty scene9.
• Then, it applies the kinematics function to a driving strategy ℳ, which,

in this case, is specifically polychronous-drive𝑅𝑆𝑆.
• It also updates the actor’s deadline using the update-deadline function,

which computes deadline (car i) = deadline (car i) − 𝛿t if deadline ≠
0, or cycle-time (car i) − 𝛿t otherwise. This modeling approach satis-
fies requirement CON1, as it accommodates varying cycle-time values,
enabling vehicles to respond at their own pace.

9 such cases are not treated in our analysis

13

Fig. 14: The safety invariant for polychronous model
The invariant.

– deadline (car i) ≠ 0: If the deadline is 0, the model falls back into the
synchronous case.

– standard-kinematics t car (i + 1) b𝑚𝑎𝑥: This accounts for the worst-case
scenario where other is braking at maximum capacity.

– standard-kinematics t car i (acc (car i)): The state of ego at time t.
– The right-hand side of the inequality is d𝑟𝑒𝑎𝑙 but its definition is unfolded.
– The left-hand side of the inequality is d𝑚𝑖𝑛 but its definition is unfolded.

Ultimately, this states that d𝑚𝑖𝑛 < d𝑟𝑒𝑎𝑙 for the remaining time until the
deadline. The synchronous model already implied this property but did not
formalize it due to the absence of clock management.

A polychronous locale that gathers ABZ-parameters and time-related defi-
nitions is defined, and the following locale inherits from it while asserting that
Poly-inv holds.

Fig. 15: The locale for polychronous case

This provides the appropriate context to prove the polychronous scenario
safety theorem which also satisfies the SAF requirement.

Fig. 16: The safety theorem for polychronous case

The proofs of 16 is available at [9, Sections 5.1]
Since our invariant relies only on the ego vehicle’s parameters (other’s param-

eters are generic, such as b𝑚𝑎𝑥), we can conclude that the safe distance depends
only on the ego vehicle’s cycle time. This is a key aspect of our model, as it is
more realistic to assume that vehicles do not have knowledge of other vehicle’s
cycle times. Our model does not require this information, making it more aligned
with real-world expectations.

Numerical application. Our goal is to compare 2 from the previous section
with the results obtained using our new model. We replaced cycle time with
deadline in the table, as it is actually this parameter that matters. 10

10 A deadline of 1.5s implies that the cycle time is at least 1.5s, since the deadline
cannot exceed the cycle time.

14

deadline ↓ speed → 50 (km.h−1) 100 (km.h−1) 130 (km.h−1)

0 (s) 20m 60m 92.5m
0.5 (s) 40m 98m 148m
1 (s) - CON1-ENV 64m 140m 196m
1.5 (s) 91m 186m 252m

Table 3: Safe distance at initialization, depending on speed and cycle times

This time, we can observe that the safe distance varies with the deadline, and
therefore the cycle time, as the cycle time is the maximum value the deadline
can take. Allowing a cycle time of 0.5 seconds caps the safe distance to 148m at
36m/s, whereas allowing a cycle time of 1.5 seconds caps it to 252m11.

Finally, we can see that if the deadline is equal to 0, we return to the values
seen in 1, which tends to verify that our polychronous model is consistent with
our synchronous model. In fact, our synchronous model is a specific case of the
polychronous model, where the deadline is always 0 and actors must react every
time they are state-checked. In contrast, in the polychronous case, this is not
necessary. However, we did not add anything beyond a ”clock manager,” and
thus our model was already ”polychrony-ready.”

5 Simulation and Evaluation

The case study specifications included the configuration of a simulation en-
vironment [27], designed for experimenting with the safety shield. This environ-
ment builds upon the highway-env reinforcement learning framework [26], which
was specifically created to train and test autonomous vehicle agents within a
simplified yet representative model of the environment of road vehicles.

We implemented the safety shield as a straightforward method call, overriding
the model’s returned action whenever it deviates from the behavior prescribed
by RSS. The implementation and documentation are available in our fork of the
case study GitHub repository ([29]).

Crashes (%) Unsafe steps (%) Min. net safe d. (m) Travelled d. (m)

Base 0 65.1 -13.4 614
Base + shield 0 0 0.77 575
Adv. 100 0 N/A 273
Adv. + shield 0 0 0.77 575

Table 4: Comparison of different agents performance

The data in Table 4 were obtained through:

– 100 test runs, each consisting of 30 steps per agent configuration.
– Two types of agent models: both are rewarded for high speed, with Base

penalized for collisions, while Adversarial is rewarded.
11 These values are rounded

15

– Computed metrics: percentage of runs ending in a crash, percentage of un-
safe steps, minimum achieved safe net distance (both explained below), and
average traveled distance per run.

Unsafe steps account for deviations from the RSS safety envelope, which
serves as a reliable measure of unsafety, as explained in Sect. 4.2.

The ”safe net distance” (d𝑟𝑒𝑎𝑙 − d𝑚𝑖𝑛) represents the remaining distance
after both the ego and front vehicles brake to a complete stop. Its minimum
value indicates the most hazardous situation the ego vehicle encountered, with
negative values signaling a potential crash.

The measurements indicate that:

– The Base agent, while never crashing, frequently places the ego vehicle at
risk.

– The Base agent with the shield never puts the ego vehicle at risk. The min-
imum achieved safe net distance (77 cm) suggests that the RSS safety dis-
tance is not overly conservative, at least within this simulation. Additionally,
it attains 94% of the distance covered by its unshielded counterpart.

– The Adversarial agent, as expected, performs poorly in all aspects, including
traveled distance.

– Notably, when the shield is activated, the Adversarial agent achieves perfor-
mance comparable to the Base agent with the shield.

Crashes (%) Unsafe steps (%) Min. net safe d. (m) Travelled d. (m)

Base 65 51.5 -16.9 356
Base + shield 0 0 0.47 478

Table 5: The Base agent vs. Aggressive vehicles

The data in Table 5 were obtained by evaluating the Base agent against a
different behavior of surrounding vehicles, using the AggressiveVehicle class.
The results further support the idea that the risk identified in the initial
experiments (negative values of the ”net safe distance”) can materialize in
practice but can also be compensated by the RSS safety shield.

6 Related Work

There are numerous approaches to model and analyse CPSs in general,
and autonomous vehicles in particular, from simulation-based approaches to
model-checking approaches, for which tools include [2,20,14,15], or more recently
[7,13,23] (see [18] for a survey). Proof-based approches, similar to ours, include
Differential Hoare Logics [12], also using Isabelle/HOL, but being event-triggered
rather than time-triggered as we are; Event-B and the Rodin platform have also
been proposed to formalize CPSs as abstract machines [38,6,11]. Last but not

16

least, Platzer [4,35] uses a version of Differential Hoare Logics to implement
the specialized KeyMaera and KeyMaera X systems. As for car control and
collision avoidance specifically, existing approaches include discrete time point
based temporal logics and discrete time automata [31,3]; reachable sets in ODE‘s
[22,32]; RSS is also tackled from a testing perspective in [19]; lastly, [30] treats
the problem of distributed car control system.

These approaches each have their advantages and drawbacks. While a lot
of these are more tractable than formal proofs, they are limited by complexity
barriers, and necessitate important and often ad-hoc abstractions. On the other
hand, our approach allows us to cover the complete set of possible scenarios;
computations are made symbolically on mathematical real numbers; we also
profit from (and contribute back to) the open platform Isabelle/HOL and its
fairly extensive libraries in the Isabelle Archive of Formal Proofs, in particular
HOL−Analysis, and its ODE formalization. Because it is time-triggered, it is
more directly implementable (contrary to event-based models). Lastly, our use
of CSP would make it possible to model communications between actors, reusing
the vast litterature on CSP processes and its implementation in Isabelle [41].

7 Conclusion
In this paper, we introduced a framework for CPS based on a process al-

gebraic modeling, instantiated it on scenarios for autonomous vehicles, meeting
the requirements specified in [28]. We refined the abstract concept of a driv-
ing strategy to a concrete controller satisfying the safety property SAF, based
on RSS, and also considered an extension to polychrony. We provided formal
proof that requirements CON1 and CON1-ENV are satisfied, and injected
the resulting code by hand into the Single-Lane highway environment given by
the ABZ case study challenge. Our evaluations allow for the following conclu-
sions: Firstly we observe that our model is roughly coherent with conventional
driving regulations, however they predict larger safety distances as prescribed
by law. The good news is that our derived controller is an effective watchdog
that avoids collision even in the presence of extremely aggressive actors, while
still preserving liveness. Secondly, while polychrony is a relevant phenomenon
in a realistic system, its impact is small. In this sense our study yields evidence
that we have a controller that is closer to reality. Thirdly, the instantiation by
Isabelle/HOL locales creates a relatively easy interface to study the impact of
model parameters changes.

As future work, we envision the following directions:
– Prove the safety of the RSS driving strategy in two (or more) dimensional

scenarios, including multi-lanes and cutoffs.
– Answer the criticism raised in [24], exploring more flexible driving strategies.
– Utilize the IsabelleVODEs [34] environment to support advanced kinematics

described by elaborate systems of ODEs.

Acknowledgements. This work has been supported by the French government
under the ”France 2030” program, as part of the SystemX Technological Re-
search Institute.

17

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. AAAI Press (2018). https://doi.org/10.
1609/aaai.v32i1.11797, https://doi.org/10.1609/aaai.v32i1.11797

2. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems
3. Bannour, B., Niol, J., Crisafulli, P.: Symbolic model-based design and genera-

tion of logical scenarios for autonomous vehicles validation. In: IEEE Intelligent
Vehicles Symposium, IV 2021, Nagoya, Japan, July 11-17, 2021. pp. 215–222.
IEEE (2021). https://doi.org/10.1109/IV48863.2021.9575528, https://doi.
org/10.1109/IV48863.2021.9575528

4. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions. In: Furbach, U.,
Shankar, N. (eds.) Automated Reasoning (IJCAR). LNCS, vol. 4130. Springer
(2006). https://doi.org/10.1007/11814771_23

5. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

6. Butler, M.J., Abrial, J., Banach, R.: . https://doi.org/10.1201/b20053-5,
https://doi.org/10.1201/b20053-5

7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6),
1157–1210 (2010). https://doi.org/10.3233/JCS-2009-0393, https://doi.org/
10.3233/JCS-2009-0393

9. Crisafulli, P., Durier, A., Puyobro, B., Wolff, B.: HOL-CyberPhi: A Process-
algebraic Framework for Cyber-Physical Systems. Tech. rep., IRT SystemX ;
LMF - Laboratoire Méthodes Formelles (Nov 2024), https://hal.science/
hal-04803841

10. Crisafulli, P., Taha, S., Wolff, B.: Modeling and analysing cyber-physical systems
in HOL-CSP. Robotics Auton. Syst. 170, 104549 (2023). https://doi.org/10.
1016/J.ROBOT.2023.104549, https://doi.org/10.1016/j.robot.2023.104549

11. Dupont, G., Ameur, Y.A., Singh, N.K., Pantel, M.: Formally verified architectural
patterns of hybrid systems using proof and refinement with event-b. Sci. Comput.
Program. 216, 102765 (2022). https://doi.org/10.1016/j.scico.2021.102765,
https://doi.org/10.1016/j.scico.2021.102765

12. Foster, S., y Munive, J.J.H., Struth, G.: Differential Hoare Logics and Refinement
Calculi for Hybrid Systems with Isabelle/HOL. LNCS, vol. 12062, pp. 169–186.
Springer (2020). https://doi.org/10.1007/978-3-030-43520-2_11, https://
doi.org/10.1007/978-3-030-43520-2_11

13. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient Solving of
Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure.
J. Satisf. Boolean Model. Comput. 1(3-4), 209–236 (2007). https://doi.org/10.
3233/sat190012, https://doi.org/10.3233/sat190012

14. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech 10(3),
263–279 (2008). https://doi.org/10.1007/s10009-007-0062-x

15. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems.
LNCS, Springer (2011)

16. Gamatié, A., Gautier, T., Le Guernic, P., Talpin, J.P.: Polychronous design of
embedded real-time applications . https://doi.org/10.1145/1217295.1217298

https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1109/IV48863.2021.9575528
https://doi.org/10.1109/IV48863.2021.9575528
https://doi.org/10.1109/IV48863.2021.9575528
https://doi.org/10.1109/IV48863.2021.9575528
https://doi.org/10.1007/11814771_23
https://doi.org/10.1007/11814771_23
https://doi.org/10.1201/b20053-5
https://doi.org/10.1201/b20053-5
https://doi.org/10.1201/b20053-5
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://hal.science/hal-04803841
https://hal.science/hal-04803841
https://doi.org/10.1016/J.ROBOT.2023.104549
https://doi.org/10.1016/J.ROBOT.2023.104549
https://doi.org/10.1016/J.ROBOT.2023.104549
https://doi.org/10.1016/J.ROBOT.2023.104549
https://doi.org/10.1016/j.robot.2023.104549
https://doi.org/10.1016/j.scico.2021.102765
https://doi.org/10.1016/j.scico.2021.102765
https://doi.org/10.1016/j.scico.2021.102765
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1145/1217295.1217298
https://doi.org/10.1145/1217295.1217298

18

17. Gautier, T., Le Guernic, P., Talpin, J.P.: Polychronous Design of Real-
Time Applications with Signal (2008), https://hal.science/hal-00549814,
aRTIST Survey of Programming Languages, Alan Burns, Ed., http://www.artist-
embedded.org/artist/ARTIST-Survey-of-Programming,1489.html

18. Geretti, L., Sandretto, J.A.D., Althoff, M., Benet, L., Collins, P., Duggi-
rala, P., Forets, M., Kim, E., Mitsch, S., Schilling, C., Wetzlinger, M.: Arch-
comp22 category report: Continuous and hybrid systems with nonlinear dynamics.
EasyChair (2022). https://doi.org/10.29007/fnzc, https://easychair.org/
publications/paper/JrQ4

19. Hekmatnejad, M., Hoxha, B., Fainekos, G.: Search-based Test-Case Generation
by Monitoring Responsibility Safety Rules (2020). https://doi.org/10.48550/
ARXIV.2005.00326, https://arxiv.org/abs/2005.00326

20. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: A model checker for hybrid
systems

21. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales a sectioning concept for isabelle
22. Kochdumper, N., Gassert, P., Althoff, M.: Verification of collision avoidance for

commonroad traffic scenarios. EasyChair (2021). https://doi.org/10.29007/
1973, https://doi.org/10.29007/1973

23. Kong, S., Gao, S., Chen, W., Clarke, E.: dreach: 𝛿-reachability analysis for hybrid
systems

24. Koopman, P., Osyk, B., Weast, J.: Autonomous vehicles meet the physical world:
Rss, variability, uncertainty, and proving safety (expanded version) (2019), https:
//arxiv.org/abs/1911.01207

25. Le Guernic, P., Gautier, T., Talpin, J.P., Besnard, L.: Polychronous Automata.
https://doi.org/10.1109/TASE.2015.21, https://hal.science/hal-01240440

26. Leurent, E.: An environment for autonomous driving decision-making (2018),
https://github.com/eleurent/highway-env, gitHub repository

27. Leuschel, M., Vu, F., Rutenkolk, K.: ABZ 2025 Case Study: Training and
testing of agents (2024), https://github.com/hhu-stups/abz2025_casestudy_
autonomous_driving, GitHub repository

28. Leuschel, M., Vu, F., Rutenkolk, K.: Case study: Safety controller for
autonomous driving on highways. Tech. rep., Heinrich-Heine-Universität
Düsseldorf, Institute of Computer Science (February 2025), https:
//github.com/hhu-stups/abz2025_casestudy_autonomous_driving/blob/
main/case_study/specification_v3.pdf

29. Leuschel, M., Vu, F., Rutenkolk, K., Crisafulli, P.: ABZ 2025 Case Study: Training
and testing of agents (2024), https://github.com/paolo-crisafulli/abz2025_
casestudy_autonomous_driving, GitHub repository

30. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, dis-
tributed, and now formally verified. Springer (2011). https://doi.org/10.1007/
978-3-642-21437-0_6, https://doi.org/10.1007/978-3-642-21437-0_6

31. Maierhofer, S., Moosbrugger, P., Althoff, M.: Formalization of intersection traffic
rules in temporal logic. IEEE (2022). https://doi.org/10.1109/IV51971.2022.
9827153, https://doi.org/10.1109/IV51971.2022.9827153

32. Manzinger, S., Pek, C., Althoff, M.: Using reachable sets for trajectory planning of
automated vehicles. IEEE Trans. Intell. Veh. 6(2), 232–248 (2021). https://doi.
org/10.1109/TIV.2020.3017342, https://doi.org/10.1109/TIV.2020.3017342

33. Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF.
j-fp 9(2), 191–223 (1999). https://doi.org/10.1017/S095679689900341X

https://hal.science/hal-00549814
https://doi.org/10.29007/fnzc
https://doi.org/10.29007/fnzc
https://easychair.org/publications/paper/JrQ4
https://easychair.org/publications/paper/JrQ4
https://doi.org/10.48550/ARXIV.2005.00326
https://doi.org/10.48550/ARXIV.2005.00326
https://doi.org/10.48550/ARXIV.2005.00326
https://doi.org/10.48550/ARXIV.2005.00326
https://arxiv.org/abs/2005.00326
https://doi.org/10.29007/1973
https://doi.org/10.29007/1973
https://doi.org/10.29007/1973
https://doi.org/10.29007/1973
https://doi.org/10.29007/1973
https://arxiv.org/abs/1911.01207
https://arxiv.org/abs/1911.01207
https://doi.org/10.1109/TASE.2015.21
https://doi.org/10.1109/TASE.2015.21
https://hal.science/hal-01240440
https://github.com/eleurent/highway-env
https://github.com/hhu-stups/abz2025_casestudy_autonomous_driving
https://github.com/hhu-stups/abz2025_casestudy_autonomous_driving
https://github.com/hhu-stups/abz2025_casestudy_autonomous_driving/blob/main/case_study/specification_v3.pdf
https://github.com/hhu-stups/abz2025_casestudy_autonomous_driving/blob/main/case_study/specification_v3.pdf
https://github.com/hhu-stups/abz2025_casestudy_autonomous_driving/blob/main/case_study/specification_v3.pdf
https://github.com/paolo-crisafulli/abz2025_casestudy_autonomous_driving
https://github.com/paolo-crisafulli/abz2025_casestudy_autonomous_driving
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/TIV.2020.3017342
https://doi.org/10.1109/TIV.2020.3017342
https://doi.org/10.1109/TIV.2020.3017342
https://doi.org/10.1109/TIV.2020.3017342
https://doi.org/10.1109/TIV.2020.3017342
https://doi.org/10.1017/S095679689900341X
https://doi.org/10.1017/S095679689900341X

19

34. y Munive, J.J.H., Foster, S., Gleirscher, M., Struth, G., Laursen, C.P., Hickman,
T.: Isavodes: Interactive verification of cyber-physical systems at scale. J. Autom.
Reason. 68, 21 (2024), https://api.semanticscholar.org/CorpusID:273492134

35. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

36. Roscoe, A.: Theory and Practice of Concurrency. Prentice Hall (1997)
37. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a Formal Model of Safe and

Scalable Self-driving Cars. arXiv e-prints arXiv:1708.06374 (Aug 2017)
38. Su, W., Abrial, J., Zhu, H.: Formalizing hybrid systems with event-b and the rodin

platform. Sci. Comput. Program. 94, 164–202 (2014). https://doi.org/10.1016/
j.scico.2014.04.015, https://doi.org/10.1016/j.scico.2014.04.015

39. Taha, S., Wolff, B., Ye, L.: The HOL-CSP refinement toolkit. Arch. Formal Proofs
2020 (2020), https://www.isa-afp.org/entries/CSP_RefTK.html

40. Taha, S., Ye, L., Wolff, B.: HOL-CSP Version 2.0. Archive of Formal Proofs (Apr
2019), http://isa-afp.org/entries/HOL-CSP.html

41. Taha, S., Ye, L., Wolff, B.: Philosophers may Dine - Definitively! In: Furia, C.A.
(ed.) Integrated Formal Methods (iFM). No. 12546 in Lecture Notes in Com-
puter Science, Springer-Verlag, Heidelberg (2020). https://doi.org/10.1007/
978-3-030-63461-2_23

42. Van, H.N., Balabonski, T., Boulanger, F., Keller, C., Valiron, B., Wolff,
B.: On the semantics of polychronous polytimed specifications. Springer
(2020). https://doi.org/10.1007/978-3-030-57628-8_2, https://doi.org/10.
1007/978-3-030-57628-8_2

43. Van, H.N., Boulanger, F., Wolff, B.: TESL: AModel with Metric Time for Modeling
and Simulation. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2020). https:
//doi.org/10.4230/LIPIcs.TIME.2020.15, https://drops.dagstuhl.de/opus/
volltexte/2020/12983

https://api.semanticscholar.org/CorpusID:273492134
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://www.isa-afp.org/entries/CSP_RefTK.html
http://isa-afp.org/entries/HOL-CSP.html
https://doi.org/10.1007/978-3-030-63461-2_23
https://doi.org/10.1007/978-3-030-63461-2_23
https://doi.org/10.1007/978-3-030-63461-2_23
https://doi.org/10.1007/978-3-030-63461-2_23
https://doi.org/10.1007/978-3-030-57628-8_2
https://doi.org/10.1007/978-3-030-57628-8_2
https://doi.org/10.1007/978-3-030-57628-8_2
https://doi.org/10.1007/978-3-030-57628-8_2
https://doi.org/10.4230/LIPIcs.TIME.2020.15
https://doi.org/10.4230/LIPIcs.TIME.2020.15
https://doi.org/10.4230/LIPIcs.TIME.2020.15
https://doi.org/10.4230/LIPIcs.TIME.2020.15
https://drops.dagstuhl.de/opus/volltexte/2020/12983
https://drops.dagstuhl.de/opus/volltexte/2020/12983

On The Road Again (Safely): Modelling and Analysis of
Autonomous Driving with STARK

Sebastián Betancourt and Valentina Castiglioni

Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. STARK has been introduced for the specification, analysis and verifi-
cation of cyber-physical systems operating under uncertainty. In this paper, we
apply it to the modelling and safety analysis of several instances of a highway en-
vironment with autonomous vehicles: One vehicle will be controlled by a STARK

agent, while the others are modelled as part of a STARK environment. Given the
unpredictable behaviour of the environment, we analyse some safety guarantees
on the behaviour of the agent in terms of its robustness against perturbations
by means of the temporal logic RobTL and statistical model checking. We then
discuss the use of STARK for the validation of the behaviour of reinforcement
learning agents in the highway environment with the temporal logic DisTL.

1 Introduction

Human error is the main cause of accidents on the road: several physical and psycho-
logical factors (such as high speed, impairing substances, stress, and fatigue) can alter
the driver’s perception of the environment and invalidate their ability to react promptly
and correctly to events. For this reason, since the mid-1980s, researchers have been
studying and developing autonomous driving systems (ADS) that can support drivers
and reduce the number of accidents. As an outcome, the majority of drivers can nowa-
days benefit from the assistance of a number of devices, like ABS, parking and lane
assistants, cruise controllers, etc. In this setting, the driver still needs to ensure the safe
behaviour of the vehicle, as those devices are only meant to support them. The advent
of new technologies, such as learning methods and artificial intelligence, has raised ex-
pectations about autonomous vehicles: The goal is now to develop an ADS that can
replace the driver [21,1].

There are numerous challenges to overcome before we can achieve such a goal,
ranging from liability [15] to the integration of numerous heterogeneous devices [2].
From the point of view of formal methods, the main challenge is to provide the means
to guarantee the correctness and safety of the ADS before they can be deployed. Specif-
ically, we need to develop verification techniques that allow us to deal with the un-
predictable and uncontrollable behaviour of the environment in which the system is
deployed. Despite the wealth of methodologies and tools that can be found in the liter-
ature for verification of safety-critical systems, autonomous vehicles are still involved
in several accidents that are caused by faulty decisions taken by their controllers. These
can be due to altered sensing due to adverse weather conditions [31], training data that
do not cover rare events [10], delays in communication between all components of the
vehicle [19], sensor and actuator failures [20], etc.

https://orcid.org/0009-0003-4365-9438
https://orcid.org/0000-0002-8112-6523

2 S. Betancourt and V. Castiglioni

Table 1: Parameters for vehicles.
Physical parameter Value Unit Action Value

vmax 40 m/s2 FASTER 1.0
amax 5.0 m/s2 IDLE 0.0
bmax 5.0 m/s2 SLOWER −1.0
bmin 3.0 m/s2 LANE LEFT 1.0
l 5.0 m LANE RIGHT −1.0
w 2.0 m
TIMER t s

Therefore, it is fundamental to provide the tools for verifying robustness of an ADS
against uncertainty and perturbations [11,24,22,29,12,17].

In this paper, we use the case study proposal from [18] on autonomous driving on
the highway environment from [16], to show how we can use the STARK tool [9] to
analyse the robustness of ADS against perturbations.

STARK has been initially developed for the specification, analysis, and verification
of robustness properties of cyber-physical systems operating under uncertainty, but has
also seen some recent successful applications in the analysis of digital twins [3] and
biological systems [7]. Moreover, in [6,9,4] the tool has been applied to study various
ADS case studies: obstacle avoidance with one [9] or two [6] autonomous vehicles, and
a control system that assists the driver in reaching a tollbooth [4].

We note that STARK is a tool for testing and verifying systems, rather than their
design. Hence, our approach is meant to be complementary to controller synthesis. For
this reason, in this paper we will not discuss safe design principles for controllers but
provide a quantification of safety guarantees on their behaviour expressed in terms of
their robustness against perturbations. These are obtained through formal verification of
the requirements in Robustness Temporal Logic (RobTL) [8] and in Distribution Tem-
poral Logic (DisTL) [4]. Specifically, we will consider four instances of the proposed
highway environment. In all of those, we consider a single controlled vehicle with one
or more uncontrolled ones, the difference being that we model the controller of the for-
mer, whereas the latter vehicles are modelled within the environment. We will then use
RobTL to analyse the robustness of the controlled vehicles in the following scenarios:
1. Single lane with one uncontrolled vehicle; 2. Single lane with two uncontrolled vehi-
cles; 3. Two lanes with one uncontrolled vehicle. As a fourth case study, we use RobTL
and DisTL to validate the controller of a reinforcement learning agent in a three-lane
highway environment with several uncontrolled vehicles.

2 Autonomous Driving on Highways

In this section, we summarise the design and specification requirements for the highway
environment from [16,18]. All vehicles move in a 2D plane that consists of a straight
highway with one or more lanes. There are no obstacles on the road and all the vehicles
are moving in the same direction. We assume that each vehicle has access to the posi-
tions and speed of all other vehicles, and we abstract away from the perception system
acquiring this information. The only distinguishing feature of vehicles is whether they

Autonomous driving with STARK 3

are controlled or not. They are identical in all physical aspects: they are l metres long
and w meters wide; their speed range is [0, vmax]m/s, which means they cannot move
backward, and the acceleration range is [0, amax] m/s2 if the vehicle is not moving;
otherwise, the range is [−bmax, amax] m/s2. Specifically, when braking, the acceler-
ation range is in [−bmax,−bmin] m/s2, since a minimum deceleration of bmin m/s2

is guaranteed. The values of these parameters, taken mainly from [16,18], are reported
in Table 1. In addition, all vehicles are characterised by a cycle, or TIMER, expressing
the frequency at which they can observe the environment and make decisions on which
action to take until the next cycle. In all scenarios, and thus regardless of the number of
lanes, vehicles can choose among the following three actions:

– FASTER: This action increases the speed up to vmax with an acceleration up to amax.
If the car speed is vmax, the acceleration is 0.

– SLOWER: This action decreases speed with a braking deceleration between bmin and
bmax. If the car speed is 0, the braking deceleration is 0.

– IDLE: This action sets the current (braking) acceleration close to 0, that is, between
[−∆idle, ∆idle], for some small ∆idle > 0.

We note that the choice of an action does not guarantee a determined value of accelera-
tion. We will show how this uncertainty can be easily modelled in STARK.

When a multilane scenario is considered, the number of lanes does not change over
time, and in each cycle, the vehicles can decide to take action FASTER, SLOWER, IDLE,
or to change lanes by means of actions:

– LANE LEFT: This action sets the acceleration to IDLE, and changes the current lane
of the vehicle to the lane directly left of it within the current cycle.

– LANE RIGHT: This action sets the acceleration to IDLE, and changes the current
lane of the vehicle to the lane directly to the right of it within the current cycle.

Actions LANE LEFT and LANE RIGHT are automatically performed by a steering con-
troller, managing the operational details of the lane change that are abstracted away.

We note that the TIMER of the vehicles are not necessarily synchronised. Hence,
although all vehicles can observe the environment at the same frequency, they can make
decisions and move between lanes, at different moments.

Safety requirements The principal safety requirement, over which we will focus our
analysis in the paper, is collision avoidance.

SAF All vehicles must avoid collisions.

SAF can be achieved by maintaining a safety distance. On a single lane, the Responsi-
bility-Sensitive Safety (RSS) model [23] defines the safety distance between a rear and
a front vehicle, with speed vr and vf respectively, both having response time σ, as:

RSSgap(σ, vr, vf) = max

{
0, σ · vr +

amax

2
σ2 +

(vr + σ · amax)
2

2bmin
−

v2f
2bmax

}
(1)

In the multi-lane environment we will combine RSS with other requirements based on
safety rules and common sense (see Section 5 for a detailed discussion). Specifically,
we will check whether the controlled vehicle adheres to the following requirements:

4 S. Betancourt and V. Castiglioni

R2L A vehicle in the rightmost (respectively, leftmost) lane cannot perform action
LANE RIGHT (respectively, LANE LEFT).

KIR Always occupy the rightmost free lane.
SO Overtake only when it safe to do so.

The main objective of our analysis will be to study robustness of such a safe con-
troller against unexpected events. The scripts for the case studies are available at http
s://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/.

Remark 1. According to the design requirements, the response time σ in (1) is equal to
the duration of a cycle, and in the models we use the parameter TIMER to represent both.
The issue is to find a suitable value for it: in fact, one requirement is that lane changes
are completed within a cycle. In real life, the frequency with which a controller can react
to the environment and the time required to safely change lane are incomparable (on the
order of milliseconds [13] versus seconds [25]). Therefore, we had two possibilities:
either to adhere to the standard frequency of controllers and accept to have vehicles
almost teleporting from one lane to another, or to follow a more realistic kinematic
model and work with slower than human controllers. We opted for the latter option
because we find it more insightful from the point of view of safety analysis (if a slower
controller is robust, so is a faster one). Hence, in our case studies TIMER is a natural
number t ≥ 1.

Remark 2. Given the strong dependency on initial conditions and parameter values, it
would be absurd to claim that we can guarantee that the vehicles will behave safely in
all possible scenarios. In fact, there are cases where it is not possible to avoid collisions,
no matter how well the controller is designed. For example, on a single lane with the
controlled vehicle in between the other two, the controlled vehicle cannot do anything
to avoid collisions if the rear vehicle never brakes. Similarly, if the controlled vehicle
initially has the accelerator at amax and is positioned at a distance of 5m from the
preceding vehicle that is braking, the collision is inevitable. Hence, in our studies, we
will always start simulations in safe conditions, with uncontrolled vehicles showing
reasonable behaviour.

3 Modelling the Highway Environment with STARK

STARK offers the evolution sequence model [5] for the representation of systems be-
haviour, and the Robustness Temporal Logic (RobTL) [8] and Distribution Temporal
Logic (DisTL) [4] for the specification of requirements on such behaviour.

In this section, we make use of a simple instance of the highway environment to
showcase the features of the tool and to give the reader a grasp on how to build models
with it. Specifically, we consider a highway scenario consisting of a single lane with two
vehicles driving on it, one following the other. We assume that, initially, the vehicles
have the same speed, the accelerator of the rear vehicle is set to IDLE and that of the
front vehicle to FASTER, and the vehicles are at a distance compatible with the initial
RSS gap (Remark 2). The objective of the case study is to model a controller of the rear
vehicle (index 1) that is robust against unsafe, perturbed, behaviour of the vehicle in

https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/
https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/

Autonomous driving with STARK 5

Table 2: Parameters and variables for modelling the one lane two vehicles scenario.
Name Description Initial value

TIMER Time interval between actions of vehicles. 1
IDLE OFFSET When action IDLE is selected, acceleration is set within [−IDLE OFFSET, IDLE OFFSET]. 1
intent Value representing the action to be performed by the controlled vehicle (−1.0 = SLOWER, 0.0

0.0 = IDLE and 1.0 = FASTER).
v(i) Physical speed of vehicle i ∈ {1, 2}. 15.0
a(1) Physical acceleration of vehicle 1. 0.0
a(2) Physical acceleration of vehicle 2. 5.0
gap Distance between the front-most point of vehicle 1 and the rear-most point of vehicle 2. 100.0
safe gap Safety gap distance RSSgap(ρ, v(1), v(2)) between vehicles. 66.67

front (index 2). See the script at https://github.com/quasylab/jspear/blob/
ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/SingleLaneTwoC

ars.java for the implementation.

The Model. The evolution sequence model [5] follows a discrete-time, data-driven ap-
proach: the behaviour of the system is modelled in terms of the modifications that the
interaction of a set of agents with a environment induces in a data space, containing the
values assumed by variables, representing physical quantities, sensors, actuators, and
internal variables of agents. The parameters and variables of the considered case study,
in addition to the physical values in Table 1, are listed in Table 2. We call data state
the current state of the data space, and we represent it by mapping d from variables to
values. Due to the unpredictability of the environment and the potential approximations
in the specification of agents, these modifications are modelled as continuous distribu-
tions on the attainable data states. The evolution sequence of a system is then defined
as the sequence of the distributions over data states that are obtained at each time step.
Given an evolution sequence S, Sτ denotes the distribution reached at time τ in S.

The separation between agents and environment is ideal for the highway case study:
we can model the controller of the chosen vehicle as a STARK agent and use a STARK
environment to model the uncontrolled vehicle(s) and all physical events. Moreover, as
we can specify uncertainties within the models, we can easily account for the noise on
the accelerator actuator as given in the specification. We note that in this instance of the
case study, we set TIMER = 1. Hence, following the discrete-time approach, we assume
the duration of a computation step in the simulation to be 1s, so that both the agent and
the environment observe and modify the data at each step.

The Controller. STARK agents are specified as processes in a generative probabilistic
process calculus [5] that includes, among other operators, action prefixes of the form
(e → x).P , with e ranging over expressions over values and variables, x ranging over
variables, and · denoting a finite sequence of elements; conditional processes of the form
if[e]P1 else P2; and process variables. Here, we recall that, in a single step, a process
can read and update a set of state variables. This is done by the process (e → x).P that
modifies the current data state d by applying the sequence of assignments e → x to it.
The modified data state will then change according to the environment, and, in the next
step, the process will behave like P on the (distribution over) data states.

https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/SingleLaneTwoCars.java
https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/SingleLaneTwoCars.java
https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/SingleLaneTwoCars.java

6 S. Betancourt and V. Castiglioni

Algorithm 1 One lane, two vehicles: STARK agent for controlled vehicle

Control
def
= if [gap > safe gap] (FASTER → intent).Control ▷ do action FASTER

else if [gap < safe gap] (SLOWER → intent).Control ▷ do action SLOWER

else (IDLE → intent).Control ▷ do action IDLE

Algorithm 2 One lane, two vehicles: Environment
1: if intent = FASTER then
2: a(1) ∼ U [0, amax]; ▷ uniformly distributed in the interval
3: else if intent = SLOWER then
4: a(1) ∼ −U [bmin, bmax];
5: else a(1) ∼ 0.5 ∗ U [−IDLE OFFSET, IDLE OFFSET];
6: a(2) ∼ U [0, amax]; ▷ accelerator of uncontrolled vehicle
7: gap = gap− (a(1)/2 + v(1)) + (a(2)/2 + v(2));
8: v(1) = min{max{0, v(1) + a(1)}, vmax};
9: v(2) = min{max{0, v(2) + a(2)}, vmax};

10: safe gap = RSSgap(TIMER, v(1), v(2)); ▷ see Equation (1)

In Algorithm 1 we report the process Control that models the vehicle controller in
the case study considered. The decision on which action to take among FASTER, SLOWER
and IDLE is based on the comparison of the current distance from the preceding vehicle,
with the value of the RSS gap.

The Environment. A STARK environment consists of a set of (randomised) functions
that model the effects of physical phenomena and events on data. These also include
the update of the variables that represent the physical aspects of the agents STARK. As
shown in Algorithm 2, once agent Control has set variable intent, the environment
will first update the accelerator value with the corresponding noisy acceleration value
a(1). Given the simplicity of the case study, we have taken this noise to extreme val-
ues: for example, when the controller selects the action FASTER, the actual value of
the acceleration is drawn uniformly from [0, amax]. Then, the environment will com-
pute the distance that the vehicle will cover in one step given the acceleration and the
new speed v(1). The environment is also responsible for updating the behaviour of the
uncontrolled vehicle. In the absence of perturbations, this follows a regular behaviour:
since there are no obstacles on its way, it will continue to select action FASTER. Also in
this case, the actual value of the acceleration is noisy.

Verification: RobTL. It is quite straightforward to conclude that, as long as we con-
sider the specified (ideal) behaviour of the agent and the environment, SAF is satisfied:
the vehicle in front never brakes and the controlled vehicle brakes as soon as the RSS
gap is violated. In fact, classic model-checking techniques can be used to formally ver-
ify that this is the case. However, we find it more interesting to check whether the
controller is robust, namely, it is able to maintain this safe behaviour even in situations
that are not ideal, that is, even if the uncontrolled vehicle is not behaved as expected,
because, for example, the driver is drunk or brake checker. The analysis of robustness

Autonomous driving with STARK 7

properties boils down to being able to measure both the effects of perturbations on the
behaviour of a system and the capability of a (perturbed) system to fulfil its original
tasks. To this end, STARK exploits RobTL [8], which allows us to express the temporal
properties of distances over system behaviours, and consists of a language P to spec-
ify perturbations; a language DE to specify distance expressions; classic Boolean and
temporal operators to specify requirements on evolution of distances in time.

A perturbation is the effect of unpredictable events on the current state of the system
that can be repeated or different in time. Hence, we model it as a time-dependent func-
tion that maps a data state into a distribution on data states. Specifically, a perturbation
p ∈ P is a list of mappings in which the i-th element describes the effects of p at time i.
The language P is defined by:

p ::= id | f@τ | p1 ; p2 | pn

where p ranges over P, n and τ are finite natural numbers, and: 1. id has no effects
and behaves like the identity function; 2. f@τ applies a function f, mapping a data state
to a distribution over data states, after τ time steps from the current instant; 3. p1 ; p2
applies p1 and p2 sequentially; 4. pn applies p, sequentially, for a total of n times. For
instance, we can capture the behaviour of a drunk driver by means of perturbation

pdd(τ, n,DD) = (fDD@τ − 1)n

that applies function fDD every τ steps for a total of n times, where fDD(d) = d′ with

d′(a(2)) =

{
add ∼ U(X) if u ∼ U [0, 1] ≤ DD

d(a(2)) otherwise

expressing that with probability DD variable a(2) assumes a value add drawn uniformly
from X = [0, amax] ∪ [−bmax,−bmin], regardless of safety conditions. Although not
reported here, due to space limitations, the atomic function fdd also updates the values
of v(s), gap and safe gap in d′, using the new value of a(2). Similarly, we can model
a brake checker by means of pbc(τ, n,BC) = (fBC@τ − 1)n, where fBC differs from
fDD, in that a(2) assumes the value −bmax with probability BC.

Once we have the two behaviours, nominal and perturbed, we use the expressions
in DE to define distances over them. These are based on a distance from the ground over
the distributions of data states measuring their differences with respect to a given task.
Firstly, to capture a particular task, we use a penalty function ρ assigning to each data
state d a penalty in [0, 1]. For instance, the penalty function

ρcrash(d) =

{
1 if d(gap) ≤ 0

0 otherwise

assigns the maximal penalty 1 to those data states in which the two vehicles collided
(their distance, gap, is 0 or less). We then use penalty functions to define a ground dis-
tance mρ on data states. For the case studies in this article, it suffices to consider the
metric mρ as the Euclidean distance on [0, 1]. Then, we make use of the Wasserstein

8 S. Betancourt and V. Castiglioni

(a) One lane, three vehicles (b) Two lanes, two vehicles: Scenario 1

(c) Two lanes, two vehicles: Scenario 2 (d) Two lanes, two vehicles: Scenario 3

Fig. 1: Scenarios considered in Sections 4 and 5. The controlled vehicle is depicted in green.

lifting [28] to lift mρ to a metric W(mρ) over distributions over data states. For in-
stance, assuming that S is the nominal behaviour and Spdd,t is its perturbation obtained
by applying pdd to S as step t, we have that W(mρcrash

)(Sτ ,Sτ
pdd,t

) gives us the prob-
ability of a collision occurring at step τ in the perturbed system (as ρcrash(d) = 0 for
all d in Sτ). In the language DE, this distance is expressed by means of the atomic dis-
tance expression <ρcrash evaluated at step τ on S and Spdd,t. The language DE provides,
among others, three temporal expression operators, namely FI , GI and UI , allowing
the evaluation of minimal and maximal distances over time. Specifically, the evaluation
of the distance expression

Mcrash = G[0,300] <ρcrash

in S and Spdd,t gives us the maximum evaluation of <ρcrash in the time interval [0, 300],
that is, the maximum probability of a collision occurring in [0, 300].

To complete the specification of the desired robustness property, we use formulae
in RobTL, that are defined by:

φ ::= ⊤ | ∆(de, p) ▷◁ η | ¬φ | φ ∧ φ | φ UI φ

where φ ranges over formulae, de ranges over expressions in DE, p ranges over pertur-
bations in P, ▷◁ ∈ {<,≤,≥, >}, η ∈ [0, 1], and I is a bounded time interval.

Formulae are evaluated in an evolution sequence and a time instant. The semantics
of the classic Boolean and temporal operators is standard and is based on the evaluation
of atomic formulae ∆(de, p) ▷◁ η. The pair S, τ satisfies ∆(Mcrash, pdd(3, 20, 0.8)) ≤
0.1 if the distance Mcrash between S and Spdd,τ is ≤ 0.1. Then, formula

φSAF = □[0,100](∆(Mcrash, pdd(3, 20, 0.8)) ≤ 0.1)

expresses that regardless of when pdd is applied to the system in the first 100 steps, it is
always the case that the maximum probability of a collision to occur within 300 steps
following the initial application of pdd is at most 0.1.

Autonomous driving with STARK 9

Table 3: Additional variables for one lane and three vehicles, i ∈ {1, 2, 3}.
Name Description Initial value

v(i) Physical speed of car i. 0.0
a(i) Physical acceleration of car i. 1.0
gap(1) Distance between the front-most point of car 1 and the rear-most point of car 2. 300.0
gap(2) Distance between the front-most point of car 2 and the rear-most point of car 3. 300.0
safe gap(1) Safety gap distance RSSgap(ρ, v(1), v(2)) between car 1 and 2. 11.67
safe gap(2) Safety gap distance RSSgap(ρ, v(2), v(3)) between car 2 and 3. 11.67

Algorithm 3 Single lane three vehicles: process Control

1: Control
def
= if [gap(1)=safe gap(1) ∧ gap(2)=safe gap(2)] (IDLE → intent).Control

2: else if [gap(1) < safe gap(1) ∧ gap(2) < safe gap(2)]
3: if [gap(1) < gap(2)](FASTER → intent).Control
4: else (SLOWER → intent).Control
5: else if [gap(2) < safe gap(2)](SLOWER → intent).Control
6: else (FASTER → intent).Control

4 One Lane, Three Vehicles

We consider a single-lane highway with a controlled vehicle (index 2) driving between
two uncontrolled ones (index 1 for the rear one and 3 for the front one); as depicted in
Figure 1a. See the script at https://github.com/quasylab/jspear/ABZ_202
5/examples/ABZ2025/src/main/java/Scenarios/OneLaneThreeCars.java

for the implementation. The variables specific to this scenario are listed in Table 3.
The objective of the controlled vehicle is to keep the front (respectively rear) dis-

tance bigger than the front (respectively rear) safety gap distance, to ensure SAF. The
challenge is to decide whether to accelerate or brake in case one or both RSS gaps
are violated. In Algorithm 3 we implement a STARK agent to tackle this challenge by
prioritising the riskier gap: if both RSS gaps are violated, the vehicle chooses action
FASTER if it is closer to vehicle 1, and SLOWER otherwise. In the other cases, the RSS
gap with vehicle 3 determines the choice of action as in Algorithm 1.

The environment takes charge of the kinematics and uncontrolled cars. To make the
case study more demanding and relevant from the perspective of robustness analysis,
we enable only action FASTER for vehicles 1 and 3, and only perturbations can make
them decelerate. The other physical quantities are updated as in Algorithm 2.

Analysis. We note that in this scenario the likelihood of collision is highly dependent on
the initial values of variables such as gap(i) and v(i). Hence, we set those values in such
a way that SAF is satisfied in the nominal system and focus on the robustness analysis
(cf. Remark 2). Specifically, we evaluate the robustness of the controller against pertur-
bations pdd and pbc with respect to RSS violations. In Figure 2, we report the average
values of gap(i) and safe gap(i) (i = 1, 2) over the first 200 time steps in a simula-
tion with 104 samples. In Figure 2a we consider the nominal behaviour of the system;
in Figure 2b pdd(2, 20, 0.2) is applied; and in Figure 2c we apply pbc(2, 20, 0.2). In all

https://github.com/quasylab/jspear/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/OneLaneThreeCars.java
https://github.com/quasylab/jspear/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/OneLaneThreeCars.java

10 S. Betancourt and V. Castiglioni

(a) Average gap and safe gap with no perturbation (b) Average gap and safe gap with pdd(3, 20, 0.2)

(c) Average gap and safe gap with pbc(3, 20, 0.2) (d) Pointwise evaluation of <ρsgv , ηsgv = 0.1

Fig. 2: Simulations for scenario 1 lane 3 cars (200 steps, 104 samples).

cases, the closer the value of gap(i) to the value of safe gap(i), the more likely a vio-
lation of the RSS gap (and thus a collision) will occur. We are interested in quantifying
the severity of such a violation. To this end, the following penalty function measures the
(normalised) maximum violation in the RSS gap with the two uncontrolled vehicles:

ρsgv(d) =

[
max

{
d(safe gap(1))−d(gap(1))

d(safe gap(1))
,
d(safe gap(2))−d(gap(2))

d(safe gap(2))

}]1
0

with [r]10 = min(max(r, 0), 1) for every r ∈ R. Then, the distance expression Msgv =
G[0,200] <ρsgv gives the maximum pointwise distance, with respect to severity of vio-
lation, between the distributions that are reached in the first 200 computation steps in
S and Spdd,0 (respectively, Spbc,0). Figure 2d shows the pointwise evaluation of <ρsgv

over the nominal and perturbed evolution sequences.
Given a maximum acceptable severity of violation of the RSS gap of ηsgv = 0.1,

the formula

φsgv,dd = ∆(Msgv, pdd(3, 20, 0.2)) ≤ 0.1

is satisfied by the pair S, τ if the controller manages to keep the entity of the violation
of the RSS gaps below the 10%, over the interval [τ, 200 + τ], when pdd(3, 20, 0.2) is
applied at step τ . A similar formula, φsgv,bc, can be constructed for the perturbation
pbc. In our experiments, the evaluations of φsgv,dd and φsgv,bc show that the system is
robust against pdd but it is not robust enough against pbc (cf. Figure 2d).

Autonomous driving with STARK 11

Algorithm 4 Multiple lanes controller: process Idling

1: Idling
def
= if [timer(1) > 0]

√
.Idling ▷

√
.P idles for one step and then behaves like P

2: else Control

5 Modelling Multiple Lanes

We now consider three instances of a highway environment with two lanes and two
vehicles, one controlled by a STARK agent (index 1) and one by the environment (index
2). The reader may see illustrations for these instances in Figure 1. In scenario 1, both
vehicles are initially placed on the rightmost lane, with vehicle 1 following the other.
The objective of vehicle 1 is to continue in the rightmost lane unless it is possible
to overtake in a safe manner (R2L,SO). Vehicle 2 respects the safety distance from
the other vehicle and proceeds in the rightmost free lane. In Scenario 2, vehicle 1 is
initially positioned on the leftmost lane, preceding vehicle 2 that is moving from the
rightmost to the leftmost lane. The objective of vehicle 2 is to occupy the leftmost
lane and never leave it. Vehicle 1 has to leave the leftmost lane free as soon as it is
necessary and safe to do so (R2L,KIR). In Scenario 3, the initial condition is as in
Scenario 1. However, vehicle 2 is now free to change lane and overtake vehicle 1, as
long as those manoeuvres are performed when it is safe to do so. Vehicle 1 has to adapt
to its behaviour and comply with the following directives: proceed in the rightmost lane
whenever possible and overtake only when it is safe to do so (R2L,KIR,SO).

We give only a high-level overview of the models and analysis performed in the
case study. All details can be found at https://github.com/quasylab/jspear/b
lob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/TwoLanesTw

oCars.java.

The Model. To keep track of the position of a vehicle on the highway, we will use vari-
ables x(i), y(i). We assume x ≥ 0, as the origin of the x axes can always coincide with
the initial position of the rear vehicle, and y ∈ [0, 8], as we consider two lanes, each 4
m wide. The distance between the two vehicles is then given by their Euclidean norm
on R2. The main differences from the previous sections are that we consider a cycle of
length TIMER > 1, and that actions LANE LEFT and LANE RIGHT are now enabled. Each
vehicle is equipped with a timer (timer(i)) that is decreased by 1 at each step, and the
vehicle can perform an action only when the timer is equal to 0, and idles otherwise
(see Algorithm 4). The timer is reset to TIMER once an action is selected. By setting
the initial values of the two timers at different values in [0, TIMER] we can interleave
the decisions taken by the two vehicles. As a consequence, the conditions under which
the STARK agent Control takes a decision, might be invalidated by the choices taken
by the other vehicle during the idling time. In the following, we discuss the relation
between the value of TIMER and the robustness against perturbations. Regarding lane
changes, the choices made by Control are based on the safety and driving regulations
SAF, R2L, KIR, and SO. We remark that, given the limitations in kinematics imposed
by the specification, we cannot properly model and quantify the lateral speed of vehi-
cles. Hence, the RSS formula for safe lateral distance [23] cannot be used in vehicle

https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/TwoLanesTwoCars.java
https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/TwoLanesTwoCars.java
https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/TwoLanesTwoCars.java

12 S. Betancourt and V. Castiglioni

Algorithm 5 Multiple lanes controller: process Control (snippet)

1: Let (go right) = (IDLE → intent, LANE RIGHT → move(1), TIMER → timer(1))

2: Control
def
= if [timer(1) > 0]

√
.Control

3: else if [lane(1) = 1] ▷ if vehicle on the leftmost lane
4: if [gap > safe gap] (go right).Moving right
5: else if [pos(1) = 1] ▷ if vehicle precedes the other
6: if [lane(2) = 1] (go right).Moving right ▷ on the same lane
7: else (FASTER → intent, TIMER → timer(1)).Idling
8: . . .

Algorithm 6 Multiple lanes controller: process Moving right

1: Let (fast) = (FASTER → intent, 0 → move(1), 0 → lane(1), TIMER → timer(1))
2: Let (slow) = (SLOWER → intent, 0 → move(1), 0 → lane(1), TIMER → timer(1))
3: Let (nul) = (IDLE → intent, 0 → move(1), 0 → lane(1), TIMER → timer(1))

4: Moving right
def
= if [timer(1) > 0]

√
.Moving right

5: else if [pos(1) = 1 ∨ gap > safe gap] (fast).Idling
6: else if [gap = safe gap] (nul).Idling
7: else (slow).Idling

decision-making. Hence, we design the controller so that the safe behaviour is enforced
by means of evaluations of (1) combined with specific requirements based on the rela-
tive position of the vehicles. Due to space limitations, we only report process snippets
related to the LANE RIGHT action (Algorithm 5). Vehicle 1 can move from the leftmost
to the rightmost lane either if its distance from vehicle 2 is larger than the RSS gap, or
in case both vehicles are on the leftmost lane and vehicle 2 is approaching vehicle 1 at
a high speed. To avoid zigzag behaviour, agent Moving right can only decide, once the
timer allows it, how to set the accelerator, by means of actions FASTER, IDLE, SLOWER,
based on the relative position of the two vehicles and the RSS gap (Algorithm 6). Vehi-
cle 1 is allowed to move from the right to the left lane only when it is possible to safely
perform an overtake. This means that both vehicles are in the right lane, vehicle 1 fol-
lows the other, and the distance between them is at least 80% of the RSS gap. Otherwise,
the controller will choose among actions FASTER, IDLE, SLOWER as in Algorithm 1.

Given that vehicle 2 behaviour differs in the three scenarios, we have modelled
an environment for each. In all of those, the variables that represent the behaviour
of vehicle 1 are updated as in Algorithm 2. The only difference is in the update of
the vehicle’s position, which has to take lane changes into account. Since it takes a
whole cycle for vehicles to change lane, regardless of their current speed, at each
step we let x(1) = x(1) + (a(1)/2 + v(1)) ∗ cos((π/9) ∗ move(1)) and y(1) =
min{8,max{0, y(1) + move(1) ∗ 4/TIMER}}. The choice of a steering angle of π/9 is
based on mean values and studies on safety control [30]. The factor 4/TIMER follows
by the assumption that the vehicle will keep the centre of each lane. In the environ-
ments, the behaviour of vehicle 2 follows the description given above: always keeping
the rightmost lane in Scenario 1; always trying to occupy the leftmost lane in Scenario
2; a randomised behaviour in Scenario 3. In all cases, the actions taken by the vehicle

Autonomous driving with STARK 13

(a) Scen. 1 (1 sample) (b) Scen. 2 (1 sample) (c) Scen. 3 (1 sample)

(d) Scen. 1 (105 samples) (e) Scen. 2 (105 samples) (f) Scen. 3 (105 samples)

(g) Scen. 1 perturbed (105 samples) (h) Scen. 2 perturbed (105 samples) (i) Scen. 3 perturbed (105 samples)

Fig. 3: Nominal and perturbed trajectories of the two vehicles in the three scenarios.

are subject to safety checks based on the RSS gap and the relative position of the vehi-
cles. However, to favour lane changes, in Scenarios 1 and 3 we limit the maximal speed
of vehicle 2 to 35m/s2, and in Scenario 2 we limit the maximum speed of vehicle 1 to
the same value. Moreover, vehicle 2 randomly selects an action among those that can
be performed safely. Hence, for instance, there is a (small) chance that vehicle 2 will
brake even if it is not necessary. In Figure 3 we report the trajectories in the first 300
steps of the two vehicles in the three scenarios, with TIMER = 2. In the upper part, we
report a single trajectory, whereas in the central part, we report the average trajectories.

Analysis. We consider the reckless driver perturbation prd, which takes advantage of
the possibility of changing lanes. Formally, prd = id@5; (frd@2)50, which means that
after 5 steps the perturbation applies the function frd every 3 steps for 50 times. Briefly,
the function frd is such that, whenever the distance between the two vehicles is at least
25% of the RSS gap, vehicle 2 changes lane with probability 0.6. Otherwise, the value
of the gap between vehicles is perturbed by a random value in [0, l × w]. In the bottom
part of Figure 3, we report the mean trajectories under the effect of prd in the three
scenarios.

14 S. Betancourt and V. Castiglioni

(a) TIMER = 2. (b) TIMER = 5.

Fig. 4: Pointwise evaluation of <ρSI over [0, 300] in the three scenarios w.r.t. different timers.

In fact, one can perform an analysis of robustness against prd with respect to the
probability of collision, as done in Section 3. To make full use of the features of STARK
and RobTL, we combine this requirement with robustness with respect to severity of
impact. This is determined by taking into account the speed of vehicles when an impact
occurs: the higher the speed, the more severe the consequences of the collision [26].
Given the limitations in our kinematics model, we measure the severity of the impact
by SI(v(1), v(2)) = 0.5 ∗ |v(1)− v(2)|. We then use the penalty

ρSI(d) =

{
SI(d(v(1)),d(v(2)))/vmax if d(crash) = 1

0 otherwise

to obtain the normalised value of the severity of impact when a collision occurs. The
variable crash is set to 1 if there is a collision, that is, if the l×w rectangle centred on
(d(x(1)), y(1)) intersects the l×w rectangle centred on (d(x(2)), y(2)). The distance
expression MSI = G[0,300] <ρSI then allows us to evaluate the maximum value of the
pointwise distance between distributions with respect to severity of impact over the
interval [0, 300]. We remark that here we use the Wasserstein distance to quantify the
magnitude of the event weighted by its likelihood to occur. Specifically, we can use the
atomic formula φSI = ∆(MSI, pSI) ≤ 0.01 to check whether impacts at high speed
are very unlikely (high value of ρSI, but negligible probability of having crash = 1),
or if collisions are inevitable, at least they occur at low speed (crash = 1 with high
probability, but really small value of ρSI). By combining this formula with φcrash =
∆(Mcrash, pSI) ≤ 0.01 which limits the probability of collisions, we obtain a strong
requirement of the robustness of the system against perturbation prd

φSAF
crash&SI = □[0,200](φcrash ∧ φSI).

A similar analysis can be carried out for the safety requirements R2L, KIR, and SO
(see https://github.com/quasylab/jspear/blob/ABZ_2025/examples/AB
Z2025/src/main/java/Scenarios/TwoLanesTwoCars.java for details).

For TIMER = 2, the system is robust against prd in all three scenarios. In fact, the
distances considered are compared to 0 (Figure 4a). As one can expect, if we increase
the value of TIMER, i.e. the time interval between the decision of the controllers, then

https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/TwoLanesTwoCars.java
https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/TwoLanesTwoCars.java

Autonomous driving with STARK 15

(a) <ρcrash . (b) <ρSI .

Fig. 5: Pointwise evaluation of <ρcrash and <ρSI over [0, 300] in Scenario 3, with the first appli-
cation of prd at step varying from step 1 to step 5.

the safety guarantees decrease. Figure 4b shows the pointwise evaluation of <ρSI (with
pSI applied at step 0) when TIMER = 5. Then, in Figure 5 we report the point-wise
evaluations of <ρcrash and <ρSI in Scenario 3, with respect to the variation of the first
step in which prd is applied. Variations in the evaluations show that the perturbation
can be more or less disruptive, depending on when it hits the system and how fast the
controllers can react to it. Interestingly, the system still satisfies φSAF

crash&SI for TIMER =
5, since the maximum values of the distances are still bounded by the tolerance 0.01.

6 Robustness of AI Agents

Ensuring the safety and reliability of AI-driven systems is crucial, particularly in dy-
namic and uncertain environments such as autonomous highway driving. In this section,
we present a validation framework that leverages the STARK Distribution Temporal
Logic (DisTL) [4] to assess the robustness of AI agents in a simulated highway en-
vironment. DisTL allows us to specify the desired, ideal behaviour of AI agents, and
quantify deviations between the actual behaviour of the AI agent and this ideal refer-
ence, enabling thus a systematic evaluation of its safety properties. Moreover, we also
analyse the robustness of the AI system against sensors failure by using RobTL. This
section details the methodology used to define ideal behaviour, measure deviations, and
integrate formal verification techniques into the road simulation environment.

The AI Environment. The AI system provided in [18] includes several reinforcement
learning (RL) agents trained in the highway-env project [16]. We are interested in the
highway environment, were the controlled vehicle (index 1) is driving on a three-lane
highway populated with other vehicles. The controller’s objective is to reach a high
speed while avoiding collisions with neighbouring vehicles. Driving on the right side
of the road is also rewarded. Uncontrolled vehicles follow a simple and predictable
behaviour based on the IDM [27] and MOBIL [14] models. The agents provided were
trained for runs of 30 time steps of duration.

The controller is modelled according to the design requirements given in Section 2.
An observation of the environment is a 5× 5 matrix that has columns for the presence,

16 S. Betancourt and V. Castiglioni

Presence(i) x(i) y(i) vx(i) vy(i)

Vehicle 1 (controlled) 1.0 0.74 0.66 0.31 0.0
Vehicle 2 1.0 0.12 -0.66 -0.02 0.0
Vehicle 3 1.0 0.24 -0.66 -0.04 0.0
Vehicle 4 1.0 0.35 0.00 -0.04 0.0
Vehicle 5 1.0 0.48 0.00 -0.03 0.0

Fig. 6: Example observation matrix in the highway environment

positions x, y and speeds vx, vy of vehicle 1 and the four vehicles closest to it. The
position and speed of vehicle 1 are given in absolute terms, whereas those of other
vehicles are relative to it. For any vehicle within a range of 100 m from vehicle 1, we
have Presence(i) = 1, otherwise Presence(i) = 0. All values are normalised to
[0, 1]. Figure 6 shows an example of an observation matrix.

Interaction with STARK. We set up a framework where STARK obtains the observation
matrix, uses it to compute distances, and (possibly) applies perturbations to it before
feeding it to the RL agent, which decides what action to take. The simulation then
proceeds in accordance. The implementation can be found at https://github.com
/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Sc

enarios/AIMultipleLanes.java.
The variables in the data states are then those in the observation matrix in Figure 6,

with the addition of the variable crash that is initially set to 0, and assumes the value 1
when a collision occurs, as described in Section 5.

Robustness with RobTL. We simulate a failure of proximity sensors: each neigh-
bouring vehicle has probability ainv of not being detected. This could prevent the con-
troller from performing collision avoidance manoeuvres, which poses a safety risk.
The system is then robust against this failure if vehicle 1 can limit the risk of colli-
sion. First, we model the failure by means of an invisibility perturbation pinv(ainv) =
id@0; (fainv@2)14, which has no effect on the initial step, and then apply the function
fainv every three steps for 14 times. For each data state d, we define fainv(d) = d′ with

d′(Presence(i)) =

{
0 if ui < ainv

d(Presence(i)) otherwise

where i ∈ {2, 3, 4, 5}, ainv ∈ [0, 1], and ui uniformly distributed in [0, 1]; d′(x) = d(x)
for all other variables x ∈ V . We use the penalty function ρcoll(d) = d(crash) and
the distance expression Mcoll = G[0,30] <ρcoll to quantify the maximal probability
of a collision along the time interval [0, 30]. We express the robustness of the system
against pinv using the RobTL formula φSAF

ainv = □[0,30]∆(Mcoll, pinv(ainv)) ≤ ηcoll. In
our analysis, we considered the initial parameters generated by the highway-env envi-
ronment, and we analyse the impact of pinv(ainv) on the system, with different values
for ainv. We set the acceptable collision risk ηcoll to 0 and evaluated φSAF

inv (ainv) for

https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/AIMultipleLanes.java
https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/AIMultipleLanes.java
https://github.com/quasylab/jspear/blob/ABZ_2025/examples/ABZ2025/src/main/java/Scenarios/AIMultipleLanes.java

Autonomous driving with STARK 17

(a) Point-wise evaluation of <ρcoll when pinv is ap-
plied at the first step, with increasing values of ainv .

(b) Step-wise evaluation of the DisTL formula
target(µcoll)

ρcoll
0.0 .

Fig. 7: Simulation results of validating the AI environment with STARK

ainv ∈ {0.01, 0.05, 0.1, 0.25, 0.5}. The formula is not satisfied as soon as ainv ≥ 0.05.
Figure 7a shows the pointwise evaluation of <ρcoll when pinv(ainv) is applied in the
first step, varying ainv ∈ {0.01, 0.05, 0.1, 0.25, 0.5}.

Validation with DisTL. In [3] we implemented a feedback mechanism in STARK as
an abstraction of the communication between a digital and a physical twin. Unfortu-
nately, in its current version, the feedback is not expressive enough to allow us to cre-
ate a safety shield for the RL agents. We leave this challenge as an avenue for future
research. However, we can give some insight on how we can use STARK for model
validation. STARK includes the temporal logic DisTL that allows us to analyse the ro-
bustness of systems. whose complete specification is unavailable. This is the case of AI
agents, as they may make decisions that are not explainable and cannot thus be mod-
elled. The idea is to use DisTL to specify the desired, ideal behaviour of the system
and to compare it with the actual behaviour shown by the AI agent. DisTL offers the
atomic proposition target(µ)ρq , where µ is a distribution over data states that repre-
sent some desired or expected behaviour, q ∈ [0, 1] is the maximal acceptable distance
between the desired behaviour µ and the current behaviour, and ρ is a penalty func-
tion. By combining atomic propositions with temporal and classic boolean operators,
one defines an evolution sequence of system requirements, i.e., the ideal behaviour of
a system. Then, we use the real-valued semantics of DisTL to quantify the degree of
robustness of the AI agent with respect to those requirements. Specifically, the degree
of robustness of a system s with respect to target(µ)ρq is expressed as a real number
Ttarget(µ)ρqWτ

S = q−W(mρ)(Sτ , µ) ∈ [−1, 1]. If Ttarget(µ)ρqWτ
S = k, then k ≥ 0 in-

dicates that the behaviour of s is at distance k from the set of behaviours that violate the
formula; symmetrically, k ≤ 0 means that s is at distance k from the set of behaviours
that satisfy target(µ)ρq .

To express the degree of robustness with respect to SAF, first we define the distribu-
tion µcoll = crash ∼ δ0, where δ0 is the Dirac delta distribution at 0, representing an
ideal behaviour that avoids all collisions. Given the penalty function ρcoll defined above
and a tolerance ε ≥ 0, the formula φSAF

ε = □[0,30]target(µcoll)
ρcoll
ε captures the SAF

requirement. The results of the evaluation of φSAF
0 , starting from the initial parameters

generated by the highway-env environment, are presented in Figure 7b.

18 S. Betancourt and V. Castiglioni

References

1. Bachute, M.R., Subhedar, J.M.: Autonomous driving architectures: Insights of machine
learning and deep learning algorithms. Machine Learning with Applications (2021). http
s://doi.org/10.1016/j.mlwa.2021.100164

2. Badue, C., Guidolini, R., Carneiro, R.V., Azevedo, P., Cardoso, V.B., Forechi, A., Jesus, L.,
Berriel, R., Paixão, T.M., Mutz, F., de Paula Veronese, L., Oliveira-Santos, T., De Souza,
A.F.: Self-driving cars: A survey. Expert Systems with Applications (2021). https://do
i.org/10.1016/j.eswa.2020.113816

3. Castiglioni, V., Lanotte, R., Loreti, M., Tini, S.: Evaluating the effectiveness of digital
twins through statistical model checking with feedback and perturbations. In: Proceedings
of FMICS 2024. LNCS, Springer (2024). https://doi.org/10.1007/978-3-031
-68150-9_2

4. Castiglioni, V., Loreti, M., Tini, S.: DisTL: A temporal logic for the analysis of the expected
behaviour of cyber-physical systems. In: Proceedings of ICTCS 2023. CEUR Workshop Pro-
ceedings (2023), https://ceur-ws.org/Vol-3587/4168.pdf

5. Castiglioni, V., Loreti, M., Tini, S.: A framework to measure the robustness of programs in
the unpredictable environment. Log. Methods Comput. Sci. (2023). https://doi.org/
10.46298/LMCS-19(3:2)2023

6. Castiglioni, V., Loreti, M., Tini, S.: STARK: A software tool for the analysis of robustness
in the unknown environment. In: Proceedings of COORDINATION 2023. Lecture Notes in
Computer Science, Springer (2023). https://doi.org/10.1007/978-3-031-3
5361-1_6

7. Castiglioni, V., Loreti, M., Tini, S.: Bio-stark: A tool for the time-point robustness analysis
of biological systems. In: Proceedings of CMSB 2024. LNCS, Springer (2024). https:
//doi.org/10.1007/978-3-031-71671-3_5

8. Castiglioni, V., Loreti, M., Tini, S.: RobTL: Robustness temporal logic for CPS. In: Proceed-
ings of CONCUR 2024. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2024).
https://doi.org/10.4230/LIPICS.CONCUR.2024.15

9. Castiglioni, V., Loreti, M., Tini, S.: STARK: A tool for the analysis of CPSs robustness.
Science of Computer Programming (2024). https://doi.org/10.1016/j.scico.
2024.103134

10. Fremont, D.J., Kim, E., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Se-
shia, S.A.: Scenic: a language for scenario specification and data generation. Machine Learn-
ing (2022). https://doi.org/10.1007/s10994-021-06120-5

11. Ghosh, S., Bansal, S., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Tomlin, C.: A new sim-
ulation metric to determine safe environments and controllers for systems with unknown
dynamics. In: Proceedings of HSCC 2019 (2019). https://doi.org/10.1145/33
02504.3311795

12. Gruteser, J., Geleßus, D., Leuschel, M., Roßbach, J., Vu, F.: A formal model of train control
with AI-based obstacle detection. In: Proceedings of RSSRail 2023. Lecture Notes in Com-
puter Science, Springer (2023). https://doi.org/10.1007/978-3-031-43366
-5_8

13. Katrakazas, C., Quddus, M., Chen, W.H., Deka, L.: Real-time motion planning methods for
autonomous on-road driving: State-of-the-art and future research directions. Transportation
Research Part C: Emerging Technologies (2015). https://doi.org/10.1016/j.tr
c.2015.09.011

14. Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for car-
following models. Transportation Research Record (2007). https://doi.org/10.3
141/1999-10, https://doi.org/10.3141/1999-10

https://doi.org/10.1016/j.mlwa.2021.100164
https://doi.org/10.1016/j.mlwa.2021.100164
https://doi.org/10.1016/j.mlwa.2021.100164
https://doi.org/10.1016/j.mlwa.2021.100164
https://doi.org/10.1016/j.eswa.2020.113816
https://doi.org/10.1016/j.eswa.2020.113816
https://doi.org/10.1016/j.eswa.2020.113816
https://doi.org/10.1016/j.eswa.2020.113816
https://doi.org/10.1007/978-3-031-68150-9_2
https://doi.org/10.1007/978-3-031-68150-9_2
https://doi.org/10.1007/978-3-031-68150-9_2
https://doi.org/10.1007/978-3-031-68150-9_2
https://ceur-ws.org/Vol-3587/4168.pdf
https://doi.org/10.46298/LMCS-19(3:2)2023
https://doi.org/10.46298/LMCS-19(3:2)2023
https://doi.org/10.46298/LMCS-19(3:2)2023
https://doi.org/10.46298/LMCS-19(3:2)2023
https://doi.org/10.1007/978-3-031-35361-1_6
https://doi.org/10.1007/978-3-031-35361-1_6
https://doi.org/10.1007/978-3-031-35361-1_6
https://doi.org/10.1007/978-3-031-35361-1_6
https://doi.org/10.1007/978-3-031-71671-3_5
https://doi.org/10.1007/978-3-031-71671-3_5
https://doi.org/10.1007/978-3-031-71671-3_5
https://doi.org/10.1007/978-3-031-71671-3_5
https://doi.org/10.4230/LIPICS.CONCUR.2024.15
https://doi.org/10.4230/LIPICS.CONCUR.2024.15
https://doi.org/10.1016/j.scico.2024.103134
https://doi.org/10.1016/j.scico.2024.103134
https://doi.org/10.1016/j.scico.2024.103134
https://doi.org/10.1016/j.scico.2024.103134
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1145/3302504.3311795
https://doi.org/10.1145/3302504.3311795
https://doi.org/10.1145/3302504.3311795
https://doi.org/10.1145/3302504.3311795
https://doi.org/10.1007/978-3-031-43366-5_8
https://doi.org/10.1007/978-3-031-43366-5_8
https://doi.org/10.1007/978-3-031-43366-5_8
https://doi.org/10.1007/978-3-031-43366-5_8
https://doi.org/10.1016/j.trc.2015.09.011
https://doi.org/10.1016/j.trc.2015.09.011
https://doi.org/10.1016/j.trc.2015.09.011
https://doi.org/10.1016/j.trc.2015.09.011
https://doi.org/10.3141/1999-10
https://doi.org/10.3141/1999-10
https://doi.org/10.3141/1999-10
https://doi.org/10.3141/1999-10
https://doi.org/10.3141/1999-10

Autonomous driving with STARK 19

15. Kubica, M.L.: Autonomous vehicles and liability law. The American Journal of Comparative
Law (2022). https://doi.org/10.1093/ajcl/avac015

16. Leurent, E.: An environment for autonomous driving decision-making (2018), https://
github.com/eleurent/highway-env

17. Leurent, E., Blanco, Y., Efimov, D.V., Maillard, O.: Approximate robust control of uncertain
dynamical systems. CoRR (2019), http://arxiv.org/abs/1903.00220

18. Leuschel, M., Vu, F., Rutenkolk, K.: Case study: Safety controller for autonomous driving
on highways (2024), https://github.com/hhu-stups/abz2025_casestudy
_autonomous_driving/blob/main/case_study/specification_v2.pdf

19. Li, W., Rios-Torres, J., Wang, B., Khattak, Z.H.: Experimental assessment of communication
delay’s impact on connected automated vehicle speed volatility and energy consumption.
Communications in Transportation Research 4 (2024). https://doi.org/10.1016/
j.commtr.2024.100136

20. Matos, F., Bernardino, J., Durães, J., Cunha, J.: A survey on sensor failures in autonomous
vehicles: Challenges and solutions. Sensors (2024). https://doi.org/10.3390/s2
4165108

21. Plebe, A., Svensson, H., Mahmoud, S., Da Lio, M.: Human-inspired autonomous driving: A
survey. Cognitive Systems Research (2024). https://doi.org/10.1016/j.cogs
ys.2023.101169

22. Polymenakos, K., Laurenti, L., Patane, A., Calliess, J., Cardelli, L., Kwiatkowska, M., Abate,
A., Roberts, S.J.: Safety guarantees for iterative predictions with gaussian processes. In:
Proceedings of CDC 2020. IEEE (2020). https://doi.org/10.1109/CDC42340
.2020.9304029

23. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scalable self-
driving cars (2018), https://arxiv.org/abs/1708.06374

24. Shivakumar, S., Torfah, H., Desai, A., Seshia, S.A.: SOTER on ROS: A run-time assurance
framework on the robot operating system. In: Proceedings of RV 2020. Lecture Notes in
Computer Science, Springer (2020). https://doi.org/10.1007/978-3-030-6
0508-7_10

25. Toledo, T., Zohar, D.: Modeling duration of lane changes. Transportation Research Record
(2007). https://doi.org/10.3141/1999-08

26. Tolouei, R., Maher, M., Titheridge, H.: Vehicle mass and injury risk in two-car crashes: A
novel methodology. Accident Analysis & Prevention (2013). https://doi.org/10.1
016/j.aap.2012.04.005

27. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations
and microscopic simulations. Phys. Rev. E (2000). https://doi.org/10.1103/Ph
ysRevE.62.1805

28. Vaserstein, L.N.: Markovian processes on countable space product describing large systems
of automata. Probl. Peredachi Inf. (1969)

29. Wicker, M., Laurenti, L., Patane, A., Paoletti, N., Abate, A., Kwiatkowska, M.: Probabilistic
reach-avoid for bayesian neural networks. Artif. Intell. 334, 104132 (2024). https://do
i.org/10.1016/J.ARTINT.2024.104132

30. Yang, Q., Lu, F., Wang, J., Zhao, D., Yu, L.: Analysis of the insertion angle of lane-changing
vehicles in nearly saturated fast road segments. Sustainability (2020). https://doi.or
g/10.3390/su12031013

31. Zhang, Y., Carballo, A., Yang, H., Takeda, K.: Perception and sensing for autonomous ve-
hicles under adverse weather conditions: A survey. ISPRS Journal of Photogrammetry and
Remote Sensing (2023). https://doi.org/10.1016/j.isprsjprs.2022.12.
021

https://doi.org/10.1093/ajcl/avac015
https://doi.org/10.1093/ajcl/avac015
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
http://arxiv.org/abs/1903.00220
https://github.com/hhu-stups/abz2025_casestudy_autonomous_driving/blob/main/case_study/specification_v2.pdf
https://github.com/hhu-stups/abz2025_casestudy_autonomous_driving/blob/main/case_study/specification_v2.pdf
https://doi.org/10.1016/j.commtr.2024.100136
https://doi.org/10.1016/j.commtr.2024.100136
https://doi.org/10.1016/j.commtr.2024.100136
https://doi.org/10.1016/j.commtr.2024.100136
https://doi.org/10.3390/s24165108
https://doi.org/10.3390/s24165108
https://doi.org/10.3390/s24165108
https://doi.org/10.3390/s24165108
https://doi.org/10.1016/j.cogsys.2023.101169
https://doi.org/10.1016/j.cogsys.2023.101169
https://doi.org/10.1016/j.cogsys.2023.101169
https://doi.org/10.1016/j.cogsys.2023.101169
https://doi.org/10.1109/CDC42340.2020.9304029
https://doi.org/10.1109/CDC42340.2020.9304029
https://doi.org/10.1109/CDC42340.2020.9304029
https://doi.org/10.1109/CDC42340.2020.9304029
https://arxiv.org/abs/1708.06374
https://doi.org/10.1007/978-3-030-60508-7_10
https://doi.org/10.1007/978-3-030-60508-7_10
https://doi.org/10.1007/978-3-030-60508-7_10
https://doi.org/10.1007/978-3-030-60508-7_10
https://doi.org/10.3141/1999-08
https://doi.org/10.3141/1999-08
https://doi.org/10.1016/j.aap.2012.04.005
https://doi.org/10.1016/j.aap.2012.04.005
https://doi.org/10.1016/j.aap.2012.04.005
https://doi.org/10.1016/j.aap.2012.04.005
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1016/J.ARTINT.2024.104132
https://doi.org/10.1016/J.ARTINT.2024.104132
https://doi.org/10.1016/J.ARTINT.2024.104132
https://doi.org/10.1016/J.ARTINT.2024.104132
https://doi.org/10.3390/su12031013
https://doi.org/10.3390/su12031013
https://doi.org/10.3390/su12031013
https://doi.org/10.3390/su12031013
https://doi.org/10.1016/j.isprsjprs.2022.12.021
https://doi.org/10.1016/j.isprsjprs.2022.12.021
https://doi.org/10.1016/j.isprsjprs.2022.12.021
https://doi.org/10.1016/j.isprsjprs.2022.12.021

Verification of Autonomous Neural Car Control
with KeYmaera X

Enguerrand Prebet[0009−0008−0160−5219], Samuel Teuber[0000−0001−7945−9110],
and André Platzer[0000−0001−7238−5710]

Karlsruhe Institute of Technology, Karlsruhe, Germany
{enguerrand.prebet,teuber,platzer}@kit.edu

Abstract. This article presents a formal model and formal safety proofs
for the ABZ’25 case study in differential dynamic logic (dL). The case
study considers an autonomous car driving on a highway with a neu-
ral network controller avoiding collisions with neighbouring cars. Using
KeYmaera X’s dL implementation we prove collision-freedom on an in-
finite time horizon which ensures that safety is preserved independently
of trip length. The safety guarantees hold for time-varying reaction time
and brake force. Our dL model considers the single lane scenario with cars
ahead or behind. We demonstrate dL and its tools are a rigorous founda-
tion for runtime monitoring, shielding, and neural network verification.
Doing so sheds light on inconsistencies between the provided specification
and simulation environment highway-env of the ABZ’25 study. We at-
tempt to fix these inconsistencies and uncover numerous counterexamples
indicative of issues in the provided reinforcement learning environment.

Keywords: Differential dynamic logic · Hybrid systems · Formal veri-
fication · Highway car control · Neural Network Control Systems.

1 Introduction

This paper contributes a comprehensive study of formal safety proofs for the
ABZ’25 highway case study of straight-line driving on highways with a neural
network (NN) control system for the ego car based on the rigorous foundations
of differential dynamic logic [25, 26, 28, 29] (dL). Given the interest in highway
driving, the contributions to the ABZ’25 case study challenge stand a more gen-
eral appeal. While the specific outcomes focus on the ABZ’25 case study, the
generality of the underlying tools could help make other applications safe.

Contributions. To tackle ABZ’s case study we provide: i) A formal, provably safe
dL [25, 26, 28, 29] model of the hybrid systems dynamics of straight-line driving
described by ABZ’25 [16]. We identify the control constraints required for safe
driving. ii) A derivation of real arithmetic constraints that serve either as sand-
box/shield for the black-box NN or for the gapless rigorous white-box verification
of concrete NNs. iii) A verification-based, exhaustive characterization of all un-
safe behaviours in two NNs trained using the highway-env environment provided
by ABZ’25. iv) An empirical validation of the derived sandbox and shield.

2 E. Prebet et al.

Importantly, our safe controller and the derived monitoring/verification con-
ditions are fully symbolic and proved safe for arbitrary parameter choices making
the model, controller, sandbox and NN verification technique useful for future
endeavours. Additionally, reaction time and braking power may vary (within
bounds) during execution. The results underscore that safety guarantees in dL
are practically applicable to (neural) real-world systems – either through mon-
itoring/shielding or via verification of the NN w.r.t. dL derived constraints.

While we demonstrate that dL and implementation monitoring/verification
can be gaplessly integrated, we observe the existence of a significant model-
to-simulation (model2sim) gap between the specification and the simulator pro-
vided by ABZ [16]. The well-known sim2real gap leads to decreased performance
when simulation-trained agents are deployed in the real world. Similarly, the
model2sim gap induces unsafe behaviour of an agent if the simulation insuffi-
ciently matches the model’s assumptions about the real world. We identify this
gap as an important roadblock on the highway to safe NN controllers.

Related Work. Prior work analysed safe car control in dL [18, 27, 33] (in one in-
stance using refinement [17]). Unlike prior case studies applying dL guarantees to
NN control [8,35], this work has a more complex environment (e.g. variable speed
for surrounding cars) which increases the complexity of safety criteria. Car con-
trol (with different dynamics [36]) has also been studied by numerous closed-loop
NN verification tools (see e.g. the ARCH competition [19–21]). Unlike the closed-
loop approaches, our work can provide guarantees on an infinite-time horizon,
i.e. independent of the car’s trip length. Event-B [1] has also been used to model
automotive applications [2] without application to NNs. Unlike a highway-env
ProB model [38] we explicitly model the environment’s continuous dynamics and
support NN verification. Unlike another shielding approach [34] we characterize
safe behaviour a priori instead of learning from catastrophic behaviour.

2 Background

This section provides an overview of differential dynamic logic (dL). Before pre-
senting results on highway car control, we first illustrate the concepts of this
section using a cartoonishly simplified application: We consider a car that starts
at a one-dimensional, positive position p and pretend the car’s controller can in-
fluence the car’s position by directly choosing the car’s velocity v with immediate
effect. The safety requirement of the controller is to keep the car at a positive po-
sition, i.e. p > 0. We first present dL in general, then the ModelPlex technology
for the derivation of runtime monitors and three applications of these formulas.

2.1 Differential Dynamic Logic for Hybrid Systems

dL is a program logic for reasoning about cyber-physical systems given as hybrid
programs. On a high level, dL is a first-order multi-modal logic where modalities
are parameterized with programs and the first-order formulas are interpreted
w.r.t. real arithmetic. Formulas of dL have the following structure:

Verification of Autonomous Neural Car Control with KeYmaera X 3

Definition 1 (Formulas). Formulas are defined by the grammar below where
θ, η are terms, ϕ, ψ are formulas and α, β are hybrid programs (Definition 2):

ϕ, ψ ::= θ ≤ η
∣∣ ¬ϕ ∣∣ ϕ ∧ ψ

∣∣ ∀xϕ ∣∣ [α]ϕ ∣∣ α ≤ β

While the first four elements of the grammar correspond to logical structures
known from first-order real arithmetic formulas, the latter two are specific to
differential dynamic logic [25,26,28,29] and differential refinement logic [17,30].

Unlike first-order formulas which are usually evaluated in a fixed structure,
dL evaluates formulas w.r.t. states that assign values to variables. The programs
(which will be discussed in greater detail below) then induce a state transition
relation which is integrated into the logic via the grammar’s fifth formula: [α]ϕ
is true in a state ω iff after every program run of α the formula ϕ is satisfied,
i.e. if for all state transitions of α from the current state ω the formula ϕ holds
in the resulting state. If ϕ is a property that indicates safety of the system, then
[α]ϕ expresses that the system always remains safe (see Section 3.5). Finally,
α ≤ β expresses that the program α refines the program β in the current state,
i.e. α ≤ β holds in a state ω iff all states reachable from ω via the transitions
of α are also reachable via β’s state transition relation. Refinements are used to
transfer safety properties between hybrid programs (see Section 4.1). A formula
is called valid if it is satisfied in all states. We now turn to dL’s hybrid programs
which allow discrete and continuous actions and are formally defined as follows:

Definition 2 (Hybrid Programs). Hybrid programs α, β are defined by the
grammar below where x is a variable, θ is a term and ψ is a formula:

α, β ::= ?ψ
∣∣ x := θ

∣∣ x := ∗
∣∣ x′ = θ&ψ

∣∣ α ∪ β
∣∣ α;β ∣∣ α∗

The first program primitive ?ψ (check) only proceeds if formula ψ is satisfied in
the current state. The second and third primitive are assignments, either w.r.t. a
term (x := θ) or nondeterministically to an arbitrary value (x := ∗). The fourth
primitive (x′ = θ&ψ) describes the continuous, nondeterministic evolution of
variable x along the differential equation x′ = θ within the domain constraint
ψ. The next two primitives allow the composition of programs by either non-
determnistically choosing one of two (α ∪ β) or by executing them sequentially
(α;β). The final primitive α∗ nondeterministically runs the program α for 0 or
more iterations. The support of hybrid programs for continuous evolution and
discrete as well as continuous nondeterminism is e.g. crucial for the analysis of
cyber-physical systems without a fixed clock cycle. Many classical program con-
structs can be translated into the primitives of hybrid programs. For example,
if-then-else can be rewritten as follows: if (ψ) α else β def

= (?ψ;α)∪(?¬ψ) ;β.
Similarly, we can represent while loops: while (ψ) α def

= (?ψ;α)
∗
; ?¬ψ.

Example. We now explain how our simple cyber-physical system (the velocity-
controlled car) can be modelled in dL. All variables, p, v, . . ., that evolve along
the execution are in lower-case, while constants like T are in upper-case. As

4 E. Prebet et al.

outlined above, the car’s position is described by a real-valued position p. The
car’s dynamics are then described by the differential equation p′ = v where v
is the velocity determined by the controller. To derive safety guarantees we as-
sume that our controller is invoked at least every T seconds. Hence, we model
the physical part of our example as αplant

def
= t := 0; p′ = v, t′ = 1& t ≤ T .

Here, p evolves as outlined above and we additionally introduced a clock vari-
able t which guarantees that the evolution runs for at most T seconds via the
domain constraint t ≤ T . We already formulated the car’s safety condition as
p > 0 at the beginning of this section. The final ingredient for our dL model is
a control envelope that provides a nondeterministic description of allowed be-
haviour which keeps the system safe. Using dL to verify control envelopes rather
than one concrete controller is quite a common approach as it allows the ver-
ification of a whole family of possible controller implementations at once [11].
It is generally preferable to design very general control envelopes that encom-
pass the largest possible range of behaviours that can be certified as safe. In
our example, we can formulate the control envelope as the nondeterministic pro-
gram αctrl

def
= v := ∗; ? (p+ Tv > 0). This control envelope ensures that we

only choose velocities v that avoid negative positions. Indeed, we can use dL’s
proof calculus (and its implementation in KeYmaera X) to prove the validity of
the following dL formula T > 0 ∧ p > 0 → [(αctrl;αplant)

∗
]p > 0. This formula

expresses that (assuming an initial state with T > 0 and p > 0) we can run this
system for arbitrarily long (note the nondeterministic loop) and the safety con-
dition p > 0 will always be satisfied afterwards. This can be proven inductively
through the invariant T > 0 ∧ p > 0. The ability to perform inductive, infinite
time horizon reasoning for dL models is one of the major advantages of dL over
many reachability-based analyses.

The formula above also exhibits a very common pattern in dL models where
we provide a safety guarantee over the execution of a nondeterministic loop
which consists of the sequential execution of a control envelope (αctrl) and an
environment model (αplant). However, while we have verified an infinite class
of potential controllers, we have not yet verified any concrete given controller
implementation. In the remainder of this section, we will present dL-based tech-
nologies that allow us to bridge the gap between a verified control envelope and
a concrete controller implementation.

2.2 ModelPlex for Verified Runtime Monitoring

In the previous section, we saw how dL can be used to model cyber-physical sys-
tems and to verify control envelopes. However, the verified control envelopes dif-
fer from the control systems we would like to use in practice: Concrete, real-world
controllers will often be implemented in compilable programming languages or,
as in the case of the highway case study, the controller’s behaviour might even
be determined by an NN. This raises the question how this challenge can be
overcome. On the one hand, it is possible to embed the behaviour of more com-
plicated programming languages into dL [10, 12], however, such approaches are

Verification of Autonomous Neural Car Control with KeYmaera X 5

always tailored to specific programming languages and require that we perform
interactive proofs on the concrete controller’s behaviour. On the other hand, we
can use a verified control envelope to derive runtime monitoring conditions that
can subsequently be checked on a concrete system – possibly even in a black box
fashion. This technique to derive correct-by-construction runtime monitoring
conditions from a given control envelope αctrl is called ModelPlex [22].

Based on a given control envelope αctrl over variables V(αctrl), ModelPlex
uses dL’s calculus rules to derive a first-order real arithmetic formula ψ over
variables V(αctrl)∪̇ {x+|x ∈ V(αctrl)} where x+ indicates the value of x in the
next state. For instance assuming V(αctrl) = {x}, if the formula ψ is satisfied by
x = v1 and x+ = v2 for some v1, v2, then there exists a state transition for αctrl
where the value of x changes from v1 to v2. Since we have a safety proof for αctrl
this implies the safety guarantees for our control envelope carry over to a system
where x’s value changes from v1 to v2. Hence, the formula ψ can be used to mon-
itor the safety of a (black-box) controller implementation by checking whether
a concrete assignment of the implementation’s pre- and post-values satisfies ψ.

For the velocity-controller car, the variables V(αctrl) are the position and
the velocity: {p, v}, and the formula given by ModelPlex is ψ

def
= p+ = p ∧

p+ Tv+ > 0 ∧ t+ = 0. Thus, any concrete implementation of such a controller
will be safe if this formula is satisfied during execution, i.e if the controller
does not change the position (p = p+) and sets some velocity v+ that respects
p+ Tv+ > 0. Additionally, it requires that the clock variable t be reset to 0.

2.3 Applications of ModelPlex

The formula computed by ModelPlex [22] tells us which control actions come
with a dL 0 safety guarantee. As explained below, this formula can be used in at
least three manners to derive safety guarantees for controller implementations.

Monitoring (VeriPhy). First and foremost, we can use the derived formula to
check the actions computed by the controller implementation at runtime via a
runtime monitor. To this end, we assign the formula’s variables with the imple-
mentation’s input and output values and check whether the action is provably
safe according to the ModelPlex runtime monitor. In case the implementation
chooses an action violating the runtime monitor, we overwrite the action using a
fallback controller. This approach comes with a formally verified code generation
pipeline called VeriPhy [3] which serves as a sandbox for a given controller and
comprises provably correct machine arithmetic.

Shielding (Justified Speculative Control). One drawback of VeriPhy in the con-
text of NN Control is its conservatism: While traditionally programmed con-
trollers usually return exactly one action that must be overwritten if unsafe,
NNs often return a probability distribution over actions. However, it is not nec-
essarily reasonable to entirely overwrite the NN’s action if its most likely action
is unsafe. Instead Justified Speculative Control [8,9] (JSC) shields the NN using

6 E. Prebet et al.

runtime enforcement technique [14,22] that constrain the action space to known-
safe options. Thus, JSC can still treat the concrete controller as a black box but
allow for more flexibility in the chosen actions. To this end, JSC checks for possi-
ble actions whether they satisfy the ModelPlex condition. JSC then chooses the
allowed action with the highest probability according to the reinforcement learn-
ing agent. Additionally, JSC only performs a safety check in situations where the
environment behaves as modelled in dL (this is achieved via ModelPlex’s envi-
ronment monitoring technology which goes beyond the scope of this exposition).
Importantly, this technique can be applied both during training and at runtime.

Verification (VerSAILLE & NCubeV). The previous approaches only provide
a posteriori guarantees by restricting or overwriting the controller’s actions at
runtime. Alternatively, we can also use the monitoring condition derived by Mod-
elPlex for a priori verification of the NN. This is achieved via the VerSAILLE
approach [35]: In essence, we verify whether there exists a state inside the dL
model’s invariant state space where the NN’s action violates the ModelPlex con-
troller monitor. For this section’s running example, we would verify that an NN
(with input p and output v+) satisfies the following specification [35, Thm. 2]:

p > 0︸ ︷︷ ︸
Invariant

→ p+ Tv+ > 0︸ ︷︷ ︸
Controller Monitor

.

This is achieved by a compute-intensive numerical analysis of the NN that math-
ematically proves the absence of such counterexamples. As our running example
has a simple, linear controller monitor and invariant, most modern NN verifiers
(as reported in recent surveys and competitions [4,5,13]) can be used. However,
for realistic dL models, the ModelPlex conditions usually have a significantly
more complicated propositional structure with nonlinear real arithmetic. Neither
of these features is supported by “classical” NN verifiers nor by their common
specification language [6]. To this end, we recently proposed the NCubeV tool [35]
supporting both arbitrary propositional structure and polynomial arithmetic.

The usage of NN verification has multiple advantages. First, it allows the
deployment of autonomous, unmonitored NN Control Systems. Second, it allows
the usage of NNs in applications without an obvious fallback strategy or for cases
with continuous action spaces. Finally, it can also serve for diagnostics: Either to
estimate how often a given NN performs (un)safe actions or to discover unsafe
behaviour that is empirically invisible, e.g. due to simulator limitations.

3 A Verified dL Model for the ABZ Highway Case-Study

This section presents the verified dL model developed for this case study. We
start by introducing the cyber-physical system of interest (Section 3.1). After
giving the general structure and how it interleaves the discrete and continuous
actions that can occur between each control cycle (Section 3.2), we focus on the
plant (Section 3.3) and the controller (Section 3.4). Finally, we express safety
conditions in dL for the model and verify them using the theorem prover KeY-
maera X [7,24,28] (Section 3.5). Our proofs are reproducible via an artifact [31].

Verification of Autonomous Neural Car Control with KeYmaera X 7

3.1 A Safe Autonomous Driving System

The model is about a safe autonomous driving system, referred to as the ego
car, that should prevent collision with another car on a single straight lane.
All constants, Amax, V, T, . . . , must be positive except for braking deceleration,
Bmin, Bmax, which are negative. Both cars have length L but are modelled as
single points: with position xe, speed ve, and acceleration ae for the ego car,
and with position xo, speed vo, and acceleration ao for the other. Thus, absence
of collision is ensured by maintaining a distance of at least L between the two
cars. No car moves backwards and their speed is at most V . The cars have a
maximum acceleration of Amax and a maximum braking deceleration of Bmax.
Additionally, the ego car may not always draw the maximum power of the brake
or the engine. It will however always be able to brake with deceleration at least
Bmin ≥ Bmax and accelerate with acceleration at least Amin ≤ Amax. These
constraints are imposed on the cars themselves, so even if they are trying to
brake or accelerate, they cannot go backward or exceed speed limit V . The ego
car observes the environment at least every T seconds, whereas the other car
may react more often without restriction. No regularity or periodicity is assumed
in the reaction time of the ego car as long as it always remains below T seconds.

Overall, the constants are constrained by the formula: ctxC
def
= T > 0 ∧

L > 0∧V > 0∧Bmax ≤ Bmin < 0 < Amin ≤ Amax. It can be extended by bounds
on speed and acceleration: ctx def

= ctxC ∧Bmax ≤ ae, ao ≤ Amax ∧ 0 ≤ ve, vo ≤ V .

3.2 Overall Structure of the dL Model

The general structure of the model is as follows:

model(c) ::=
(
ctrlo; (c ∪ ?t < te + T)︸ ︷︷ ︸

control

; accelCorr; dyn︸ ︷︷ ︸
plant

)∗
The model is parametric in the controller of the ego car c to handle both the
generic controller ctrle (see Section 3.4) and the NN controller ctrlNN (see
Section 4.1). In this section, we write model for model(ctrle).

ctrlo models the controller of the other car. It does not assume any minimal
time between each execution of ctrlo. Then c models the controller of the
ego car and sets te to t. If it has been less than T seconds since te was last
set, the nondeterministic choice allows c to be skipped. Thus, the controller is
only assumed to run at least once every T seconds. Having the possibility of
skipping the controller allows discrete events, e.g. the other controller, to still
occur without the ego car reacting. accelCorr (defined in Section 3.3) models
the acceleration correction when reaching the speed boundaries. It ensures that
a braking car, with negative acceleration, does not go backwards by changing
its acceleration to zero. This is a discrete change but happens independently of
any controller. In particular, the ego car does not notice the change before its
next control cycle. Finally, dyn models the continuous dynamics of the system,
i.e. the actual motion of the car evolving with time. These execute in a loop so

8 E. Prebet et al.

that the system alternates between the control and the plant arbitrarily many
times. We elaborate the details of each component, starting with the plant.

3.3 Modelling the Physical Plant

accelCorr

dyn

if (vo = 0 ∧ ao < 0) ∨ (vo = V ∧ ao > 0) ao := 0
if (ve = 0 ∧ ae < 0) ∨ (ve = V ∧ ae > 0) ae := 0

x′e = ve,v
′
e = ae, x

′
o = vo, v

′
o = ao, t

′ = 1
& t ≤ te + T ∧ 0 ≤ ve ≤ V ∧ 0 ≤ vo ≤ V

The plant is composed of a discrete part, accelCorr, and a continuous part,
dyn. First, if any car has come to a stop or reached their speed limit, then their
acceleration is set to 0 for saturation. Then the continuous dynamics follows the
ODEs specifying for both cars, that speed is the derivative of the position, x′i =
vi, and that acceleration is the derivative of speed, v′i = ai. Time is explicit with
constant derivative. The domain constraints ensure that the dynamics always
stop before a discrete event must be executed, whether it is a controller event –
if t = te + T – or a plant event – if a car stops, or reaches their speed limit.

3.4 Modelling the Car Controllers

ctrlo

ctrle

ao := ∗; ?(Bmax ≤ ao ≤ Amax);

ae := ∗; ?(Bmax ≤ ae ≤ Amax); te := t;
if(¬(safeBack ∨ safeFront))

if(xe ≤ xo)
ae := ∗; ?(Bmax ≤ ae ≤ Bmin);

else
ae := ∗; ?(Amin ≤ ae ≤ Amax);

The control consists of the con-
trollers for the two cars. The
controller ctrlo for the other
car isn’t concerned about safety
so it just selects any acceler-
ation within the limitation of
the vehicle. As the assignment
is nondeterministic, all choices
of acceleration are taken into account for the safety proof. Then the controller
for the ego car also selects an arbitrary acceleration. It however performs an
additional check. If the chosen acceleration does not satisfy one of the safety
conditions, safeBack or safeFront discussed below, then a fallback procedure
overrides the acceleration. The fallback simply tries to increase the distance with
the other car. If the ego is behind, it brakes with ae ≤ Bmin, and accelerates,
ae ≥ Amin, if ahead. Finally, te is set to t to record the last time the controller ran.

Safety condition when behind. We focus on safeBack shown in Formula (1). It
expresses when an acceleration guarantees safety when the ego car is behind the
other car. First, the two cars should be at a distance of at least L from each
other, as that would correspond to a collision otherwise. Additionally, if both cars
were to brake, there should still be a distance at least L when they stop. For a
braking ego car with acceleration ae < 0, it stops at position pose(ae)

def
= xe− v2

e

2ae

meters. For the other car, we assume the worst case. This happens when the other
car’s acceleration is directed towards the ego car, that is when it is braking at
maximum force, ao = Bmax, in which case it stops at position poso

def
= xo− v2

o

2Bmax
.

Verification of Autonomous Neural Car Control with KeYmaera X 9

With constant acceleration, if the current position of the cars and their stopping
position are both at safe distance, then these properties are invariants of the
dynamics and thus ensure collision-freedom. Changing acceleration for the other
car can only increase its distance to the ego car and so does not risk collision.

xe + L ≤ xo ∧
(
ae ≤ Bmin ∧ pose(Bmin) + L < poso

∨Bmin ≤ ae ∧ ve + aeT < 0 ∧ pose(ae) + L < poso (1)

∨Bmin ≤ ae ∧ ve + aeT ≥ 0 ∧ pose(Bmin) + corrDist + L < poso
)

To handle the ego car’s change of acceleration, this idea is refined further
and split in three scenarios:

1. Since the ego car is only assumed to be able to brake with ae = Bmin for
sure, even if it is currently braking more, we still must rely on the minimum
braking deceleration for checking the distance, so we use pose(Bmin).

2. If ae ≥ Bmin but the car will stop before T seconds, then the acceleration ae
can be used directy. Once stopped, the car remains safe, so we use pose(ae).

3. Otherwise, we must check that the car can start braking at the next control
cycle, after at most T seconds, and stop before crashing. This reuses the first
case, with a correction term to account for the distance travelled and the
speed change before the next cycle: corrDist def

= (−ae

Bmin
+ 1)(ae

2 T
2 + Tve).

Safety condition when ahead. If the ego car is ahead, the setting is similar when
changing the frame of reference. From the perspective of an observer moving at
constant speed V , the two cars are moving at speed ṽi

def
= vi − V in the op-

posite direction. Their positions are now x̃i
def
= xi − V × t, and the worst case

occurs when the other car approaches the ego car with maximal acceleration (i.e.
ao = Amax). Reusing the insight for the previous case, we consider their stop-
ping position in that new frame of reference (ṽi = 0), which amounts to reaching
maximum speed (vi = V). This gives the following distances updated with the
new variables: p̃ose(ae)

def
= x̃e − ṽ2

e

2ae
for the ego car, and p̃oso

def
= x̃o − ṽ2

o

2Amax
for

the other. The resulting formula safeFront is given in [32].

3.5 Safety Proofs

Now that the model is defined comes the actual verification. Since the goal is to
prevent collisions, the safety condition is simply that the two cars have at least
a distance L between them. Being on a single lane, they cannot cross each other,
so the order of the cars remains the same, so the two cases when the ego car is
behind or ahead can be proved independently. Due to their similarity, we again
focus on the case where the ego car is behind. The general assumptions include
the constraints from the specifications from Section 3.1, i.e. ctx, and assume the
controller of the ego car has last been run T seconds ago so that it must run
initially, i.e. te = t − T . The only other requirement is that initial states where
a crash is unavoidable are prohibited, in which case, no controller can guarantee

10 E. Prebet et al.

safety. This initial condition correspond to the first case of Formula (1): the
fallback action should give enough distance before stopping.

Theorem 1. Formulas (2) and (3) are valid and guarantee the absence of col-
lision.

ctx ∧ xe + L ≤ xo ∧ pose(Bmin) + L < poso ∧ te = t− T → [model]xe + L ≤ xo
(2)

ctx ∧ xo + L ≤ xe ∧ p̃oso + L < p̃ose(Amin) ∧ te = t− T → [model]xo + L ≤ xe
(3)

The theorem is proved using KeYmaera X. The proof relies on invariants that
generalise of safeBack and safeFront where T is replaced by T+te−t to account
for the time elapsed since the last run of ctrle, extended with the specification
constraints ctx. The evaluation of the two verifications is given in [32].

4 Safeguarding Neural Control

The previous section derived a dL model for the highway environment as speci-
fied in ABZ’s case study document [16] and proved its safety. As a next step, we
connect these (abstract) safety guarantees to the concrete control system imple-
mentation running inside the highway-env simulation [15]. To this end, we use
the techniques described in Section 2.3. In contrast to the dL controller ctrle
that chooses a (continuous) acceleration value Bmax ≤ ae ≤ Amax, the trained
reinforcement learning agent for the single-lane case of highway-env consists of
an NN outputting one of three discrete actions (brake, idle, accelerate). The NN
outputs three values and determines its action via an argmax operation (e.g.
brake is chosen whenever the NN’s first output is maximal), prioritising low-
est speed in case of ties. Hence, we must first extend our dL controller model
to account for the NN’s three outputs (Section 4.1). Subsequently, we can use
ModelPlex and the refined controller to derive a formula that can be used for
verification, shielding and monitoring (Section 4.2). While our methodology is
general, this section focuses on the case where the ego car drives behind another
car and must ensure safety.

4.1 Refining the dL Controller

To account for the concrete NN, we transform the controller’s action space from
choosing an acceleration ae to choosing an action via three outputs y1, y2, y3:

ctrlNN y1 := ∗; y2 := ∗; y3 := ∗;
if(y1 ≥ y2 ∧ y1 ≥ y3) {ae := ∗; ?(Bmax ≤ ae ≤ Bmin)};
if(y2 > y1 ∧ y2 ≥ y3) {ae := 0};
if(y3 > y1 ∧ y3 > y2) {ae := ∗; ?(Amin ≤ ae ≤ Amax)};
{ ?(xe ≤ xo ∧Bmax ≤ ae ≤ Bmin)
∪ ?(xe ≥ xo ∧Amin ≤ ae ≤ Amax)
∪ ?(safeBack ∨ safeFront) }; te := t

Verification of Autonomous Neural Car Control with KeYmaera X 11

Based on the NN’s outputs y1, y2, y3 the program determines the corresponding
acceleration value ae and then ensures safety via the checks we already know from
the dL model for ctrle. To recover the formal guarantee from Formula (2), we
show that model(ctrlNN) refines model(ctrle), i.e. model(ctrlNN)’s transitions
are included in model(ctrle)’s. In fact, we prove a slightly relaxed refinement
to ignore the variables y1, y2, y3 that are modified by ctrlNN and not ctrle.

Lemma 1. The following refinement is valid:

ctxC → (model(ctrlNN) ≤ (y1 := ∗; y2 := ∗; y3 := ∗; model(ctrle))) (4)

Using this refinement, it is then trivial to extend the proof of Formula (2) to
model(ctrlNN). The proof of refinement is done using KeYmaera X’s differential
refinement logic implementation1 and is based on a proof of refinement between
ctrlNN and y1 := ∗; y2 := ∗; y3 := ∗; ctrle.

4.2 ModelPlex for Safe Neural Network Control

We have now shown that any action taken by ctrlNN keeps the system safe
on an infinite-time horizon. Using ModelPlex we derive a controller monitor
for ctrlNN that we can use w.r.t. a concrete NN. To this end, we note that
according to the specification [16] the NN has (among other inputs) a vector
in = (xe, ve, xo, vo) and the NN’s only output is a vector out =

(
y+1 , y

+
2 , y

+
3

)
.

Besides the variables in in, out the controller monitor derived via ModelPlex
also constrains the acceleration variables ae and a+e (as ctrlNN modifies ae)
as well as the clock variables t, t+e (required for book-keeping on control cycles).
We denote this ModelPlex condition for ctrlNN as mon

(
in, out, ae, a+e , t, t

+
0

)
. As

described in Section 2.3, VerSAILLE allows us to use the monitor mon to verify
the safety of an NN by additionally exploiting the dL model’s loop invariant
which tells us what states are reachable (and thus for which states the NN must
exhibit safe actions). We denote this invariant as inv

(
in, ae, ao, t, t0

)
. In addition

to the two cars’ positions and velocities, the invariant also mentions the cars’
accelerations and the clock variables t, te. As explained in Section 2.3 we can
prove the infinite-time horizon safety of an NN by showing that all inputs inside
the invariant inv lead to outputs satisfying the controller monitor mon. Formally,
this can be expressed as the following Theorem which follows from [35, Thm. 2]:

Theorem 2 (NNCS Safety Criterion). Let g be an NN for highway car
control as modeled in Section 3. If Formula (5) is satisfied for all in and out =
g
(
in
)

then the safety guarantees derived in Theorem 1 apply to model(g).

∀ae, a+e , ao, t, te, t+e inv
(
in, ae, ao, t, t0

)︸ ︷︷ ︸
system invariant

→ mon
(
in, out, ae, a+e , t, t

+
0

)︸ ︷︷ ︸
monitoring formula

(5)

While this work omits the precise formulation, it is worth noting that the safety
guarantees for g are rigorously founded in dL via a reconstruction of g inside dL
through the notion of nondeterministic mirrors [35, Def. 16].
1 https://github.com/LS-Lab/KeYmaeraX-release/tree/dRL-ABZ’25

https://github.com/LS-Lab/KeYmaeraX-release/tree/dRL-ABZ'25

12 E. Prebet et al.

nnCtx
(
in, out, a+e , t0, t

+
0 , t
) def

=

y+1 ≥ y+2 ∧ y+1 ≥ y+3 → Bmax ≤ a+e ≤ Bmin ∧
y+2 > y+1 ∧ y+2 ≥ y+3 → a+e = 0 ∧
y+3 > y+1 ∧ y+3 > y+2 → a+e = Amax ∧
xe + L ≤ xo ∧ t+e = t ∧ te ≤ t ≤ te + T ∧ ctxC
Fig. 1. Context assumptions for simplification

Unfortunately, Formula (5)
cannot effectively be used for
the NN verification directly
as the NNs do not set the
ego-cars acceleration (a+e) but
rely on surrounding software
which computes a+e based
on y1, y2, y3 (and resets the
clock variable te). Moreover,
ae, ao, t and te are not inputs to the NN and would thus need to be quantified
over. To make our verification condition practical, we derive a simplified version
that we prove equivalent to Formula (5). To this end, we begin by axiomatizing
our assumptions on the NN’s surroundings. We assume the software correctly
assigns ae based on y1, y2, y3, correctly manages clock variables and that we
drive behind the other car (as mentioned above, we focus on this case). We also
set Amin = Amax (as done in the official ABZ specificaton [16]) and assume
the known ranges of constants as formalized in Figure 1. Assuming nnCtx, the
system’s invariant can then be simplified as follows:

invsimp
def
= 0 ≤ vo ≤ V ∧ 0 ≤ ve ≤ V ∧ xe + L ≤ xo ∧ pose(Bmin) + L < poso

The simplified invariant makes sense intuitively as it matches the initial con-
dition constraints in Formula (2) on the variables in in. Similarly, we simplify
mon by removing cases irrelevant to the ego-car driving behind, the manage-
ment of clock variables and explicit mentions of a+e . This yields a simplified
formula monsimp

(
in, out

)
[32]. For these simplifications, we prove equivalence to

Formula (5) in KeYmaera X under the assumption of nnCtx:

Lemma 2 (Simplified NN Verification). The following formula is valid:

nnCtx
(
in, out, a+e , t0, t

+
0 , t
)
→((

invsimp
(
in
)
→

monsimp
(
in, out

))︸ ︷︷ ︸
simplified

↔

∀ae∀ao
((

inv
(
in, ae, ao, t, t0

))
→ mon

(
in, out, ae, a+e , t, t

+
0

))

︸ ︷︷ ︸
Formula (5)

)

This serves as justification for verifying the simplified condition nnSpecsimp
def
=

invsimp
(
in
)
→ monsimp

(
in, out

)
on our NNs as we can assume nnCtx. While

nnSpecsimp is free of quantifiers, it still contains polynomial arithmetic (e.g. in
pose(Bmin)). In addition to the two cars modelled in dL, the NN controller gets
as input the states of up to three more cars (we will call these cars car 1 to car
5 with car 1 being the ego car). For the single-lane case, the ego car’s influence
on crashes with cars 3-5 is very limited. However, we know that car 2 can avoid
a crash with car 3 if the velocity of car 3 is larger than the velocity of car 2 (e.g.
by performing an emergency brake). For now, we thus assume that for the extra
cars 3 ≤ i ≤ 5 it is guaranteed that car i−1 is slower than car i. We thus encode

Verification of Autonomous Neural Car Control with KeYmaera X 13

these additional constraints on the state of cars 3-5 in a predicate nnSpecadd [32]
and then verify the NN w.r.t. to the specification nnSpecadd → nnSpecsimp.
nnSpecadd also contains constraints on the encoding of (non-)presence of cars
and the NN’s input space normalisation described in ABZ’s specification [16].
In Section 5 we will see concrete examples for verifying NNs with respect to the
full specification nnSpecadd → nnSpecsimp, but we will first demonstrate that
similar formulas can also be used for monitoring and shielding.

Justified Speculative Control and VeriPhy. Assuming nnCtx and invsimp, it also
holds that monsimp

(
in, out

)
↔ mon

(
in, out, ae, a+e , t, t

+
0

)
. Consequently, we can

use the simplified monitoring condition not only for verification, but also for the
construction of shields (JSC) and runtime monitors (VeriPhy). JSC is meant
to only check the runtime monitor when the observed behaviour matches the
model. To this end, JSC usually has a model monitor that checks whether a
given state transition is explainable by the dL environment model. However,
early experiments showed divergence in the simulation’s environment and the dL
environment model which would effectively deactivate JSC in most of the state
space (these observations will be discussed in more detail in the latter sections).
Consequently, we relaxed the model monitor to its “most” safety-critical parts
and only check whether a given state is inside the invariant state space.

In this section, we have seen how ModelPlex conditions and invariants can
be applied even if they contain unobservable variables [23]. This allows us to ap-
ply dL-based monitoring, shielding and verification techniques independently of
whether some variables (e.g. time or effective acceleration) are measurable or not.

5 Verification Results

Table 1. Results of NN verification.

NN Time # Crashes
default braking

Section 5.1 3.6 h 538 3,593
Section 5.2 1.9 h 4,852 8,713

A manual analysis of the agents in
ABZ’s case study uncovered that
the agents’ action space is different
from its formal specification [16]: The
highway-env simulator configuration
admits different action spaces. The provided agents used DiscreteMetaAction
configuring the agent’s action space as decreasing/increasing a reference velocity
vr ∈ {0, 5, . . . , 35, 40} achieved via a low-level proportional controller. This can
lead to very different action outcomes compared to the specified action space. For
example, the brake action as described in the formal specification always leads to
a deceleration (unless ve is zero already). In contrast, the “brake” action with the
DiscreteMetaAction configuration can even lead to an acceleration (e.g. if ve =
10 and vr = 20, “braking” sets vr to 15 and the proportional controller accelerates
so that ve = 15 is reached). The safety guarantees and verification conditions
derived in Sections 3 and 4 thus only apply to the written specification, but not
to the simulator’s default configuration violating its own description. We trained
a new NN using highway-env’s DiscreteAction configuration option2 (other-
wise using the default configuration) that can brake, idle or accelerate directly

14 E. Prebet et al.

(ae ∈ {Bmax, 0, Amax}). We discuss verification of this NN (Section 5.1) and an
improved version (Section 5.2). Results are reproducible via our artifact [31].

5.1 A First Attempt at Verification

0 50 100 150 200
Position [m]

0
2
4
6Ti

m
e

[s
]

Ego (NN) Ego (Braking) Front Car

Fig. 2. One of 538 examples of unsafe NN
behaviour in default environment (x-axis
shows position, y-axis shows time). Braking
could have avoided a crash ().

As a first step we attempted to ver-
ify the NN for two cars w.r.t. the
specification derived in Section 4 us-
ing NCubeV [35] which supports poly-
nomial arithmetic specifications. In
case a specification cannot be proven,
NCubeV is also capable of enumerat-
ing all counterexample regions (rep-
resented as polytopes) to a given specification. Notably, successful verification
would, by construction, guarantee that the two cars on the highway will never
crash – independently of trip time. The trained NN instead turned out to be
unsafe: NCubeV returned 14,917 counterexample regions. Computing these
counterexamples took 3.6 hours (see Table 1). However, verifying safety is often
quicker than enumerating all counterexamples for NCubeV [35]. Each counterex-
ample region has a representative input violating the specification. These inputs
can be used to sample trajectories from the simulator to find concrete crashes.
Figure 2 shows one of 538 concrete crashes we observed when the front car is
controlled by the Intelligent Driver Model [37] (IDM). Importantly, these crashes
could have all been avoided by braking. When the front car is configured to per-
form an emergency brake, our sampling strategy yielded 3,593 crash trajectories.

These observations raise two questions: 1. Why did the NN not learn to brake
in time? 2. Is there nonetheless a way to safely deploy the NN at hand? One an-
swer to the former question can be found in the IDM. While originally derived
as a means to understand traffic congestion, highway-env uses the model to
control the environment’s cars. Due to the way IDM is set up, the ego-car rarely
experiences emergency brakes of front cars and thus does not learn to account for
them (as indicated by over 3,000 crash trajectories for emergency braking front
cars). The highway-env simulation environment is thus another example of a
previously observed phenomenon that worst-case scenarios which occur with low
probabilities during training are typically not learned by reinforcement learning
agents and that these errors can be uncovered by formal verification [35]. In
the present environment, this issue is exacerbated by the fact that the agent
learns that it can brake with acceleration ae = Bmax although (according to the
specification) the acceleration can be as little as Bmin.

We now turn to the question of how the NN can be safeguarded under the
given conditions. To this end, we evaluated the NN’s empirical performance (re-
ward) and crash behaviour w.r.t. the IDM front-car (default) as well as w.r.t. an

2 Python’s weak type system makes the configuration especially error-prone: The
acceleration_range is configured via a 2-tuple (min, max). Accidentally providing a
list of actions interpolates discrete accelerations between the list’s first two elements.

Verification of Autonomous Neural Car Control with KeYmaera X 15

Table 2. Empirical results for the original, monitored (VeriPhy) and shielded (JSC)
controller given initial conditions inside the safely controllable (i.e. invariant) state
space. The velocity bounds of JSC’s invariant check had to be modified as the simulator
occasionally produces velocities outside [0, V] which would otherwise deactivate JSC.

Env
Original NN VeriPhy JSC*

Reward Crash Reward Crash Reward Crash

default (IDM) 17.63± 0.21 0 % 16.72± 0.32 0 % 17.63± 0.21 0 %
braking 5.44± 1.27 99.6% 16.47± 0.05 0 % 16.47± 0.05 0 %

environment where the front car performs emergency brakes and the ego car can
only decelerate with Bmin (braking). We evaluate the stand-alone NN, a moni-
tored version using a Python implementation of the VeriPhy approach (this im-
plementation comes without the rigorous compilation guarantees of VeriPhy [3])
and a shield for the NN using JSC [8]. We evaluate w.r.t. initial conditions satis-
fying the invariant over 1000 sampled trajectories3. The results are in Table 2 and
indicate relatively consistent behaviour w.r.t. to the reward standard deviation.
Empirically, we observe that the agent trained w.r.t. to the IDM model (default
environment) crashes in 996 out of 1000 cases when evaluated w.r.t. a braking
front car (braking environment). Our investigation indicates that the dynamics
in default lack diversity in at least three dimensions: First, the environment
assumes maximal braking power (contradicting the formal specification [16]);
Secondly, the environment very rarely simulates braking front cars. Finally, we
posit that default only samples initial conditions from a small subset of admis-
sible initial conditions as our verifier found many concrete initial conditions that
lead to crashes in default. Importantly, VeriPhy and JSC allow us to (prov-
ably!) avoid these crashes by intervening when the model chooses unsafe actions.
We observe that, based on the reward function, JSC matches the best results
across both environments while leading to 0 crashes. VeriPhy’s and JSC’s be-
haviour differs in their statistics on taken actions: For example, JSC chooses the
idle action in 6.3% of time steps while VeriPhy never chooses this action.

5.2 An Improved NN Controller

Based on the results from Section 5.1 we attempted to train a second agent.
To this end, we also modified the training. First, we enforce that 80% of initial
states satisfy the invariant (like above, we achieve this by sampling with reduced
car density). Second, we modified the behaviour of environment variables: In
each control round a car initiates (and then continues in subsequent steps) an
emergency brake with 15% probability. Our objective is to increase the likelihood
of the agent experiencing worst-case behaviour of the environment as a learning
opportunity – especially in situations where crashes can be avoided. Finally,
as NN verification and counterexample region enumeration scales exponentially
3 Initial conditions are generated via rejection sampling. For a sufficiently high success

rate, we had to reduce the simulator’s car density parameter.

16 E. Prebet et al.

with the NN’s size, we reduce the NN to two layers with 16 neurons each. Unlike
the provided environment (20k steps) we train for up to 40k steps and choose
the best-performing model (achieved after 22k steps). To simplify the task, we
furthermore assume Bmin = Bmax = −5.0. An evaluation across 1,000 initial
conditions for braking (with Bmin = −5) yielded a reward of 16.08±0.07 with 0
crashes. Compared to the first NN’s performance for the braking environment
in Table 2 this is a notable performance improvement. Given these promising
results, we attempted verification w.r.t. the full NN specification (2 to 5 cars).

25 30 35 40 45
Position [m]

0

1

2

3

4

5

Ti
m

e
[s

]

Ego (100Hz)
Ego (10 Hz)
Front Car (100Hz)
Front Car (10Hz)

Fig. 3. An Euler
Crash (): Occurrence
depends on Euler ap-
proximation resolution.

Verification took 1.9 hours and still returned 11,059
counterexample regions. Simulations with the repre-
sentative inputs for the returned regions uncovered 4852
crashes in the default simulation (using IDM) and 8713
crashes in the braking simulation (with Bmax = Bmin =
−5; see Table 1). Surprisingly, for the two simulations
we resp. found 181 and 40 cases that even produced a
crash when the ego-car performed an emergency brake!
This is surprising as our dL proof states that braking
should keep our system safe. A closer examination un-
covered that these are Euler Crashes, i.e. the occurrence
of a crash depends on the resolution of the Euler approx-
imation. For a finer step size of the Euler approximation,
the spurious crash disappears. Importantly, in almost all cases the crash pro-
duced by the NN remained. An example for an Euler Crash (evaluated with 10
and 100 Euler steps per second of evolution) can be found in Figure 3.

6 The Model2Simulation Gap

Overall, this work has not only derived an abstract dL model, but also demon-
strated in practice that verification can serve as a powerful tool to detect flaws in
reinforcement learning systems. Across two NNs our analysis uncovered numer-
ous concrete counterexamples for NNs even though they performed flawlessly in
their respective simulations. Throughout, we attempted to trace these faults to
design choices in the simulator such as the intelligent driver model or the sam-
pling method for choosing initial conditions. Overall, our results provide strong
evidence that as is the highway-env simulator provides no reliable basis for the
training of safe car control NNs. However, we believe the detected issues point
to a larger issue concerning inconsistencies between models and simulators in
general. While we consistently took the stance that our model is correct and the
simulation is to blame, in reality, this is not always the case: For example, was
it justified that we changed the NN’s action space or should we have built an
entirely different KeYmaera X model? Here, we believe our choice was justified
by ABZ’s specification document [16], but such documentation may not always
be available. While this work demonstrates how far dL-based safety certification
for NN Control Systems has come, it also underscores the intricate issues of
interlinking simulation-based evaluation with a symbolic, dL-based analysis.

Verification of Autonomous Neural Car Control with KeYmaera X 17

Acknowledgements. This work was supported by funding from the pilot pro-
gram Core-Informatics of the Helmholtz Association (HGF) and by an Alexander
von Humboldt Professorship.

References

1. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010). https://doi.org/10.1017/CBO9781139195881

2. Banach, R., Butler, M.J.: Cruise control in hybrid Event-B. In: Liu, Z., Woodcock,
J., Zhu, H. (eds.) Theoretical Aspects of Computing - ICTAC 2013 - 10th Inter-
national Colloquium, Shanghai, China, September 4-6, 2013. Proceedings. LNCS,
vol. 8049, pp. 76–93. Springer (2013). https://doi.org/10.1007/978-3-642-39718-9_
5

3. Bohrer, R., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: veri-
fied controller executables from verified cyber-physical system models. In: Foster,
J.S., Grossman, D. (eds.) Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018. pp. 617–630. ACM (2018). https://doi.org/10.1145/
3192366.3192406

4. Brix, C., Bak, S., Johnson, T.T., Wu, H.: The fifth international verification of
neural networks competition (VNN-COMP 2024): Summary and results. CoRR
abs/2412.19985 (2024). https://doi.org/10.48550/ARXIV.2412.19985

5. Brix, C., Müller, M.N., Bak, S., Johnson, T.T., Liu, C.: First three years of
the international verification of neural networks competition (VNN-COMP). Int.
J. Softw. Tools Technol. Transf. 25(3), 329–339 (2023). https://doi.org/10.1007/
s10009-023-00703-4

6. Demarchi, S., Guidotti, D., Pulina, L., Tacchella, A.: Supporting standardization of
neural networks verification with VNNLIB and coconet. In: Narodytska, N., Amir,
G., Katz, G., Isac, O. (eds.) Proceedings of the 6th Workshop on Formal Meth-
ods for ML-Enabled Autonomous Systems, FoMLAS@CAV 2023, Paris, France,
July 17-18, 2023. Kalpa Publications in Computing, vol. 16, pp. 47–58. EasyChair
(2023). https://doi.org/10.29007/5PDH

7. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An
axiomatic tactical theorem prover for hybrid systems. In: Felty, A., Middel-
dorp, A. (eds.) CADE. LNCS, vol. 9195, pp. 527–538. Springer, Berlin (2015).
https://doi.org/10.1007/978-3-319-21401-6_36

8. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: McIlraith, S.A., Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. pp. 6485–6492.
AAAI Press (2018). https://doi.org/10.1609/aaai.v32i1.12107

9. Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In: Vojnar,
T., Zhang, L. (eds.) TACAS, Part I. LNCS, vol. 11427, pp. 413–430. Springer
(2019). https://doi.org/10.1007/978-3-030-17462-0_28

10. Garcia, L., Mitsch, S., Platzer, A.: HyPLC: Hybrid programmable logic controller
program translation for verification. In: Bushnell, L., Pajic, M. (eds.) ICCPS. pp.
47–56 (2019). https://doi.org/10.1145/3302509.3311036

11. Kabra, A., Laurent, J., Mitsch, S., Platzer, A.: CESAR: Control envelope synthesis
via angelic refinements. In: Finkbeiner, B., Kovács, L. (eds.) TACAS. LNCS, vol.

https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1007/978-3-642-39718-9_5
https://doi.org/10.1007/978-3-642-39718-9_5
https://doi.org/10.1007/978-3-642-39718-9_5
https://doi.org/10.1007/978-3-642-39718-9_5
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.48550/ARXIV.2412.19985
https://doi.org/10.48550/ARXIV.2412.19985
https://doi.org/10.1007/s10009-023-00703-4
https://doi.org/10.1007/s10009-023-00703-4
https://doi.org/10.1007/s10009-023-00703-4
https://doi.org/10.1007/s10009-023-00703-4
https://doi.org/10.29007/5PDH
https://doi.org/10.29007/5PDH
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1609/aaai.v32i1.12107
https://doi.org/10.1609/aaai.v32i1.12107
https://doi.org/10.1007/978-3-030-17462-0_28
https://doi.org/10.1007/978-3-030-17462-0_28
https://doi.org/10.1145/3302509.3311036
https://doi.org/10.1145/3302509.3311036

18 E. Prebet et al.

14570, pp. 144–164. Springer (2024). https://doi.org/10.1007/978-3-031-57246-3_
9

12. Kamburjan, E., Mitsch, S., Hähnle, R.: A hybrid programming language for formal
modeling and verification of hybrid systems. Leibniz Trans. Embed. Syst. 8(2),
04:1–04:34 (2022). https://doi.org/10.4230/LITES.8.2.4

13. König, M., Bosman, A.W., Hoos, H.H., van Rijn, J.N.: Critically assessing the
state of the art in neural network verification. J. Mach. Learn. Res. 25, 12:1–12:53
(2024), https://jmlr.org/papers/v25/23-0119.html

14. Könighofer, B., Bloem, R., Ehlers, R., Pek, C.: Correct-by-construction runtime
enforcement in AI - A survey. In: Raskin, J., Chatterjee, K., Doyen, L., Majumdar,
R. (eds.) Principles of Systems Design - Essays Dedicated to Thomas A. Henzinger
on the Occasion of His 60th Birthday. LNCS, vol. 13660, pp. 650–663. Springer
(2022). https://doi.org/10.1007/978-3-031-22337-2_31

15. Leurent, E.: An environment for autonomous driving decision-making. https://
github.com/eleurent/highway-env (2018)

16. Leuschel, M., Vu, F., Rutenkolk, K.: Case study: Safety controller for au-
tonomous driving on highways (v2) (2024), https://raw.githubusercontent.com/
hhu-stups/abz2025_casestudy_autonomous_driving/refs/heads/main/case_
study/specification_v2.pdf, v2, accessed 11th of February 2025

17. Loos, S.M., Platzer, A.: Differential refinement logic. In: Grohe, M., Koskinen, E.,
Shankar, N. (eds.) LICS. pp. 505–514. ACM, New York (2016). https://doi.org/
10.1145/2933575.2934555

18. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed,
and now formally verified. In: Butler, M., Schulte, W. (eds.) FM. LNCS, vol. 6664,
pp. 42–56. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-21437-0_6

19. Lopez, D.M., Althoff, M., Benet, L., Blab, C., Forets, M., Jia, Y., Johnson, T.T.,
Kranzl, M., Ladner, T., Linauer, L., Neubauer, P., Neubauer, S., Schilling, C.,
Zhang, H., Zhong, X.: ARCH-COMP24 category report: AINNCS for continuous
and hybrid systems plants. In: Frehse, G., Althoff, M. (eds.) Proceedings of the
11th Int. Workshop on Applied Verification for Continuous and Hybrid Systems.
EPiC Series in Computing, vol. 103, pp. 64–121. EasyChair (2024). https://doi.
org/10.29007/mxld

20. Lopez, D.M., Althoff, M., Benet, L., Chen, X., Fan, J., Forets, M., Huang, C.,
Johnson, T.T., Ladner, T., Li, W., et al.: ARCH-COMP22 category report: AIN-
NCS for continuous and hybrid systems plants. In: Proceedings of 9th International
Workshop on Applied. vol. 90, pp. 142–184 (2022). https://doi.org/10.29007/wfgr

21. Lopez, D.M., Althoff, M., Forets, M., Johnson, T.T., Ladner, T., Schilling, C.:
ARCH-COMP23 category report: (AINNCS) for continuous and hybrid systems
plants. In: Frehse, G., Althoff, M. (eds.) Proceedings of 10th International Work-
shop on Applied Verification of Continuous and Hybrid Systems (ARCH23), San
Antonio, Texas, USA, May 9, 2023. EPiC Series in Computing, vol. 96, pp. 89–125.
EasyChair (2023). https://doi.org/10.29007/X38N

22. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-
physical system models. Formal Methods Syst. Des. 49(1-2), 33–74 (2016). https:
//doi.org/10.1007/s10703-016-0241-z

23. Mitsch, S., Platzer, A.: Verified runtime validation for partially observable hybrid
systems. CoRR abs/1811.06502 (2018), http://arxiv.org/abs/1811.06502

24. Mitsch, S., Platzer, A., Fulton, N., Bohrer, R., Kiam, Y., Immler, F., Quesel, J.D.,
Ji, R., Gallicchio, J., Völp, M., Prebet, E., Sogokon, A., LSLabBuild, Erthal, T.,
Kabra, A., Kosaian, K., Laurent, J.: LS-Lab/KeYmaeraX-release: Version 5.1.1
(Jul 2024). https://doi.org/10.5281/zenodo.13380145

https://doi.org/10.1007/978-3-031-57246-3_9
https://doi.org/10.1007/978-3-031-57246-3_9
https://doi.org/10.1007/978-3-031-57246-3_9
https://doi.org/10.1007/978-3-031-57246-3_9
https://doi.org/10.4230/LITES.8.2.4
https://doi.org/10.4230/LITES.8.2.4
https://jmlr.org/papers/v25/23-0119.html
https://doi.org/10.1007/978-3-031-22337-2_31
https://doi.org/10.1007/978-3-031-22337-2_31
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://raw.githubusercontent.com/hhu-stups/abz2025_casestudy_autonomous_driving/refs/heads/main/case_study/specification_v2.pdf
https://raw.githubusercontent.com/hhu-stups/abz2025_casestudy_autonomous_driving/refs/heads/main/case_study/specification_v2.pdf
https://raw.githubusercontent.com/hhu-stups/abz2025_casestudy_autonomous_driving/refs/heads/main/case_study/specification_v2.pdf
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.29007/mxld
https://doi.org/10.29007/mxld
https://doi.org/10.29007/mxld
https://doi.org/10.29007/mxld
https://doi.org/10.29007/wfgr
https://doi.org/10.29007/wfgr
https://doi.org/10.29007/X38N
https://doi.org/10.29007/X38N
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
http://arxiv.org/abs/1811.06502
https://doi.org/10.5281/zenodo.13380145
https://doi.org/10.5281/zenodo.13380145

Verification of Autonomous Neural Car Control with KeYmaera X 19

25. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

26. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14509-4

27. Platzer, A.: A complete axiomatization of quantified differential dynamic logic
for distributed hybrid systems. Log. Meth. Comput. Sci. 8(4:17), 1–44 (2012).
https://doi.org/10.2168/LMCS-8(4:17)2012, special issue for selected papers from
CSL’10

28. Platzer, A.: A complete uniform substitution calculus for differential dy-
namic logic. J. Autom. Reas. 59(2), 219–265 (2017). https://doi.org/10.1007/
s10817-016-9385-1

29. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

30. Prebet, E., Platzer, A.: Uniform substitution for differential refinement logic. In:
Benzmüller, C., Heule, M.J., Schmidt, R.A. (eds.) IJCAR. LNCS, vol. 14740, pp.
196–215. Springer (2024). https://doi.org/10.1007/978-3-031-63501-4_11

31. Prebet, E., Teuber, S., Platzer, A.: LS-Lab/verified-neural-highway-control: 1.0
(Mar 2025). https://doi.org/10.5281/zenodo.14959858

32. Prebet, E., Teuber, S., Platzer, A.: Verification of autonomous neural car control
with KeYmaera X (2025), https://arxiv.org/abs/2504.03272

33. Renshaw, D.W., Loos, S.M., Platzer, A.: Distributed theorem proving for dis-
tributed hybrid systems. In: Qin, S., Qiu, Z. (eds.) ICFEM. LNCS, vol. 6991,
pp. 356–371. Springer (2011). https://doi.org/10.1007/978-3-642-24559-6_25

34. Shperberg, S.S., Liu, B., Allievi, A., Stone, P.: A rule-based shield: Accumulating
safety rules from catastrophic action effects. In: Chandar, S., Pascanu, R., Pre-
cup, D. (eds.) Conference on Lifelong Learning Agents, CoLLAs 2022, 22-24 Au-
gust 2022, McGill University, Montréal, Québec, Canada. Proceedings of Machine
Learning Research, vol. 199, pp. 231–242. PMLR (2022)

35. Teuber, S., Mitsch, S., Platzer, A.: Provably safe neural network controllers via dif-
ferential dynamic logic. In: Globerson, A., Mackey, L., Fan, A., Zhang, C., Belgrave,
D., Tomczak, J., Paquet, U. (eds.) Advances in Neural Information Processing Sys-
tems. Curran Associates, Inc. (2024), https://doi.org/10.48550/arXiv.2402.10998

36. Tran, H., Cai, F., Lopez, D.M., Musau, P., Johnson, T.T., Koutsoukos, X.D.:
Safety verification of cyber-physical systems with reinforcement learning con-
trol. ACM Trans. Embed. Comput. Syst. 18(5s), 105:1–105:22 (2019). https:
//doi.org/10.1145/3358230

37. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical ob-
servations and microscopic simulations. Physical review E 62(2), 1805 (2000).
https://doi.org/10.1103/PhysRevE.62.1805

38. Vu, F., Dunkelau, J., Leuschel, M.: Validation of reinforcement learning agents
and safety shields with prob. In: Benz, N., Gopinath, D., Shi, N. (eds.) NASA
Formal Methods - 16th International Symposium, NFM 2024, Moffett Field, CA,
USA, June 4-6, 2024, Proceedings. LNCS, vol. 14627, pp. 279–297. Springer (2024).
https://doi.org/10.1007/978-3-031-60698-4_16

https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-031-63501-4_11
https://doi.org/10.1007/978-3-031-63501-4_11
https://doi.org/10.5281/zenodo.14959858
https://doi.org/10.5281/zenodo.14959858
https://arxiv.org/abs/2504.03272
https://doi.org/10.1007/978-3-642-24559-6_25
https://doi.org/10.1007/978-3-642-24559-6_25
https://doi.org/10.48550/arXiv.2402.10998
https://doi.org/10.1145/3358230
https://doi.org/10.1145/3358230
https://doi.org/10.1145/3358230
https://doi.org/10.1145/3358230
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1007/978-3-031-60698-4_16
https://doi.org/10.1007/978-3-031-60698-4_16

State-Based Modelling with a Concept DSL

Nikolaj Kühne Jakobsen[0009−0001−9293−3478]

Aarhus University, Nordre Ringgade 1, 8000 Aarhus C, Denmark
nkj@ece.au.dk

Abstract. Concept-based design is a new emerging formalism that uses
concepts to facilitate the construction of modular and reusable software.
Concepts are independent and generic units of functionality that can be
composed to form complex applications. This work presents Conceptual,
a domain-specific language for defining and composing concepts. A com-
piler from this language to Alloy6 is implemented, establishing a way to
model and validate concept specifications of software formally. The prac-
tical application of Conceptual is examined qualitatively by leveraging
Alloy’s analysis tools to reason about existing concept specifications in
the literature.

Keywords: Concepts · DSL · Alloy · Compiler · Formal methods · LTL

1 Introduction

Every developer recognizes the value of good abstractions [7, 9]. Yet, such ab-
stractions are nontrivial to come up with, promoting reuse [14]. Consequently,
considerable work has gone into figuring out how to write effective and reusable
code. Dijkstra famously advocated for separation of concerns and simplicity
[2, 3], and similar principles are abundant in other work [7, 22].

However, even when adhering to such principles or following idiomatic design
patterns [5], diverse requirements tend to necessitate unique implementations.
Despite seemingly sharing common functionality, features are often customized
uniquely across different applications. For example, tagging someone in Gmail
highlights their name in the email, automatically adds them to the list of recip-
ients, and clicking their highlighted name generates a new draft email for that
person. The same feature on X (formerly Twitter) creates a link to their profile,
notifies them about a post, and may indirectly impact the ranking algorithm
with an increase in engagement. While developers may attempt to repurpose
such components or functionality, it is not always effective [1], may increase
technical debt [16] and decrease modularity [21].

In his latest book, The Essence of Software: Why Concepts Matter for Great
Design [10], Daniel Jackson scrutinizes software from industry giants such as
Apple, Dropbox, and Google, showing unintuitive behavior in even their most
popular products. The claim is that many such problems stem from poor design
decisions that do not accurately reflect the conceptual model of the users or
developers. He rethinks software design using mutually independent and free-
standing concepts.

2 N. K. Jakobsen

Essentially, concepts are abstract entities that describe some familiar behav-
ior. Like how microservices are combined to contribute to an overall system,
concepts can be composed to form complex applications. Although the concepts
exist independently, their internal states are observable, creating a dependency
graph once concretely instantiated [10]. The nodes are the concepts, and each
edge represents a synchronization of actions. For example, email clients often
have the ability to add a special label to deleted emails, and emails with this la-
bel automatically appear in a special trash folder. That is, the action of deleting
an email triggers another action that labels the email (and vice versa).

As the notion of concept-centric design is fairly new, existing work on the
topic is scarce. Perez De Rosso has used concepts to redesign and remedy well-
known difficulties of git [20]. Moreover, he has created a platform, Déjà Vu
[19], for assembling full-stack applications by combining concepts from a cen-
tralized catalogue using an HTML-like template language. Similarly, Namazov
developed a framework, Kodless [18], which leverages concept specifications to
more efficiently generate and deploy simple, full-stack web applications. Palantir
has published a holistic experience report [23], highlighting their successes and
challenges of using concept-centric design methodologies in a larger organization.

However, the primary focus of this research appears to be on practicality and
real-world application, emphasizing low-code development processes, integration
with LLMs, and organizational challenges, rather than formal methods.

This work presents Conceptual [12], a new external domain-specific language
(DSL) for describing and composing concepts, formalizing the proposed syntax
in [10]. Additionally, a compiler is implemented from this language to Alloy [8].
Using the compiler, various concept specifications from [10] are translated and
analyzed using Alloy’s analysis tools.

2 Concepts

In his book on concept-centric design [10], Daniel Jackson describes a concept
as follows:

A concept is a particular solution to a particular design problem - not
a large and vague problem but a small and well-defined need that arises
repeatedly in many contexts.

That is, concepts are invented by someone at a certain point in time to
fulfill a particular purpose. Concepts should be one-to-one with this purpose:
for every concept, there should only be one purpose that motivates it, and vice
versa. A reader might question how concepts differ from the traditional object-
oriented design pattern [5]. Both solve particular design problems, provide a
common vocabulary, and provide basic building blocks for constructing reusable
software through abstraction. However, design patterns are often categorized into
different types (e.g. structural, behavioral, and creational) and aim to reduce
internal coupling, whereas concepts are designed to be user-facing and strictly
behavioral.

State-Based Modelling with a Concept DSL 3

In a more formal sense, a concept can be modeled using a deterministic state
machine: given a state and a set of argument values for an action, at most one
state can result from executing it. In [10], a concept definition includes a name,
a purpose, a state, a set of actions, and operational principles. In particular,
only the declarations of name, state, and actions functionally affect the behavior
of the action system. With the name declaration, concepts are typically made
generic with polymorphic subentities. The state encompasses the concept’s in-
ternal memory, and actions define state transitions for the dynamic behavior.
However, concepts are not just semantic entities. Operational principles teleolog-
ically describe how a concept fulfills its intended purpose and core functionality
through archetypical scenarios and linear temporal logic (LTL) [15]. This notion
of operational principles may resemble an LTL extension of axioms in algebraic
specification languages, e.g. CASL [17], or property-based testing approaches [4].

A system can be composed of several concepts. Concepts cannot directly
alter another concept’s state or influence the behavior of its actions, but its
state can be observed. When a system integrates various concepts, it coordinates
their actions using a CSP-like [6] synchronization mechanism. Each concept runs
autonomously, determining when its actions may occur and the impact of the said
actions on its own internal state. Structurally, each synchronization consists of
a trigger action and accompanying response actions that occur when the trigger
is executed. Semantically, synchronizations are transactional, meaning that they
are assumed not to happen when a response action is impossible; either every
action occurs or none do. Importantly, such a composition does not introduce
new actions to any particular concept. Moreover, as any trace of the composed
system is an interleaving of traces of individual concepts, any property that holds
for a particular concept holds for the system trace as a whole [11].

2.1 Reservation Concept

Figure 1 expresses the reservation concept from [10] in Conceptual. The reser-
vation concept is defined using parametric polymorphism, naming two type pa-
rameters User and Resource. The concept attempts to optimize resource when
resources are limited. It maintains two sets in its state: the available resources
that are currently not reserved, and a set of user reservations of said resources.
These sets (and any sets defined in the state) are empty at the time of initial-
ization unless declared with multiplicity one. This ensures that the concept is
not initially in an erroneous state that can produce traces violating the defined
properties. Actions modify the concept state, providing ways to add or remove
resources from the available pool and create or cancel reservations.

The use action verifies a user has reserved a resource without modifying
state. "When" clauses act as firing conditions and resemble preconditions, but
(unlike a precondition) they ensure that the action cannot happen unless a par-
ticular boolean expression holds. The operational principle ensures users can use
resources continuously between reservation and cancellation, though it arguably
omits an essential property related to double-booking of resources.

4 N. K. Jakobsen

concept reservation [User, Resource]
purpose "use a limited pool of resources efficiently"
state
available: set Resource
reservations: User → set Resource

actions
provide(r: Resource)
available += r

retract(r: Resource)
when r in available and r not in reservations
available −= r

reserve(u: User, r: Resource)
when r in available
u.reservations += r
available −= r

cancel(u: User, r: Resource)
when r in u.reservations
u.reservations −= r
available += r

use(u: User, r: Resource)
when r in u.reservations

principle
reserve(u,r) then can use(u,r) until cancel(u,r)

Fig. 1. The reservation concept from [10] expressed in Conceptual.

2.2 Label Concept

Figure 2 describes a state machine for associating labels with some abstract
items. Two properties are expressed in the operational principle, conveying how
a find action can be used to locate items with specific labels and how items
remain findable only while their labels are attached.

concept label [Item, Label]
purpose "organize items into overlapping categories"
state labels: Item → set Label
actions
affix(i: Item, l: Label)
i.labels += l

detach(i: Item, l: Label)
i.labels −= l

find(l: Label) : Item
l.∼labels

clear(i: Item)
i.labels := {}

principle
affix(i,l) then i in find(l) until detach(i,l),
no affix(i,l) or detach(i,l) then i not in find(l)

Fig. 2. The label concept from [10] expressed in Conceptual.

State-Based Modelling with a Concept DSL 5

2.3 Composition of Concepts

Figure 3 depicts a simple composition of the todo and label concepts in Con-
ceptual. Whereas the label concept has already been discussed, an account of
the todo concept can optionally be found in [13]. However, beyond knowing that
this concept has actions for moving tasks between two sets done and pending,
the details are not essential for understanding the composition itself.

app todo_label
include
todo
label [todo.Task, string]

sync todo.delete(t)
label.clear(t)

sync todo.add(t)
label.affix(t, "pending")

sync todo.complete(t)
label.detach(t, "pending")

sync label.detach(t, "pending")
todo.complete(t)

Fig. 3. An application from [10] synchronizing the label and todo concepts.

A strength of this composition is that it is synergistic; it provides new func-
tionality for querying whether tasks are pending or not using the find action
within the label concept. Moreover, suppose that a richer version of the label
concept was used. If it had logical querying capabilities, it would be possible to
query for high-priority tasks that are labeled both as pending and urgent. Richer
concepts increase functionality not just within the particular concept but also
in its various applications.

3 Translating Conceptual to Alloy

The syntax is illustrated through examples, with a complete account of the
abstract syntax available in [13]. The expression-level semantics closely match
the first-order logic of Alloy. While a formal account of the foundational elements
is not provided explicitly, their meaning can be inferred implicitly from the
translation of the high-level language constructs presented below.

Concepts: Each concept is translated into its own Alloy module (with the same
name) to emulate the mutual independence of concepts. These modules are
named and can be parameterized over arbitrary signatures, adequately cap-
turing even generic concept declarations. A concept’s purpose is embedded
into the module as a verbatim comment.

State: A global singleton signature, State, with mutable fields for each variable,
is used to model the changing state of a concept. State variables can be
mutually recursive, becoming dependent fields in Alloy. Additionally, state
variables can optionally be declared with an expression constraining the

6 N. K. Jakobsen

universe of possible values, represented with a fact in Alloy. Custom types
(used in the state or the declaration of a generic concept) are mapped to
empty top-level signatures, which are inherently disjoint.

Actions: Conceptual distinguishes between actions that mutate the state and
query the state for information. The action types are translated into predi-
cates and functions, respectively. Mutations are modeled using state transi-
tions. In Alloy, mutable variables and fields may evolve freely across transi-
tions unless explicitly specified not to. Consequently, Conceptual keeps track
of which variables are being mutated, instructing unused variables to remain
the same (frame conditions). Another detail is that Alloy’s always operator,
used for analysis, will test an assertion at every state, and so desired proper-
ties must crucially be true even in intermediate states. Actions are translated
to be atomic, allowing at most one state transition to simplify this.

Operational Principle: The operational principle is translated into assertions
that can verify whether the desired properties of the concept logically follow
from the definition of its behavior. These properties are expressed in LTL,
must evaluate to truth values, and are checked across all possible concept
traces. Only a small subset of the LTL operators introduced with Alloy6 is
needed to express the desired semantics of the operational principle in Con-
ceptual. Specifically, Conceptual has an operation for sequential composition
using ’;’ or "then". For example, an expression a;b means immediately after
a, then b holds. In addition, a until b is a boolean expression stating that
a is true until b becomes true. Finally, a unary operator no can be used to
signify that something has not been true historically. For example, no a is
true if a has not been true prior to this point and false otherwise.

Apps: Apps (or applications) are named entities composing various concepts.
Each app must explicitly declare the concepts it depends on and instantiate
any generic type. Subsequently, apps specify their synchronizations. Both
trigger and response actions are essentially regular action calls, except that
the trigger may define new variables usable by the response with its argu-
ments (similar to the operational principle). These calls can also access and
utilize the state of the concepts. In addition, arguments may appear with a
multiplicity, restricting the synchronization to execution with select inputs
rather than all inputs. Each synchronization is translated into a fact-clause
in the shape of an implication. The trigger action is the antecedent, and the
consequent is a conjunction of all response actions. In Alloy, concept inclu-
sions are essentially equivalent to opening and specializing the corresponding
module with appropriate types.

4 Analysis using Conceptual

In [10], Daniel Jackson defines a number of concepts using an informal pseu-
docode that relies on natural language descriptions of actions and operational
principles. However, this introduces ambiguities in the specification. For instance,
what does it mean to "use a reservation"? Is this a one-time event that consumes
the reservation? Or perhaps the reservation persists and the resource can be used
continuously? Both interpretations can be reasonable in practice. Moreover, since

State-Based Modelling with a Concept DSL 7

the behavior of many of these concepts is so intuitive and familiar to us, we may
become overly reliant on the conceptual model in our minds rather than the
written specification in front of us, leading us to forget or inadvertently overlook
certain assumptions that we take for granted or find self-evident.

This section does not argue for or against concept-centric design, but it uses
Conceptual and some of the existing concepts from [10] to demonstrate the use-
fulness of integrating formal methods in such a design process. Specifically, the
specifications are translated to Alloy and validated using Alloy’s powerful anal-
ysis tools, catching some inconsistencies and bugs. In hindsight, many of the
design issues that were found are trivial and sometimes appear harmless. How-
ever, experience dictates that such trivial issues have a nasty habit of becoming
nontrivial, if they are not caught and addressed early.

4.1 Analysis of the Label Concept

A simple flaw appears in the label concept’s first operational principle (Fig 2):

affix(i,l) then i in find(l) until detach(i,l)

The compiler translates the principle into an assertion, testing the formula:

all l : Label, i : Item | { always (
affix[i, l] ⇒ after (
detach[i, l] releases i in find[l]))}

When checking the assertion above under a reasonable scope, a violating
execution trace is indeed found. Specifically, an item i may be affixed a label l,
but this does not imply that i ∈ find[l] (even without using detach), since the
clear action can also be used to remove labels. The operational principle should
have added a guard against this, as seen below:

affix(i,l) then i in find(l) until detach(i,l) or clear(i)

Issues of this type likely stem from the designer’s conceptual coupling of
operations, focusing on the symmetrical and natural pairing between affix and
detach. Notably, a faulty operational principle does not affect the model’s behav-
ior but misrepresents the concept’s properties, risking misuse in other contexts.

4.2 Analysis of the Reservation Concept

The reservation concept (Fig 1) contains a critical and inconspicuous design flaw.
Moreover, this flaw is not discoverable solely from the specification and the gen-
erated assertions. In fact, a developer may even be misguided into believing that
the concept is well-functioning, given that the assertion derived from the oper-
ational principle holds universally. Using the translated Alloy model, however,
one may express and attempt to validate a formula such as the one below:

always (no r : Resource, u : User |
r in State.reservations[u] and r in State.available)

8 N. K. Jakobsen

This formula states that a resource r cannot be reserved by a user u and simul-
taneously be in the pool of available resources. In other words, this expresses a
fundamental property of the desired reservation concept: double-booking should
never be possible. Nevertheless, the analyzer can find a counterexample ín which
a resource is being provided to the pool of available resources, despite already
being reserved by a user. This type of behavior is allowed because the specifica-
tion unintentionally assumes that every resource being provided is fresh. In the
model, however, the action of providing a resource r is always valid, even if that
resource is already reserved. This effectively allows double-booking, defeating
the entire purpose of the concept. The problem can be addressed by including a
firing condition that prevents resources from being arbitrarily provided:

provide(r : Resource)
when r not in reservations
available += r

The designer seems to have defined actions in isolation, rather than consid-
ering the system state holistically. This type of mistake is particularly insidious
because the operation correctly conveys the design intent but fails to properly
enforce it. The operational principle itself could be augmented to include a prop-
erty that detects such instances of double-booking.

reserve(u,r) then can not reserve(u2,r) until cancel(u,r)

4.3 Analysis of a Concept Composition

The synchronizations in figure 3 seem incomplete. A straightforward assertion
shows that items with the ’pending’ label may not always be in the todo concept’s
pending set. Therefore, until the formula below is satisfied, the label concept’s
find action cannot reliably identify pending tasks within the todo concept.

all t : todo/Task |
t in label/find["pending"] ⇒ t in todo/State.pending

The formula can be satisfied by including an additional synchronization,
ensuring that when a "pending" label is affixed to an item, the item is also
added as a todo-task.

sync label.affix(t, "pending")
todo.add(t)

Although this concrete problem revolves around achieving exhaustiveness,
it highlights a fundamental challenge for synergistic compositions as a whole.
Specifically, gaps can occur inadvertently when cross-concept invariants are not
properly maintained. Moreover, Conceptual does not currently have a way of ex-
pressing and verifying synergistic effects from the interaction between concepts.

State-Based Modelling with a Concept DSL 9

5 Future Work

Conceptual represents a first step toward establishing tool support based on
formal methods for concept-centric software design. As such, the tool remains
somewhat primitive. Preliminary language support and syntax highlighting is es-
tablished in Visual Studio Code, but no external language server is implemented
for more sophisticated IDE features. Moreover, errors located using Alloy’s anal-
ysis tools are not traced directly back to the Conceptual source code but to the
Alloy translation. Due to the one-to-one nature of the translation, manually
inferring this should be simple, but it is still an additional step. Recent work
with concept pseudocode [11] uses a slightly different syntax and certain fea-
tures that are not currently supported in Conceptual. This includes on-the-fly
variable declarations, which were not used in Conceptual to allow code blocks to
be read in a declarative manner. However, such features might be useful when
modeling certain problems. Applications were also only explored to a limited ex-
tent, and further work remains to examine how the composition could be done
more effectively. A current concern is that the synchronization mechanism and
parameterization of concepts may not be adequate or too rigid to mitigate small
compositional side-effects, especially when integrating closely related but non-
identical concepts or handling naming conflicts. In particular, sets and actions
tend to be named uniquely across concepts, which is difficult to capture.

6 Conclusion

This work introduced Conceptual, a DSL for defining and composing concepts,
with a formal mapping to Alloy6 for validation. By leveraging formal methods,
Conceptual aimed to ensure that concept specifications are precise, analyzable,
and free of unintended interactions. Case studies from the literature were used
to demonstrate how Conceptual could help uncover bugs and to refine concept
specifications. As concept-centric design gains traction, formal methods and tools
like Conceptual can play a role in enhancing the quality of concept specifications.

Acknowledgments. I thank Professor Daniel Jackson for hosting me at MIT and
discussing this work. I am grateful to Stibofonden, Aarhus University, Reinholdt W.
Jorck og Hustrus Fond, Jyske Bank, IDA, and It-vest for providing travel grants. I also
thank Nuno Macedo for help with Alloy6 and Peter Gorm Larsen for his feedback.

Disclosure of Interests. The author has no competing interests to declare.

References

[1] Digkas, G., Nikolaidis, N., Ampatzoglou, A., Chatzigeorgiou, A.: Reusing code
from stackoverflow: The effect on technical debt. In: 2019 45th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA). pp. 87–91
(2019). https://doi.org/10.1109/SEAA.2019.00022

[2] Dijkstra, E.W.: The humble programmer. Communications of the ACM 15(10),
859–866 (1972)

10 N. K. Jakobsen

[3] Dijkstra, E.W.: On the role of scientific thought. Selected writings on computing:
a personal perspective pp. 60–66 (1982)

[4] Fink, G., Bishop, M.: Property-based testing: a new approach to testing for as-
surance. ACM SIGSOFT Software Engineering Notes 22(4), 74–80 (1997)

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
USA (1995)

[6] Hoare, C.: Communicating Sequential Processes. Prentice-Hall International Series
in Computer Science, Prentice Hall (1985)

[7] Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley, Harlow, England (1999)

[8] Jackson, D.: Alloy: A lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002). https://doi.org/10.1145/505145.505149

[9] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press (2012)

[10] Jackson, D.: The Essence of Software: Why Concepts Matter for Great Design.
Princeton University Press (2021)

[11] Jackson, D.: A concept-oriented approach to software development. In: The Prac-
tice of Formal Methods: Essays in Honour of Cliff Jones, Part I, pp. 216–235.
Springer (2024)

[12] Jakobsen, N.K.: Conceptual. https://github.com/TheRealNestor/Conceptual/
(2024)

[13] Jakobsen, N.K.: Establishing tool support for a concept dsl (2025),
https://arxiv.org/abs/2503.05849

[14] Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (6 1992)
[15] Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.

16(3), 872–923 (5 1994). https://doi.org/10.1145/177492.177726
[16] Li, Z., Liang, P., Avgeriou, P., Guelfi, N., Ampatzoglou, A.: An empirical in-

vestigation of modularity metrics for indicating architectural technical debt. In:
Proceedings of the 10th International ACM Sigsoft Conference on Quality of Soft-
ware Architectures. p. 119–128. QoSA ’14, Association for Computing Machinery,
New York, NY, USA (2014). https://doi.org/10.1145/2602576.2602581

[17] Mosses, P.D.: CASL reference manual: The complete documentation of the com-
mon algebraic specification language, vol. 2960. Springer (2004)

[18] Namazov, A.B.: Kodless. https://github.com/BarishNamazov/kodless (2024)
[19] Perez De Rosso, S.: Declarative Assembly of Web Applications from Predefined

Concepts. Ph.D. thesis, MIT, USA (2020)
[20] Perez De Rosso, S., Jackson, D.: What’s wrong with git? a conceptual design

analysis. In: Proceedings of the 2013 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software. p. 37–52.
Onward! 2013, Association for Computing Machinery, New York, NY, USA (2013).
https://doi.org/10.1145/2509578.2509584

[21] Skiada, P., Ampatzoglou, A., Arvanitou, E.M., Chatzigeorgiou, A., Stamelos, I.:
Exploring the relationship between software modularity and technical debt. In:
2018 44th Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA). pp. 404–407 (2018). https://doi.org/10.1109/SEAA.2018.00072

[22] Sullivan, K.J., Griswold, W.G., Cai, Y., Hallen, B.: The structure and value of
modularity in software design. In: Proceedings of the 8th European Software En-
gineering Conference Held Jointly with 9th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering. p. 99–108. ESEC/FSE-9, Asso-
ciation for Computing Machinery, New York, NY, USA (2001)

[23] Wilczynski, P., Gregoire-Wright, T., Jackson, D.: Concept-centric software devel-
opment (2023)

Towards an End-to-End Toolchain for Traceable
and Verifiable Railway Signalling Specifications

Frederic Reiter1(B), Roman Wetenkamp2, Robert Schmid3, Richard
Kretzschmar1, and Lukas Iffländer4

1 Deutsches Zentrum für Schienenverkehrsforschung
{ReiterF,KretzschmarR}@dzsf.bund.de

2 Saarland Informatics Campus; Universität des Saarlandes
roman.wetenkamp@uni-saarland.de

3 Hasso-Plattner-Institut; University of Potsdam
Robert.Schmid@hpi.de

4 Fakultät Informatik/Mathematik; Hochschule für Technik und Wirtschaft Dresden
lukas.ifflaender@htw-dresden.de

Abstract. Specifications for safety-critical railway signalling systems
have traditionally been expressed in natural language. Due to a lack
of traceability features, these requirements are difficult to reason about
and thus very resistant to change. Validation and verification processes of
cyber-physical components based on such specifications require extensive
manual review and are prone to inefficiencies.
This paper describes our work towards a comprehensive methodology for
deriving formal specifications for railway signalling and generating veri-
fied software for it. Our method focuses on accessibility for domain ex-
perts and industrial applicability. To this effect, we integrate established
techniques into a unified tool chain comprising (1) fault tree analysis,
(2) the goal-oriented requirements engineering method KAOS, and (3)
formal modeling with AdaCore SPARK. We aim to facilitate end-to-end
traceability of requirements through all artifacts. Currently, we are ap-
plying our methodology to a case study that involves the specification of
a new ETCS-based moving block signalling system.

Keywords: Railway signalling · Moving block · Domain modeling · Re-
quirements engineering · KAOS · SPARK

1 Introduction

Cyber-physical systems with critical safety concerns necessitate complex sets of
requirements. For railway signalling in Germany, these requirements are issued
in the form of a multitude of natural language documents, which are interpreted
by domain experts for design, construction, and certification purposes.

Approach Previous academic work suggests that the development and certifica-
tion of innovative digital interlocking systems would benefit from incorporating

2 F. Reiter et al.

two approaches already well established in other domains: (1) Goal-oriented re-
quirements engineering, which improves traceability and helps experts reason
about requirements [19, 15], and (2) formal methods, which provide mathemat-
ical validation and support verification processes [16, 9, 10]. Formally specified
requirements will not only help automate the certification process, but also pro-
vide feedback to the requirements engineering teams and increase safety by sup-
porting the auditing experts with mathematical proofs. They might also help
facilitate the safety case of the new interlocking paradigm of moving blocks,
which entails a significant increase in capacity for the rail network, but so far
has seen no utilization – mostly due to safety concerns [23, 5].

Regulation The use of safety-critical components is regulated by national and
international laws. Standardization bodies have agreed that perfect safety for
cyber-physical systems cannot realistically be achieved. Instead, regulation de-
fines safety integrity levels (SIL) which, for software, translate to qualitative
requirements in the form of software fault-tolerance measures and design dis-
ciplines [17]. For the rail sector, they are issued in EN 50716 [2]. This norm
is of special interest for the selection of software tools, as it defines functional
tiers for them: Most importantly, T3 for tools that create output that directly
contributes to executable code, such as compilers [1, 9].

ETCS Specification The literature base for most works has been the specifica-
tion of the European Train Control System (ETCS) level 2 with Train Integrity
Monitoring System (TIMS)1. The specification has been shown to allow imple-
mentations with compromised interoperability to each other, include ambiguities
[8, 6], seem incomplete [22], and difficult to read [3]. Most works conclude that
the ambiguities are due to the informal natural language phrasings, which call
into question the merits of such methods. The justification for leaving that space
for interpretation is to not restrict vendors in their implementations unneces-
sarily [8]. It appears that for a railway signalling system, the benefits of such
individual implementations are heavily outweighed by interoperability issues, so
much so that interoperability served as the main reason for the inauguration
of the ERTMS project itself. We conclude that a natural language specification
intended to solve interoperability will impose limits on that goal, if not outright
fail by design. If possible, formal methods should be used instead [12, 16].

Related Work Although many previous works deal with the formalization of
interlocking logic, a recent systematic literature review conducted by Ferrari
and ter Beek showed a lack of studies on formal approaches in later development
phases [16].

Fotso et al. proposed an approach using the goal-oriented requirements engi-
neering method SysML/KAOS to develop a formal model in a dialect of Event-B,
which they applied to ETCS Level 3 in the ABZ2018 case study [25]. In a paper
by Abrial the informal descriptions of the ETCS Level 3 specification were com-
pletely rewritten and simplified for the creation of their own Event-B model [3].
1 formerly known as ETCS level 3

Toolchain for traceable requirements engineering 3

Both papers used Rodin to discharge their respective model’s proof obligations.
Hansen et al. described a successful field demonstration of a formal B model of
ETCS Level 3 being used as an interlocking [18]. Their model was not proven,
but animated in ProB with a custom interface to the trains. Unlike prior efforts
using Event-B, our approach prioritizes industrial adoption via SPARK and EN
50716-compliant tooling.

Aim In this paper, we describe our attempt to integrate these approaches into
a unified tool chain while considering the relevant regulation in the choice of
tools and methods. The result is a binary for a digital interlocking system that
is trustworthy, as it has been formally verified to behave as specified. As an
intermediate step, our specification should be developed in a way that ensures
the absence of redundant rules and every object should be traceable from the
stakeholder needs to the source code.

Fig. 1. Structure of the developed methodology.

2 Methodology

To develop a moving block specification with the highest possible degree of trace-
ability, we opt to not use previously published ETCS specifications. By this, we

4 F. Reiter et al.

avoid adopting redundant or contradictory requirements and eliminate the ef-
fort to reverse engineer the reasoning behind unclear rules. Instead, we construct
our specification from the ground up without assumptions on the environment
other than the physical properties of the railway system, technical compatibility
with ETCS components and the basic stakeholder use cases. In the following,
we describe the steps of our methodology as pictured in Figure 1.

2.1 Stakeholder Needs

Our goal was to find the smallest set of rules needed to satisfy the needs of the
stakeholders safely. To this effect, we start with a bare-bones physical descrip-
tion of the railway system without assumptions regarding existing interlocking
logic. The stakeholder needs were derived from the use cases included in the op-
erational objectives of the German national railway operator [21]. To systemati-
cally structure informal needs into traceable artifacts, we adapt the OTHELLO
method [13]. It groups requirements into categories that define how they are pro-
cessed in later steps. Example categories are glossary, for all domain elements
("Trains are formed from one or more connected rail vehicles"), configuration,
for properties of these elements ("Trains have a specific length"), and scenario,
for use case descriptions ("Trains should be able to move from one location of
the track topology to a specific other location").

2.2 Fault Tree Analysis and Expert Review

Unsafe states of the interlocking logic are captured as invariants, which are logical
conditions that must hold in every possible state of the system. Formulating
these invariants is the most important step in the approach, as it marks the
translation from safety-relevant faults in natural language to formally modeled
safety properties.

To build the safety case for certification, domain experts need to verify the
correctness of the formal transformation as well as the completeness of the chosen
set of safety properties. We used fault tree analysis to derive these properties, as
this method is able to systematically identify failures and is well known in the
domain [1, 5]. Following the methodological framework established by Borälv
et al. [7], we collected top-level faults, e.g., "Train collides with another train".
They were decomposed until all conceivable causes of a potential fault were
covered and each cause could be attributed either to the interlocking logic or to
the operating environment. Faults caused by the operating environment ("The
train broke apart") constitute assumptions about auxiliary systems, e.g., "Trains
need to be manufactured in a way to permit safe operation". The faults of the
interlocking logic ("The interlocking allowed a train to go to an already occupied
location") finally make up the requirements, e.g., "Each train’s assigned area
must be disjoint from every other train’s assigned area".

This approach makes it possible to trace each specified rule to either a top-
level fault or a scenario (see section 2.4).

Toolchain for traceable requirements engineering 5

2.3 Invariants

The informal requirements are transformed into invariants formalized in a first-
order logic expression. To formalize the last example above, we assign to every
train the set of track segments it occupies. Let tA, tB be two trains, Trains be the
set of all trains that are in operation, and TrainAreas : Trains → P(Locations)
is a total function that assigns every registered train a subset of the interlocking
system’s track segments. Equation (1) shows the mathematical representation.

∀tA, tB ∈ Trains : tA ̸= tB ⇒ TrainAreas(tA) ∩ TrainAreas(tB) = ∅ (1)

2.4 Functional Modeling

While fault tree analysis is used to make safety properties traceable, methods of
goal-oriented requirements engineering facilitate traceability for decisions about
the functionality of a system. We adapted the KAOS-method (Keep All Objects
Satisfied) [20] which has been successfully applied to the railway domain before.

In place of a top-level fault as an event that should not occur, the starting
point for a KAOS tree is a goal which describes what the system is supposed
to do. Whereas the leaves of the fault tree are invariants, the leaves of our goal
tree are the actors responsible for the realization of the respective goal. Starting
with a scenario from Section 2.1 as the top-level goal ("Trains should be able to
move from one location in the track topology to a specific other location"), the
decomposition is performed as follows:

– Subgoals are added until their combined satisfaction is sufficient to achieve
the parent goal, e.g. "Send a new set of locations to the train that it is
allowed to occupy".

– Every invariant derived from the fault tree analysis is added to the KAOS
tree as an obstacle. Obstacles are decomposed into subgoals with the aim
of satisfying both the parent and the invariant. For example, the invariant
from above ("The interlocking allowed a train to go to an already occupied
location") would spawn the subgoals "The interlocking monitors each train’s
occupied location" and "The interlocking commands each train its allowed
locations".

– Subgoals are further decomposed until their satisfaction can be accomplished
by a specific variable or method, which is established as the actor object for
the fulfillment of this goal. For example, "The interlocking monitors each
train’s occupied location" would spawn a variable trainAreas.

2.5 Formal Modeling, Implementation and Proof

In the next step, we create a formal specification based on the list of invariants,
as well as the variables and methods in the leaves of the KAOS tree. This speci-
fication is used to prove the conformance of an implementation of the system in
a (semi-)automated fashion as provided by the utilized tools. While the method

6 F. Reiter et al.

we describe in this work is not limited to a specific choice of tools, we require
the existence of a certified compiler according to tool class T3 of EN 50716 [2].
Crucially, this certification assures auditors that binaries compiled by the tool
behave exactly as specified, rendering further testing other than final integration
tests redundant.

An example of a tool that fulfills this requirement is AdaCore SPARK.
SPARK is a formal Ada-based software development technology [4]. A SPARK
specification file contains contracts that comprise pre- and postconditions for ev-
ery operation. Using AdaCore’s GNATprove tool, the conformance of a SPARK
package body with its specification can be proven. As SPARK is a subset of
the Ada programming language, no further transpilation to another language is
required [4]. The GNATprove compiler has a T3 certification [11].

In order to model a property like Equation (1) in SPARK, we have decided
to transform the sets into arrays. Sets are available in SPARK as abstract math-
ematical data types useful for reasoning, but are neither a default feature of Ada
nor will they be a part of the final binary [14].

In Listing 1.1, an implementation of this property is given in a specification
function. This function will be used as part of the pre- and postconditions of
each procedure to ensure that the property is fulfilled in all possible states of
the system. RegTrains is an array of trains. TrainAreas is an array of locations
arrays, indexed equivalent to RegTrains. We iterate over RegTrains and require
that all locations in one train’s area are different from all locations in another
train’s area.

Listing 1.1. Implementation of the disjointness property in AdaCore SPARK.
function EnsureDis jo intAreas return Boolean i s

(for a l l Train1 in RegTrains ’Range =>
(for a l l Train2 in RegTrains ’Range =>

(i f RegTrains (Train1) /= RegTrains (Train2) then
(for a l l Loc1 in TrainAreas (Train1) ’Range =>

(for a l l Loc2 in TrainAreas (Train2) ’Range =>
TrainAreas (Train1) (Loc1)

/= TrainAreas (Train2) (Loc2)))))) ;

3 Conclusion and Ongoing Work

Formal methods offer a framework to address interoperability and complexity
challenges in railway signalling specifications. While academic experiments [18]
have shown promise, industrial applicability remains an ongoing research focus
[24]. Our primary contribution is a novel toolchain to enforce end-to-end trace-
ability and compliance with EN 50716, demonstrated by an ongoing ETCS mov-
ing block case study. To support the requirements engineering process, we are de-
veloping an accompanying tool which integrates our KAOS adaption, stakeholder
needs collection process, and fault tree analysis. Interfaces between method steps
and full validation results will be detailed in a follow-up publication, currently
under preparation.

Toolchain for traceable requirements engineering 7

References

[1] EN 50126-1:2017. Railway Applications - The Specification and Demonstra-
tion of Reliability, Availability, Maintainability and Safety (RAMS) - Part
1: Generic RAMS Process. CENELEC (2017)

[2] EN 50716:2023. Railway Applications - Requirements for software develop-
ment. CENELEC (2023)

[3] Abrial, J.R.: The ABZ-2018 case study with Event-B. International Journal
on Software Tools for Technology Transfer 22(3), 257–264 (Jun 2020), http:
//link.springer.com/10.1007/s10009-019-00525-3

[4] AdaCore, Thales: Implementation Guidance for the Adoption of SPARK
(2020), https://www.adacore.com/uploads/books/pdf/Spark-Guidance-1.
2-web.pdf

[5] Aoun, J., Goverde, R.M.P., Nardone, R., Quaglietta, E., Vittorini, V.: To-
wards a Fault Tree Analysis of Moving Block and Virtual Coupling Railway
Signalling Systems. In: 2022 6th International Conference on System Re-
liability and Safety (ICSRS). pp. 69–74. IEEE, Venice, Italy (Nov 2022),
https://ieeexplore.ieee.org/document/10067547/

[6] Arcaini, P., Kofroň, J., Ježek, P.: Validation of the Hybrid ERTMS/ETCS
Level 3 using Spin. International Journal on Software Tools for Technol-
ogy Transfer 22(3), 265–279 (Jun 2020), http://link.springer.com/10.1007/
s10009-019-00539-x

[7] Arne Borälv, Daniel Schwencke, Fernando Mejia: X2Rail-5 Deliverable
D10.4 Verification Report (Jun 2023)

[8] Bartholomeus, M., Luttik, B., Willemse, T.: Modelling and Analysing
ERTMS Hybrid Level 3 with the mCRL2 Toolset. In: Howar, F., Barnat, J.
(eds.) Formal Methods for Industrial Critical Systems, vol. 11119, pp. 98–
114. Springer International Publishing, Cham (2018), http://link.springer.
com/10.1007/978-3-030-00244-2

[9] Basile, D., Ter Beek, M.H., Ferrari, A., Legay, A.: Exploring the ERTM-
S/ETCS full moving block specification: an experience with formal methods.
International Journal on Software Tools for Technology Transfer 24(3), 351–
370 (Jun 2022), https://link.springer.com/10.1007/s10009-022-00653-3

[10] Borälv, A.: Deliverable D10.9 Formal Methods (FMs) Guidebook.
Shift2Rail (2023)

[11] Boulanger, J.L., Ochem, Q.: AdaCore Technologies for CENELEC EN
50128:2011. AdaCore (2018)

[12] Bruel, J.M., Ebersold, S., Galinier, F., Mazzara, M., Naumchev, A., Meyer,
B.: The Role of Formalism in System Requirements. ACM Computing Sur-
veys 54(5), 1–36 (Jun 2022), https://dl.acm.org/doi/10.1145/3448975

[13] Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Validation of requirements
for hybrid systems: A formal approach. ACM Transactions on Software
Engineering and Methodology 21(4), 1–34 (Nov 2012)

[14] Dross, C.: Containers for Specification in SPARK. ACM SIGAda Ada
Letters 42(2), 62–68 (Apr 2023), https://dl.acm.org/doi/10.1145/3591335.
3591341

http://link.springer.com/10.1007/s10009-019-00525-3
http://link.springer.com/10.1007/s10009-019-00525-3
https://www.adacore.com/uploads/books/pdf/Spark-Guidance-1.2-web.pdf
https://www.adacore.com/uploads/books/pdf/Spark-Guidance-1.2-web.pdf
https://ieeexplore.ieee.org/document/10067547/
http://link.springer.com/10.1007/s10009-019-00539-x
http://link.springer.com/10.1007/s10009-019-00539-x
http://link.springer.com/10.1007/978-3-030-00244-2
http://link.springer.com/10.1007/978-3-030-00244-2
https://link.springer.com/10.1007/s10009-022-00653-3
https://dl.acm.org/doi/10.1145/3448975
https://dl.acm.org/doi/10.1145/3591335.3591341
https://dl.acm.org/doi/10.1145/3591335.3591341

8 F. Reiter et al.

[15] Emmanuel Letier: Reasoning about Agents in Goal-Oriented Requirements
Engineering. Ph.D. thesis (2002), http://hdl.handle.net/2078.1/5139

[16] Ferrari, A., Beek, M.H.T.: Formal Methods in Railways: A Systematic
Mapping Study. ACM Computing Surveys 55(4), 1–37 (Apr 2023), https:
//dl.acm.org/doi/10.1145/3520480

[17] Gabriška, D.: Software requirements for the control systems according to
the level of functional safety. Journal of Applied Mathematics, Statistics
and Informatics 12(1), 25–32 (2016)

[18] Hansen, D., Leuschel, M., Körner, P., Krings, S., Naulin, T., Nayeri, N.,
Schneider, D., Skowron, F.: Validation and real-life demonstration of ETCS
hybrid level 3 principles using a formal B model. International Journal on
Software Tools for Technology Transfer 22(3), 315–332 (Jun 2020), http:
//link.springer.com/10.1007/s10009-020-00551-6

[19] Kadakolmath, L., D. Ramu, U.: Goal-Oriented Modeling of an Urban Sub-
way Control System Using KAOS. The Indonesian Journal of Computer
Science 12(3) (Jun 2023), http://ijcs.net/ijcs/index.php/ijcs/article/view/
3239

[20] Lamsweerde, A.V.: Goal-Oriented Requirements Engineering: A Guided
Tour. In: Proceedings of the Fifth IEEE International Symposium on Re-
quirements Engineering. p. 249. IEEE Computer Society (2001)

[21] Matthias Kopitzki, Thomas Nenke, Phillip Möller, Wolfgang Braun,
Dirk Menne: Das Betriebliche Zielbild als Basis für ein modernes und
anwenderfreundliches Regelwerk. Deine Bahn (Oktober), 6–11 (Oct 2021),
https://www.system-bahn.net/wp-content/themes/systembahn/includes/
readpdf.php?file=33016

[22] Rim Saddem-Yagoubi, Julia Beugin, Mohamed Ghazel: Verification Frame-
work for Moving Block System Safety: application on the Loss of Train
Integrity Use Case. Mauritius Island (Apr 2022)

[23] Saddem-Yagoubi, R., Beugin, J., Ghazel, M.: A Methodology Framework for
Modelling a Rail Moving Block System. Transportation Research Procedia
72, 1576–1580 (Jan 2023)

[24] Ter Beek, M.H., Chapman, R., Cleaveland, R., Garavel, H., Gu, R.,
Ter Horst, I., Keiren, J.J.A., Lecomte, T., Leuschel, M., Rozier, K.Y., Sam-
paio, A., Seceleanu, C., Thomas, M., Willemse, T.A.C., Zhang, L.: Formal
Methods in Industry. Formal Aspects of Computing 37(1), 1–38 (Mar 2025),
https://dl.acm.org/doi/10.1145/3689374

[25] Tueno Fotso, S.J., Frappier, M., Laleau, R., Mammar, A.: Modeling the
Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements
Engineering Approach. In: Butler, M., Raschke, A., Hoang, T.S., Re-
ichl, K. (eds.) Abstract State Machines, Alloy, B, TLA, VDM, and Z,
vol. 10817, pp. 262–276. Springer International Publishing, Cham (2018),
http://link.springer.com/10.1007/978-3-319-91271-4

http://hdl.handle.net/2078.1/5139
https://dl.acm.org/doi/10.1145/3520480
https://dl.acm.org/doi/10.1145/3520480
http://link.springer.com/10.1007/s10009-020-00551-6
http://link.springer.com/10.1007/s10009-020-00551-6
http://ijcs.net/ijcs/index.php/ijcs/article/view/3239
http://ijcs.net/ijcs/index.php/ijcs/article/view/3239
https://www.system-bahn.net/wp-content/themes/systembahn/includes/readpdf.php?file=33016
https://www.system-bahn.net/wp-content/themes/systembahn/includes/readpdf.php?file=33016
https://dl.acm.org/doi/10.1145/3689374
http://link.springer.com/10.1007/978-3-319-91271-4

A reasoning and explicit algebraic theory for
BBSL in Event-B: EB4BBSL framework⋆

Peter Riviere , Duong Dinh Tran , Takashi Tomita , and Toshiaki Aoki

Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
{priviere, duongtd, tomita, toshiaki}@jaist.ac.jp

Abstract. Automated Driving Systems (ADS) are major engineering
and research topics, and ensuring the safety of such a critical system be-
comes crucial. Nevertheless, ADS are inherently complex, with many of
their components, particularly sensors, relying on Artificial Intelligence.
In addition to traditional environment data, ADS now processes object
recognition outputs. To handle this new type of information, the Bound-
ing Box Specification Language (BBSL) has been formalised to capture
the relation between the abstraction of the image with the bounding box
and the correct action to be performed. However, this language has a
lightweight semantics, leading to multiple interpretations when no tools
are available and its semantics remain implicit. In this paper, we propose
a framework that fully formalises the language and allows the manipu-
lation of the elements of the language as a first-class citizen in algebraic
theory. We introduce three BBSL proof obligations and a mechanism
to automatically generate and discharge the proof obligation. We also
propose an extension of BBSL by explicitly formalising the semantics
and behaviour of external interactions, such as importing information
from outside sources. Furthermore, we also propose two instantiation
mechanisms, deep-modelling and shallow-modelling, and we use an in-
terpretation of BBSL in an Event-B machine.

Keywords: BBSL · New proof obligation · Refinement and proof · Model in-
stantiation · Algebraic theories · Event-B

1 Introduction

Context: Several manufacturers are actively working on Automated Driving
Systems (ADS), which show the potential to enhance transport mobility. The
emphasis on ADS safety is paramount, as any malfunction can lead to acci-
dents with severe consequences [6]. The complexity and dynamic environments
in which ADS operate present significant safety hurdles. ADS comprise intercon-
nected components such as sensing, perception, planning, and control; a fault
in any of these could affect the whole system. The perception module is vital,
interpreting data from cameras, radar, and LiDAR for obstacle detection, traffic
⋆ This work was supported by JST, CREST Grant Number JPMJCR23M1

https://orcid.org/0000-0002-2644-7471
https://orcid.org/0000-0001-7092-2084
https://orcid.org/0000-0003-1249-7862
https://orcid.org/0000-0002-1209-6375

2 P.Riviere et al.

sign recognition, and road condition assessment, which are imperative for safe
operation. Our research centres on the perception module’s image recognition
systems, which analyse images to create bounding boxes for object location iden-
tification, and the planning module, which processes this data to instruct the
control module correctly. This component is critical in interpreting the complex
environmental data encountered by ADS. The ADS camera captures environ-
mental data as input. Objects are represented with bounding boxes, and events
are defined by their spatial relationships. To fill the gap between the complex-
ity of the world visualised through the image recognition, the Bounding Box
Specification Languages (BBSL) [11] have been proposed to specify the relation
between the object and the events of the system. The particularity of BBSL is
to abstract the object with a bounding box and a label system that is currently
information provided by ADS and is equipped with a high level operator based
on spatial relation directly expressed on the bounding box to ease the specifica-
tion and provide an expression language easier for the engineer to understand.
However, the semantics of BBSL and the integration of domain knowledge are
implicit and lightweight.
Our contribution: In this paper, we present the EB4BBSL framework, which
focusses on the formalisation of BBSL and expresses explicitly the semantics
and its relation to the application domain, and also propose a logical frame-
work for reasoning in BBSL. We take advantage of Event-B [1] and its extension
for defining algebraic theories [4] to articulate a meta-model. Through the use
of a deep embedding, a BBSL specification is represented as instances of alge-
braic data types that encapsulate the diverse BBSL operators, while the shal-
low modelling delivers a state-based interpretation. This metamodel captures
the semantics of BBSL, its attributes, and the proof system used to validate
these properties. The instantiation maintains the structure of BBSL models,
facilitating the traceability of identified errors back to BBSL itself. Further-
more, we emphasise that by enhancing the core metamodel, additional proof
obligations can be appended to the EB4BBSL framework. Due to space limita-
tions, the models are not presented in the paper, but they are all available at
https://github.com/fomaad/EB4BBSL
Organisation of the paper: Section 2 provides an overview of the features of
BBSL used in this paper. Sections 3 present the EB4BBSL framework we de-
signed to develop specific BBSL models, the definitions, the generation of BBSL
proof obligations, and the instantiation mechanism. Finally, the assessment and
conclusion are presented along with future work in Section 4 and Section 5.

2 BBSL

Many systems incorporate image recognition to capture environmental informa-
tion and apply control regarding this information. For this purpose, an architec-
ture is common [2,7] in the fields of autonomous drive systems. This architec-
ture is composed of three modules: Perception modules: Use the information
obtained from all the sensors and provide useful information about the environ-

https://github.com/fomaad/EB4BBSL

EB4BBSL Framework 3

ment; Planning modules: Use the information from the perception modules
and decide on the order, according to multiple factors such as safety, goals, or
comfort; Control modules: Apply to the system the right control according to
the order.

The main focus of the bounding box specification (BBSL) [11] is to provide a
logical framework for specifying the planning modules. The first feature of BBSL
is to propose a logical framework to reason on a bounding box. This corresponds
to an abstraction of objects that can appear in an image or on Lidar, and it
is mainly the new information that can appear in the ADS system from the
perception modules, along with the usual information such as speed and position.
The second feature is to propose a framework to specify the planning modules,
so it proposes a set of rules described from the output of the perception module,
represented as a bounding box and the order sent by the planning modules.

3 EB4BBSL framework

3.1 Methodology

The purpose of our framework is to fully formalise BBSL, to manipulate any
element as a first-class citizen, and to express new properties inspired by the
work presented in EB4EB [8,9] and EB[ASTD] [5]. However, the Bounding Box
Specification Language semantics for all components are not fully established,
compared to Event-B and ASTD. In addition, the incorporation of autonomous
vehicle knowledge into the semantics is not established. In the EB4BBSL frame-
work, we also explicitly formalise the semantics and the dynamics aspect of
BBSL, i.e. its interaction with the environment and integration into the plan-
ning modules. Figure 1 shows the architecture of the framework. The framework
has three parts:

– BBSL Meta level (M) – It formalises the structural syntax and semantics
of BBSL with new data types and operators in the BBSL core (M.1) alge-
braic theory, and the ability to manipulate BBSL to express the high level
reasoning mechanism in BBSL PO (M.2) theory.

– Bounding Box Expression (E) – It formalises all the mathematical back-
ground necessary to express high-level reasoning to manipulate expression in
BBSL. Three kinds of expressions are essential in BBSL: Set, Interval, and
Bounding Box. Only the set is native in the Event-B expression. To com-
plete the BBSL expression language, the Interval (E .2) and Bounding
Box (E .3) theories are developed to extend the Event-B expression. Both
theories are grounded in a theory of Comparable (E .1).

– Instantiation mechanism (I) – It defines two mechanisms of instantia-
tion, similar to the instantiation presented in [8,9], the deep modelling (I.D),
which consists of expressing concrete BBSL models as FOL and set theory
formulae in an Event-B context (I.D.1) by instantiating BBSL Meta Level
(M). The shallow modelling (I.S) uses a generic machine that interprets the
semantics defined in the theory using an Event-B machine (I.S.1) and the

4 P.Riviere et al.

planning module, and the concrete BBSL model is described in an Event-B
machine (I.S.2) that refines the generic machine. Both modellings use com-
prehension axioms to transform the predicate to set and the Bounding Box
Expression (E) to express BBSL case rule.

Note that all parts in blue in Figure 1 are described once and for all. To
exploit our framework to reason on BBSL, only the instance is needed.

BBSL core theory (M.1)

BBSL PO theory (M.2)

BBSL Meta level (M)

imports

Comparable theory (E .1)

Interval theory (E .2)

Bounding box theory (E .3)

Bounding Box Expression (E)

imports

imports

Deep modelling (I.D) Shallow modelling(I.S)

BBSL in context (I.D.1) Generic Machine (I.S.1)

BBSL in machine (I.S.2)

Instantiation mechanism (I)

refines

instantiatesinstantiates

Fig. 1: EB4BBSL Framework

3.2 Formalisation of BBSL (M)

BBSL core theory (M.1): To capture and manipulate BBSL components as
first-class citizen elements, a data-type BBSL has been defined. Based on BBSL
grammar, BBSL specification has three main parts: the external function, the
precondition, and the case block. The basic elements are the actions defined by
the case block and the variables expressed with the external function. BBSL’s
primary function is to outline the actions of the planning modules within a case
block governed by a precondition clause. Initially, the external function delayed
the linkage semantics with the perception modules.

In our framework, instead of relying on external functions to express all
the information needed to express the rule and precondition, an abstract rep-
resentation of the variables is used. As a consequence, the data-type takes two
type parameters, Act to represent the action case of the case block and Var
to represent the elements accessible by the external function and used in the

EB4BBSL Framework 5

precondition and the case block. The data type has many destructors to access
different constituents of BBSL: actions – set of all possible actions addressed
in BBSL models; variables – set of possible variables addressed in BBSL mod-
els; hyp – set of the variables that verify the precondition; bbslcase – relation
between the valuation of the variables and the applicable action. The data type
definition provides only the type information of all the constituents of BBSL.
To complete the formalisation, additional predicate operators are presented to
capture the structural properties between BBSL elements and ensure a cor-
rect definition of BBSL metamodels. The predicate operator ActionsWellCons
and respectively VarWellCons ensure that hyp and bbslcase when they refer
to the actions, and respectively to the variables, use only the possible values
defined in action, respectively variables. Another predicate operator such
as NotHypCase is also formalised to capture the semantics of the implicit se-
mantics of BBSL. This operator captures the default relation when the vari-
ables do not belong to the precondition, and then any actions can be performed
(V ar ∩ variables(bbsl)) \ hyp(bbsl) ↔ actions(bbsl).

Proof obligations (M.2): From the formalisation of BBSL, the property
can be expressed and used to formalise the proof obligation on BBSL models
following the methodology in [10]. Three properties are not mandatory in the
formalisation of BBSL specifications but can be required in some applications
and are defined [12,13]. We have formalised these properties in EB4BBSL in
a theory. The first property is exhaustivity : for any variable that satisfies the
precondition, an action is associated. This property is captured by the predi-
cate operator Exhaustive, which takes a BBSL model bbsl and is defined with
the set of precondition values included in the domain of the case rule of BBSL
hyp(bbsl) ⊆ bbslcase(bbsl). The second property is exclusionary : for any value
of the variables, at most one action is specified. Exclusionary predicate oper-
ator is defined for this property. The operator takes a BBSL model bbsl and
is defined as the case block of BBSL model being a partial function between
the variables and the actions of BBSL. The last property is non-redundancy :
for all actions, at least one valuation of variables can trigger the action. The
predicate operator non_redundant takes BBSL models bbsl and verifies that the
case block is a surjective relation between the variables and actions of BBSL
(hyp(bbsl)◁ bbslcase(bbsl)) ∈ variables(bbsl)↔→ action(bbsl).

3.3 Instantiation mechanism (I)

To obtain a specific BBSL model, two instantiation mechanisms are identified,
the deep modelling and shallow modelling. Inspired by the deep and shallow em-
bedding [3], the two mechanisms instantiate BBSL meta-theory, with a context
for the deep modelling and using only the elements defined in the theory. Or with
a machine in the shallow modelling using refined events to describe the model.

Deep Modelling (I.D): The principle of deep modelling is to represent BBSL
model in a context by instantiating the data type and the concrete value of

6 P.Riviere et al.

each field. For this, two concrete sets must be provided to instantiate the type
parameters of the meta-theory. One concrete set for the action label Act, and
the cartesian product of the type of variable to instantiate V ar. The fields of the
data type are defined by a set where all the elements verify the definition of the
related clause, i.e. hyp is a set where all elements verify the hypotheses of BBSL
specification, and bbslcase is all the pairs act and var that verify the clause rule
of BBSL specification. For example, the stop rule and precondition of Listing 1
will lead to the instantiation of Listing 2 The proof obligation is generated on
a theorem clause, where the concrete BBSL model is in argument of the related
predicate operator of the meta-theory.

1precondition
2[ob j e c tEx i s t s () = true]
3endprecondition
4case Stop
5l e t ob j e c t : bb = obj e c t () , stopping_order : interva l = stopping_order ()
6in PROJy(object) ≈ stopping_order ∨ PROJy(object) < stopping_order
7endcase
8. . .

Listing 1: An extract of a specification of ADS to response to the distance to a
detect element

axm5 : bbslcase(ads) = {(object 7→ stopping_order) 7→ act |
((act = Stop ∧ (IoverlapInt(projy2d(object), stopping_order) . . .}

axm6 : hyp(ads) = {object 7→ stopping_order |
NotEmpty2DInt(object) ∧ ItoSetInt(stopping_order) ̸= ∅}

Listing 2: A deep modelling of the braking systems example

Shallow modelling (I.S): The shallow modelling consists of representing
BBSL model directly using an Event-B machine. For this, we first need to provide
a state-based semantic interpretation of BBSL, using a generic machine based on
the definition of the planning modules. Then, describe the concrete BBSL model
by refining the generic BBSL. The benefit of shallow modelling is the use of the
refinement process to compose BBSL specifications or to use BBSL models as
an abstract model to define the autonomous driving system.

Similarly to deep modelling, the type parameter must be instantiated with
a concrete set; at the generic level, only a symbolic set is provided, and the
content of the set will be described at the level of the refines machine. This
machine was designed to represent an abstract planning module that satisfies
BBSL specifications. Two variables st to represent the variables of BBSL, and
act the action to send to the control modules. The initialisation of the variables
is non-deterministic, assigned to one element of action(bbsl) and variables(bbsl).
Two kinds of events are defined: the event that occurs to update the variables
from the perception modules and to update the actions. The assignment of the
action can occur in two cases. The first case is the event Apply_rule that can
trigger when the state st checks the preconditions. The state st must also verify
the case definition of the event parameter, the new action new_act. The action
variable act is assigned the new value new_act. The event NotHyp occurs when
the variables do not belong to the precondition, and the variables relying on the

EB4BBSL Framework 7

MACHINE GenericMchBBSL
SEES GenericBBSL
VARIABLES st , act
INVARIANTS

inv1−2 : st ∈ S ∧ act ∈ Action
EVENTS
INITIALISATION
THEN

act1 : st :∈ variables(bbsl)
act2 : act :∈ actions(bbsl)

END
NotHyp
WHERE grd1 : st /∈ hyp(bbsl)
THEN act1 : act :∈ NotHypCase(bbsl)
END

ApplyRule
ANY new_act
WHERE

grd1 : st ∈ hyp(bbsl)
grd3 : new_act ∈ actions(bbsl)

grd2 : st ∈ bbslcase(bbsl)−1[{new_act}]
THEN act1 : act := new_act
END

Update
WHERE grd1 : st /∈ hyp(bbsl)

∨st ∈ bbslcase(bbsl)−1[{act}]
THEN act1 : st :∈ variables(bbsl)
END

END

Listing 3: Generic machine for BBSL

NotHypCase define in the Meta-theory. The last event is related to the assignment
of variables; this is defined in the event Update_V ar. This event occurs when
the variables verify BBSL specification, or the precondition does not hold and
assigns a new value to the variables in variables(bbsl).

The concrete BBSL model (I.S.2) is described within a machine that refines
the generic one. The syntactical description of BBSL needs to be expressed in the
context, in the same manner as deep modelling. The initialisation and update
events do not need additional information. Each case is described within an
event that refines ApplyRule with two guards. Guard grdHyp ensures that the
variables are in the precondition, and grdCase instantiates one case and verifies
that the variables belong to it. The shallow modelling of the specification for the
stop rule is shown in Listing 4. The preconditions rule is expressed in the same
manner as the deep modelling in a context.

Stop REFINES ApplyRule
WHERE

grdHyp : object 7→ stopping_order ∈ hyp(BBSL1)
grdCase : (IoverlapInt(projy2d(object), stopping_order)

WITH new_act : new_act = Stop
THEN act1 : act := Stop
END

Listing 4: A Shallow modelling of the braking systems example

4 Discussion

This paper is focused on the formalisation of BBSL; our approach used many
different Event-B techniques to formalise the concept of BBSL and its semantics,
as well as to efficiently use the native proof obligations to support the properties
of BBSL. During the process, we identified two key points of discussion that
appear in this work in comparison to EB4EB and EB[ASTD]:
Semantics: The formalisation of the EB4BBSL framework has raised many
issues regarding the semantics of BBSL for many parts of it. A trade-off occurs
between the expressiveness capabilities and the elements with concrete semantics
to perform reasoning. The decision process is based on information from the ADS

8 P.Riviere et al.

domain and the initial purpose of BBSL. One significant decision is to use the
external function as variables to represent all the information provided by the
perception modules, without restraint on the expressiveness capabilities, and to
incorporate the notion explicitly inside BBSL. Another decision concerns the
semantics of the state-based interpretation of BBSL in shallow modelling. The
choice to design the planning module instead of only the rules of BBSL has
multiple consequences; it links BBSL component directly to the planning in a
shallow manner and makes the further development straightforward by refining
to concrete planning modules or by introducing the other modules by refinement.
Deep vs Shallow: In the deep modelling, BBSL model is designed using only
the elements of the meta-theory. The advantage of this modelling is the genera-
tion of proof obligations, but all the descriptions of BBSL models are done in one
block, and no composition and refinement processes are available. However, shal-
low modelling proposes splitting the case description into multiple events that
make it easier to read and validate the model. It allows us to use the invariant
clause to prove some properties or the refinement of Event-B between machines
to support a refinement process between BBSL specifications or between BBSL
specifications and concrete models. The interest in the generation of the proof
obligation on the machine side will be to use the induction principle built inside
the Event-B machine; however, all the BBSL proof obligations are not based on
an induction schema; they are fully deductive.

5 Conclusion

This paper proposes a formal technique that allows an engineer to define specific
bounding box specifications and verify properties such as exhaustivity, exclu-
sionary, and non-redundancy on concrete specific BBSL models. This work also
shows the capabilities of EB4BBSL, on the one hand, to formalise and manipu-
late elements of BBSL as first-class citizens to express new proof obligations for
BBSL, and on the other hand, extends the expression of Event-B with a theory
of comparable, interval, and bounding boxes with all the reasoning operators
associated and proof rules to simplify the proof process. Combined, both parts
propose two instantiation mechanisms, with their pros and cons. Deep modelling
is used to generate proof obligations for BBSL models, and shallow modelling
is used to integrate with the refinement process into a complete development of
ADS. This paper also proposes another formalisation of a formal method that
consolidates the embedded capabilities of Event-B. All theories are done once
and for all and can be reused, and the theorem does not need to be proved again;
only the instantiation is required.

We believe that the formalisation of EB4BBSL is an improvement to the
semantics of BBSL and its formal verification. This framework opens the path
to extending BBSL in many types of extensions. The first path is to include
an internal state to the bounding box, or to describe a data flow semantics to
allow the formalisation of ADS and BBSL in a framework similar to Simulink.

EB4BBSL Framework 9

Another path is to express standard conformance operations in BBSL, or to
define a specification operation to refine directly on concrete models.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

2. Baidu Apollo team (2017): Apollo: Open Source Autonomous Driving. https:
//github.com/ApolloAuto/apollo, accessed: 2024-09-25

3. Boulton, R.J., Gordon, A.D., Gordon, M.J., Harrison, J., Herbert, J., Van Tassel,
J.: Experience with embedding hardware description languages in hol. In: TPCD.
vol. 10, pp. 129–156. Citeseer (1992)

4. Butler, M.J., Maamria, I.: Practical theory extension in Event-B. In: Liu,
Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and For-
mal Methods - Essays Dedicated to Jifeng He on the Occasion of His
70th Birthday. Lecture Notes in Computer Science, vol. 8051, pp. 67–
81. Springer (2013). https://doi.org/10.1007/978-3-642-39698-4_5, https://doi.
org/10.1007/978-3-642-39698-4_5

5. Chen, C., Riviere, P., Singh, N.K., Dupont, G., Ait Ameur, Y., Frappier, M.: A
proof-based ground algebraic meta-model for reasoning on ASTD in Event-B. In:
FormaliSE 2025 (2025)

6. Devi, S., Malarvezhi, P., Dayana, R., Vadivukkarasi, K.: A comprehensive survey
on autonomous driving cars: A perspective view. Wirel. Pers. Commun. 114(3),
2121–2133 (2020)

7. Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M., Kitsukawa,
Y., Monrroy, A., Ando, T., Fujii, Y., Azumi, T.: Autoware on board: enabling au-
tonomous vehicles with embedded systems. In: Proceedings of the 9th ACM/IEEE
International Conference on Cyber-Physical Systems, ICCPS 2018. pp. 287–296
(2018). https://doi.org/10.1109/ICCPS.2018.00035

8. Riviere, P., Singh, N.K., Aït Ameur, Y.: EB4EB: A Framework for Reflexive Event-
B. In: ICECCS 2022. pp. 71–80. IEEE (2022)

9. Riviere, P., Singh, N.K., Aït Ameur, Y.: Reflexive Event-B: Semantics and Cor-
rectness the EB4EB Framework. IEEE Transactions on Reliability pp. 1–16 (2022)

10. Riviere, P., Singh, N.K., Aït Ameur, Y., Dupont, G.: Standalone event-b models
analysis relying on the EB4EB meta-theory. In: ABZ. LNCS, vol. 14010, pp. 193–
211. Springer (2023)

11. Tanaka, K., Aoki, T., Kawai, T., Tomita, T., Kawakami, D., Chida, N.: A formal
specification language based on positional relationship between objects in auto-
mated driving systems. In: COMPSAC. pp. 950–955. IEEE (2022)

12. Tanaka, K., Aoki, T., Kawai, T., Tomita, T., Kawakami, D., Chida, N.: Specifi-
cation based testing of object detection for automated driving systems via BBSL.
In: ENASE. pp. 250–261. SCITEPRESS (2023)

13. Tanaka, K., Aoki, T., Tomita, T., Kawakami, D., Chida, N.: Specification-based
testing of the image-recognition performance of automated driving systems. IEEE
Access 13, 6321–6349 (2025)

https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1109/ICCPS.2018.00035

Model-Based Testing of Non-Deterministic
Systems

Alexander Onofrei, Marc Frappier, and Émilie Bernard

University of Sherbrooke, Sherbrooke, Canada
{onoa2801,marc.frappier,emilie.bernard4}@usherbrooke.ca

Abstract. Testing non-deterministic systems is challenging due to un-
predictable behaviours arising from timing, concurrency, and random in-
puts. This paper explores the application of model-based testing (MBT)
to tackle these challenges, leveraging formal methods and tools to en-
sure systematic test coverage. We employ ProB, a model checker for the
B method, to analyse a formal model of the system under test (SUT)
and generate test scenarios from the formal B model. As a proof of con-
cept, we apply MBT to the TLS 1.3 protocol, a widely used complex
cryptographic standard, and test one of its implementation using the
BouncyCastle OpenSSL Java API. While the TLS handshake is primar-
ily deterministic, it includes non-deterministic components like cipher
selection and random value generation, making it an excellent candidate
for evaluating MBT’s effectiveness. We present the design and logic of
our proof of concept, showcasing its flexibility to support various mod-
els and SUTs. This study demonstrates that combining formal meth-
ods, non-deterministic analysis, and state-based testing can effectively
address the challenges of non-deterministic systems, enabling improved
testing strategies and greater system reliability.

1 Introduction

Models are essential in software development, particularly as system complex-
ity increases. They abstract intricate architectures, employing tools like graphs
and finite state machines (FSMs) to predict behavior [2]. Ideally, a model fully
represents the implementation under test (IUT), yet non-deterministic FSMs
remain constrained [14]. While effective for systematic testing, real-world sys-
tems—especially distributed architectures and protocols like TLS—introduce
external dependencies that complicate verification [10].

This paper presents a proof of concept: testing non-deterministic systems
using B, a model-based specification method [1]. We construct an abstract B
machine to model key behaviors of the system under test and develop a test
generator using ProB [15] to verify the correctness of the SUT. To validate this
approach, we apply it to the TLS 1.3 session protocol [21], a highly complex stan-
dard. Using a simplified model of TLS, we test the BouncyCastle OpenSSL Java
API implementation [24]. The challenge in MBT of non-deterministic systems is
that the test scenario is constructed online during the execution of a test, since

2 A. Onofrei et al.

the next event to generate depends on the output that was non-deterministically
chosen by the SUT. For example, in TLS, the response of the client depends on
the response chosen by the server.

Testing, model checking, and formal proofs each offer distinct advantages and
limitations. Formal proofs provide mathematical certainty but struggle with scal-
ability and practical implementation. Model checking systematically explores all
possible states but is constrained by state-space explosion [8]. Testing, while less
exhaustive, remains the most practical method for verifying real-world imple-
mentations. Model-based testing bridges these approaches by automating test
generation from formal models, reducing human error and increasing coverage
compared to manually derived test cases. This makes MBT particularly valuable
for testing non-deterministic systems.

2 Related Work

Research on testing nondeterministic systems remains limited, with few stud-
ies examining model-based approaches in this context. Key challenges include
test model coverage under uncertainty, scenario generation via model checkers,
and efficient testing strategies. [11] provides foundational insights, highlighting
methods for handling concurrency, randomness, and the selection of test con-
ditions. We tackle these issues using ProB, which offers greater expressiveness
than FSMs, because of their lack of state variables—allowing the extraction of
specific paths that satisfy a given predicate.

In MBT, nondeterministic models arise from abstraction or inherent software
behavior. A single test case may follow multiple paths due to internal system
decisions [12, 13]. Techniques such as probabilistic model checking and tran-
sition annotations mitigate this problem, but ensuring sufficient test coverage
remains a challenge [20, 4]. By deriving tests directly from the model within the
model checker, we ensure comprehensive scenario handling. To improve testing
efficiency, innovative techniques have been proposed. For example, integrating
model checkers with mutation analysis enables the generation of systematic tests
by injecting faults into the system models [5]. We address this by leveraging the
ProB API to generate abstract test cases based on specific test criteria and ana-
lyze logical operations within the model. Other approaches, such as [17], optimize
state graph-based test generation to balance coverage and test set size, critical
for multi-threaded and distributed systems. Providers, such as Entrust [9], of-
fer SSL/TLS tools to help organizations assess and enhance digital security by
evaluating configurations on both client and server sides, including verifying
compliance with encryption algorithms.

Combinatorial testing has been used for TLS [23, 16],and several errors were
found. We hope that a ProB MBT approach will enable us to find interesting
combination of parameters using predicate analysis and logic solving that are
not covered by traditional combinatorial testing, as shown in [22]

Model-Based Testing of Non-Deterministic Systems 3

3 Foundations

3.1 B and ProB

B is a formal method for system specification, design and implementation, pro-
viding precise modeling through abstract machines and refinement [1]. It ensures
correctness and reliability, making it essential for safety-critical systems. In this
project, B is used to formally model the SUT. ProB, a model checker and anima-
tor, enables dynamic analysis, model execution, and real-time verification [15].
The ProB Java API [3] is integral to our proof of concept, facilitating interaction
with the B model. It is used to generate targeted test cases for specific traces
while also identifying states that satisfy given predicates.

3.2 TLS Protocol

TLS (Transport Layer Security) is a widely adopted cryptographic protocol de-
signed to ensure secure communication over computer networks. It guarantees
data integrity, confidentiality, and authenticity between a client and a server.
TLS is a cornerstone of secure online interactions, used extensively in web
browsers, email systems, and various online services due to its ability to pre-
vent eavesdropping, tampering, and forgery.

The TLS handshake, which is the first phase of communication between a
client and server, plays a crucial role in establishing a secure session. This process
involves authentication, key exchange, and negotiation of session parameters.
While largely deterministic, the handshake includes non-deterministic choice of
elements such as cipher selection and initial random values. These steps can be
summarized with the sequence diagram provided in Fig. 1. The Client Hello and
Server Hello messages, along with the encrypted extensions, contain the essential
parameters required to establish a basic TLS communication. These parameters
include the supported versions, cipher suites, signature algorithms, supported
groups, and shared keys, among others [21].

These nondeterministic factors necessitate careful testing to confirm the pro-
tocol’s reliability and security. Thus, testing TLS for its non-deterministic com-
ponents is essential to ensure it can correctly handle unexpected behaviors.

4 Methodology and Design

Our MBT approach for non-deterministic systems relies on black-box testing.
This means we evaluate whether a system adheres to a predefined model based
on its specification and rules, without considering its internal implementation.
To achieve this, we integrate our Java implementation with the ProB model
checker via the ProB Java API. This integration allows us to control, execute,
and retrieve information from the model checker directly within our application,
streamlining test selection and execution. The SUT in our study is the Bouncy-
Castle OpenSSL Java Library, which will be evaluated based on model-derived
tests.

4 A. Onofrei et al.

CLIENT SERVER

Encrypted Extensions

Certificate *
*

FINISHED

APPLICATION_DATA

ServerHello

ClientHello

Certificate

FINISHED

Fig. 1. TLS 1.3 Sequence Diagram

This methodology enables testing of both the client and server sides of a
TLS implementation. When testing the server, ProB generates a client message,
which is sent to the server. The server’s response is then compared against the
expected output defined by the specification. A match indicates a successful
test, while any deviation results in a failed test. To test the client, the process
is reversed, with the server-side behavior being modeled and validated against
expected responses.

The sequence diagram provided in Fig. 2 illustrates the interactions between
our application components during server-side testing. Notably, the same dia-
gram applies to client-side testing, with the only modification being the entity
that initiates the first message. This implementation is designed for flexibility,
facilitating adaptation to any SUT. To achieve this, we structured each com-
ponent in a generalized framework, enabling adaptation based on the specific
requirements of the SUT. Since our specification abstracts from implementation
details, we developed a test instantiator to convert abstract tests—generated by
the test scenario generator—into concrete, executable tests. The scenario gener-
ator performs operations such as state predicate satisfaction and random trace
generation. Each test consists of a sequence of events and corresponding oper-
ations with assigned parameters. An Information Capture module collects the
SUT’s outputs, feeding them back to the Test Instantiator, which converts them
into abstract results for comparison against the specification’s expected results.
If the result is one of them, the test is passed and the next operation is executed.
Otherwise, the test case is marked as a failure.

As a proof of concept, we test the implementation of the ClientHello and
ServerHello messages in TLS 1.3. Each message is represented by a send oper-
ation for the issuer of the message, and a receive operation for the recipient,
which will enable us to model man-in-the-middle attacks. The model initially
generates the ClientHello message, using the SendClientHello operation, in an
abstract format, which is then translated into a concrete TLS ClientHello mes-

Model-Based Testing of Non-Deterministic Systems 5

Scenario Generator Information Capture
Initiate Model via ProB Java API

Select Operation according
to test criteria

Execute Operation via ProB

Capture SUT
Information

Convert Conrete Response
to Abstract Response

Analyse Response

Invalid Response
Terminate with errorValid Response

Test Instantiator

Convert Abstract Operation
to Concrete Operation

 Send Concrete Operation

SUT

Create and Send
Response

Receive Message
Operation

Fig. 2. Architecture of our MBT testing approach

sage. The ServerHello response from the SUT is converted back into an abstract
representation and compared against the expected abstract message generated
by the model.

For our proof of concept, we selected a typical sequence of operations within
the model: SendClientHello, ReceiveClientHello, SendServerHello, ReceiveServer-
Hello. The Send operations include parameters corresponding to those in a con-
crete TLS message, as specified in [21]. The specification enforces basic param-
eter validation to ensure that values are within acceptable bounds. The RFC
allows for interpretation by using terms such as "SHOULD", "SHOULD NOT"
and "MAY" [6], which introduce flexibility in compliance. As a result, differ-
ent implementations of the TLS protocol can be derived from the same RFC,
leading to variations in behavior. This might also be a source of bugs and non-
interoperability, since one party’s implementation may take a "SHOULD" as a
practical "MUST", and the other party’s implementation taking "SHOULD" as
something really optional as stated in [6] (“SHOULD ... mean that there may
exist valid reasons in particular circumstances to ignore a particular item, but
the full implications must be understood and carefully weighed before choosing a
different course.”).

5 Results

After testing and comparing BouncyCastle’s server response to specific Client
Hello messages generated by our model checker, we successfully generated 16 dis-
tinct ClientHello messages with varying parameters to evaluate the correspond-
ing ServerHello responses. The generated messages included 5 cipher suites, 8
signature algorithms, 2 supported groups, 1 supported versions TLS 1.3, and
2 compression methods. The complete results are available in our GitHub [19]
repository. In all 16 test cases, the server responses were consistent with the
model’s predictions, confirming that our specification accurately represents the
SUT and that the SUT exhibits no flaws within the tested parameters.

6 A. Onofrei et al.

Given the complexity of the task, we focused solely on modifying the Client
Hello parameters, limiting our scope to analyzing the server’s response. Nev-
ertheless, this study demonstrates the feasibility and effectiveness of our test
generation approach. Furthermore, it highlights the potential for expanding test
coverage to more intricate aspects of TLS, such as certificate validation and key
exchange mechanisms.

6 Discussion

Our approach opens-up new possibilities for systematically testing complex sys-
tem like TLS. This becomes particularly important since TLS will have to sup-
port in the near future new quantum resistant cryptographic primitives, called
post-quantum cryptography [18]. A transition period, where both classic and
quantum resistant interactions must be supported by clients and servers, will in-
duce new possibilities for attacks, bugs and interoperability issues. Model check-
ers can systematically explore possible input combinations to produce expected
outputs, uncovering test cases that might otherwise be overlooked. However, our
approach comes with certain limitations. MBT is easier to achieve if the SUT has
a modular design that allows for an easy re-use of methods that send and receive
messages between the SUT and the tester. For instance, BouncyCastle provides
a method to send a ClientHello to the server. However, this method cannot be
reused easily, because it is highly dependent on the state of the protocol, and it
has several dependencies with other methods that must be executed before, but
that we do not want to execute, since we use ProB to model and analyse the pro-
tocol state and drive the test generation. Sending and receiving TLS messages in
the proper format is not an easy task. We had to recode these methods, with very
low-level handling of the messages as bit streams, and little code could be re-used
from the BouncyCastle implementation. We capture messages from the server on
the communication port and manually decode them, thus we must ignore TCP
messages and other irrelevant information for just testing the TLS part of the
communication. We also considered to reuse the widely used OpenSSL imple-
mentation of TLS, but it was not easier, because it is written in very old-school
C and harder to understand. It makes heavy use of function pointers and macros,
instead of using modern object-oriented programming concepts. Unfortunately,
writing the code to send and receive messages in TLS was the most difficult and
time-consuming part of our work. In the next version of our implementation,
we will explore the TLS-Attacker framework [7], a fuzzy-testing tool, to try to
streamline this step. Additionally, refining translation methods between abstract
and concrete messages will be crucial for improving automation. By incorporat-
ing test criteria, we aim to selectively generate test cases that target specific
needs, ensuring comprehensive test coverage and deeper insights into system be-
havior. Our approach differs from the testing offered by industrial providers, as
we specifically test each step of the TLS handshake implementation rather than
only analyzing its overall configuration and final communication result [16].

Model-Based Testing of Non-Deterministic Systems 7

References

[1] Jean-Raymond Abrial. The B-book - assigning programs to meanings. Jan.
2005. isbn: 978-0-521-02175-3.

[2] Boris Beizer. Software testing techniques (2nd ed.) USA: Van Nostrand
Reinhold Co., 1990. isbn: 0442206720.

[3] Jens Bendisposto et al. “ProB2-UI: A Java-Based User Interface for ProB”.
In: Formal Methods for Industrial Critical Systems: 26th International
Conference, FMICS 2021, Paris, France, August 24–26, 2021, Proceed-
ings. Paris, France: Springer-Verlag, 2021, 193–201. isbn: 978-3-030-85247-
4. doi: 10.1007/978-3-030-85248-1_12. url: https://doi.org/10.
1007/978-3-030-85248-1_12.

[4] Nathalie Bertrand et al. “Off-line test selection with test purposes for non-
deterministic timed automata”. In: Logical Methods in Computer Science
Volume 8, Issue 4, 8 (2012). issn: 1860-5974. doi: 10.2168/LMCS-8(4:
8)2012. url: https://lmcs.episciences.org/1037.

[5] Sergiy Boroday, Alexandre Petrenko, and Roland Groz. “Can a Model
Checker Generate Tests for Non-Deterministic Systems?” In: Electronic
Notes in Theoretical Computer Science 190.2 (2007). Proceedings of the
Third Workshop on Model Based Testing (MBT 2007), pp. 3–19. issn:
1571-0661. doi: https : / / doi . org / 10 . 1016 / j . entcs . 2007 . 08 .
002. url: https://www.sciencedirect.com/science/article/pii/
S1571066107005373.

[6] Scott O. Bradner. Key words for use in RFCs to Indicate Requirement
Levels. RFC 2119. Mar. 1997. doi: 10.17487/RFC2119. url: https://
www.rfc-editor.org/info/rfc2119.

[7] Fabian Bäumer et al. “TLS-Attacker: A Dynamic Framework for Ana-
lyzing TLS Implementations”. In: Proceedings of Cybersecurity Artifacts
Competition and Impact Award (ACSAC ’24). 2024.

[8] Edmund Clarke et al. “Model Checking and the State Explosion Problem”.
In: Jan. 2012, pp. 1–30. isbn: 978-3-642-35745-9. doi: 10.1007/978-3-
642-35746-6_1.

[9] Entrust Corporation. Entrust SSL/TLS Tools. Accessed: 2025-02-24. 2025.
url: https://www.entrust.com/knowledgebase/ssl/ssl-tls-tools.

[10] Donald Firesmith. “Testing in a Non-Deterministic World”. In: SEI Con-
ference. 2017.

[11] D. Graham. Foundations of Software Testing: ISTQB Certification. Course
Technology Cengage Learning, 2008. isbn: 9781283285186. url: https:
//books.google.ca/books?id=h6h2AQAACAAJ.

[12] Natalia Kushik, Nina Yevtushenko, and Jorge López. “Probabilistic Ap-
proach for Minimizing Checking Sequences for Non-deterministic FSMs”.
In: Testing Software and Systems. Ed. by Silvia Bonfanti, Angelo Gar-
gantini, and Paolo Salvaneschi. Cham: Springer Nature Switzerland, 2023,
pp. 237–243. isbn: 978-3-031-43240-8.

[13] Natalia Kushik, Nina Yevtushenko, and Jorge López. “Testing Against
Non-deterministic FSMs: A Probabilistic Approach for Test Suite Mini-

https://doi.org/10.1007/978-3-030-85248-1_12
https://doi.org/10.1007/978-3-030-85248-1_12
https://doi.org/10.1007/978-3-030-85248-1_12
https://doi.org/10.2168/LMCS-8(4:8)2012
https://doi.org/10.2168/LMCS-8(4:8)2012
https://lmcs.episciences.org/1037
https://doi.org/https://doi.org/10.1016/j.entcs.2007.08.002
https://doi.org/https://doi.org/10.1016/j.entcs.2007.08.002
https://www.sciencedirect.com/science/article/pii/S1571066107005373
https://www.sciencedirect.com/science/article/pii/S1571066107005373
https://doi.org/10.17487/RFC2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://www.entrust.com/knowledgebase/ssl/ssl-tls-tools
https://books.google.ca/books?id=h6h2AQAACAAJ
https://books.google.ca/books?id=h6h2AQAACAAJ

8 A. Onofrei et al.

mization”. In: Testing Software and Systems. Ed. by David Clark, Hector
Menendez, and Ana Rosa Cavalli. Cham: Springer International Publish-
ing, 2022, pp. 55–61. isbn: 978-3-031-04673-5.

[14] D. Lee and M. Yannakakis. “Principles and methods of testing finite state
machines-a survey”. In: Proceedings of the IEEE 84.8 (1996), pp. 1090–
1123. doi: 10.1109/5.533956.

[15] Michael Leuschel and Michael Butler. “ProB: an automated analysis toolset
for the B method”. In: Int. J. Softw. Tools Technol. Transf. 10.2 (Feb.
2008), 185–203. issn: 1433-2779.

[16] Marcel Maehren et al. “TLS-Anvil: Adapting Combinatorial Testing for
TLS Libraries”. In: 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp. 215–232. isbn: 978-
1-939133-31-1. url: https://www.usenix.org/conference/usenixsecurity22/
presentation/maehren.

[17] Lev Nachmanson et al. “Optimal strategies for testing nondeterministic
systems”. In: SIGSOFT Softw. Eng. Notes 29.4 (July 2004), 55–64. issn:
0163-5948. doi: 10.1145/1013886.1007520. url: https://doi.org/10.
1145/1013886.1007520.

[18] Christian Näther et al. “Migrating Software Systems Toward Post-Quantum
Cryptography-A Systematic Literature Review”. In: IEEE Access 12 (2024),
132107–132126. issn: 2169-3536. doi: 10.1109/access.2024.3450306.
url: http://dx.doi.org/10.1109/ACCESS.2024.3450306.

[19] Alexander Onofrei. MBT TLS using ProB. https://github.com/ohnoitsalex/
TLSModeling.git.

[20] I. S. W. B. Prasetya and Rick Klomp. “Test Model Coverage Analysis Un-
der Uncertainty”. In: Software Engineering and Formal Methods. Springer
International Publishing, 2019, 222–239. isbn: 9783030304461. doi: 10.
1007/978-3-030-30446-1_12. url: http://dx.doi.org/10.1007/978-
3-030-30446-1_12.

[21] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. Aug. 2018. doi: 10.17487/RFC8446. url: https://www.rfc-
editor.org/info/rfc8446.

[22] Aymerick Savary. “Détection de vulnérabilités appliquée à la vérification de
code intermédiaire de Java Card”. Theses. Université de Limoges ; Univer-
sité de Sherbrooke (Québec, Canada), June 2016. url: https://theses.
hal.science/tel-01369017.

[23] Dimitris E. Simos et al. “Testing TLS Using Combinatorial Methods and
Execution Framework”. In: Testing Software and Systems. Ed. by Nina
Yevtushenko, Ana Rosa Cavalli, and Hüsnü Yenigün. Cham: Springer In-
ternational Publishing, 2017, pp. 162–177. isbn: 978-3-319-67549-7.

[24] The Legion of the Bouncy Castle, Inc. Bouncy Castle Java Library. https:
//www.bouncycastle.org/download/bouncy-castle-java/. Accessed:
2025-02-25. 2025.

https://doi.org/10.1109/5.533956
https://www.usenix.org/conference/usenixsecurity22/presentation/maehren
https://www.usenix.org/conference/usenixsecurity22/presentation/maehren
https://doi.org/10.1145/1013886.1007520
https://doi.org/10.1145/1013886.1007520
https://doi.org/10.1145/1013886.1007520
https://doi.org/10.1109/access.2024.3450306
http://dx.doi.org/10.1109/ACCESS.2024.3450306
https://github.com/ohnoitsalex/TLSModeling.git
https://github.com/ohnoitsalex/TLSModeling.git
https://doi.org/10.1007/978-3-030-30446-1_12
https://doi.org/10.1007/978-3-030-30446-1_12
http://dx.doi.org/10.1007/978-3-030-30446-1_12
http://dx.doi.org/10.1007/978-3-030-30446-1_12
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://theses.hal.science/tel-01369017
https://theses.hal.science/tel-01369017
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/download/bouncy-castle-java/

Weakening Goals in Logical Specifications

Ben M. Andrew

University of Manchester, Manchester, UK
benjamin.andrew@manchester.ac.uk

Abstract. Logical specifications are widely used to represent software
systems and their desired properties. Under system degradation or en-
vironmental changes, commonly seen in complex real-world robotic sys-
tems, these properties may no longer hold and so traditional verification
methods will simply fail to construct a proof. However, weaker versions
of these properties do still hold and can be useful for understanding the
system’s behaviour in uncertain conditions, as well as aiding composi-
tional verification. We present a counterexample-guided technique for
iteratively weakening properties, apply it to propositional logic specifi-
cations, and discuss planned extensions to state-based representations.

1 Introduction

Software systems, along with properties that we are interested in proving about
them, are often specified in logics such as first-order or temporal logic. Many
verification techniques exist for automatically checking whether desired prop-
erties hold in a system, but in complex systems that interact with the real
world, unexpected environmental conditions or system degradation can cause
these properties to no longer hold [9].

In these cases traditional formal verification techniques will simply report
property violations, leaving us unable to say anything about the system’s be-
haviour. However, for many applications we may be interested in weakened forms
of the property that do hold in the system.

As an example, consider a quadrotor drone that we have proven can only
safely land when the wind speed is below a certain threshold, and now imagine
that this property does not hold when one of the rotors has failed. There may
still be a weaker version of this property, for example with a lower threshold on
the wind speed, that does hold for the degraded drone. Being able to automat-
ically deduce this weakened property may be crucial for regulatory approval or
understanding how the system properties change under uncertain conditions.

To be precise, a weakening of a property P is any property that speci-
fies a superset of the behaviours of P . For example, we can logically spec-
ify the above example as weakening HighWind ∨ LowWind → CanLand to
LowWind → CanLand. (Note that strengthening the antecedent weakens the
implication.)

Automatic deduction of weakened properties is also useful in compositional
assume-guarantee reasoning [8], where our system is an individual component

https://orcid.org/0009-0009-8910-5899

2 B.M. Andrew

providing guarantees that feed into the assumptions of other components’ spec-
ifications [11], and aid proofs of the composed system’s global properties.

This PhD project currently aims to answer two core research questions:

RQ1: How can a system property, normally holding but invalidated by system
degradation or environmental changes, be automatically weakened so that it
both holds in the degraded system and is still useful?

RQ2: In compositional assume-guarantee reasoning, how does the weakening of
a component’s guaranteed properties affect other components or system-level
properties?

Related Work. Goal weakening has been explored in requirements engineer-
ing [12]. However, conflicts are only handled between goals because the weaken-
ing is done at requirements engineering-time, whereas our approach is concerned
with inconsistencies between the requirements and the implementation, which
occur at a later stage in the development lifecycle.

Belief revision [6] is a technique where a belief set is updated when new
information conflicts with existing beliefs, removing those that conflict. However,
this is a coarse approach that does not weaken the individual beliefs themselves,
and so can be overly conservative.

Counterexample-guided techniques have been applied to areas like abstrac-
tion refinement [3], inductive synthesis [1], and control [7]. However, they have
not yet been applied to the problem of weakening goals in specifications.

2 Counterexample-Guided Weakening

Our approach finds counterexamples that show that the property doesn’t hold
in the system, integrates them into the property, and repeats. By integrating
counterexamples we iteratively weaken the property until it holds in the system.

Our algorithm, initially applied to propositional logic, is implemented in
OCaml, using the Why3 [5] platform with Alt-Ergo [4], a tableau-based solver.
The code is hosted publicly on GitHub1.

Not all weakenings of the desired property are useful, as evidenced by the
trivial property ⊥ that any system guarantees. Thus, along with our desired
property we also specify a critical property PC that our system must satisfy, as
the minimum weakening of PD that we allow.

Our specifications are triples ⟨A,PD, PC⟩ of propositional formulae, where A
represents the internal structure of the system and the environment, PD repre-
sents the desired property of the system, and PC represents the critical prop-
erty of the system. ⟨A,PD, PC⟩ is well-formed if and only if PD implies PC ,
i.e. PD → PC . We begin the proof process by checking whether the iterative
algorithm is necessary:

1. Check that A → PD. If true, then finish successfully with PD as the property;
otherwise,

1 https://github.com/benmandrew/prop-goal-weakening

https://github.com/benmandrew/prop-goal-weakening

Weakening Goals in Logical Specifications 3

2. Check that A → PC . If false, then finish unsuccessfully, as our critical prop-
erty does not hold; otherwise,

3. Find an intermediate property PI between PD and PC such that A → PI .

(By PI being between PD and PC , we mean that PD → PI and PI → PC ,
considering propositional formulae to be partially ordered by implication.)

Algorithm. The algorithm uses a counterexample-guided approach, iteratively
computing counterexamples using a SAT solver and integrating them back into
the candidate property until it is satisfied. It is detailed below as well as in Fig. 1.

The i-th candidate property is denoted by P i
I , for i ∈ N, and we begin by

initialising P 0
I = PD. We then construct a formula F (i) that is a conjunction of

the following:

1. A → P i
I , the candidate property must hold in the system,

2. PD → P i
I , the candidate property must be weaker than or equivalent to the

desired property, and
3. P i

I → PC , the candidate property must be stronger than or equivalent to the
critical property.

We check the validity of F (i) using a SAT solver. If F (i) is valid, then P i
I

holds in the system and we are finished. Otherwise, the SAT solver gives us
a counterexample model that holds in A but does not in P i

I . This model may
contain assignments to hidden variables that occur in A but not in PD or PC .
Including them would expose the inner logical workings of the system which may
sometimes be desirable, but for the purposes of overapproximating the weakened
property, we remove all hidden variables from the counterexample.

From this overapproximated counterexample we construct a formula Ci which
is a conjunction of positive or negative propositional variables. For example, the
model {X = true, Y = false, Z = false} corresponds to the formula X∧¬Y ∧¬Z.

The next iteration of the candidate property is then
P i+1
I = P i

I ∨ Ci

and we repeat the loop by constructing and checking F (i+ 1).

Initialise P 0
I = PD Construct F (i) Is F (i) valid?

Integrate overapproximated
counterexample into P i+1

I

Return P i
I

i = 0

no

i++

yes

Fig. 1. Overview of the algorithm, which iteratively weakens the candidate property
P i
I until it is satisfied by the system representation A.

4 B.M. Andrew

The algorithm is complete for systems with finite numbers of variables. As
each step adds at least one complete interpretation to the candidate property,
the number of iterations is bounded by 2N , where N is the number of unique
propositional variables in PD and PC combined.

Example. We use the example from the introduction concerning a quadrotor
drone. Our propositional variables are R4, that all four rotors work; R3, that
only three rotors work; WH , that windspeed is high; WL, that windspeed is low;
and L, that the drone can land.
The system is modelled by three assumptions,

A = R3︸︷︷︸
(3a)

∧ (R4 ∧ (WH ∨WL) → L︸ ︷︷ ︸
(3b)

) ∧ (R3 ∧WL → L︸ ︷︷ ︸
(3c)

)

which specify (3a), that only three rotors work (i.e. one rotor has failed); and (3b,
3c), the conditions for the drone being able to land. Our desired goal property
is PD = (WH ∨ WL) → L, but this is not satisfied by the assumptions, so we
must weaken it. (For the purposes of demonstration we let our critical property
PC = ⊤.)

We construct the initial F (0) with P 0
I = PD, and check for validity with the

SAT solver, receiving a negative answer with the counterexample ¬L ∧ WH ∧
¬WL ∧ R3 ∧ ¬R4. This counterexample contains the ‘hidden’ variables R3 and
R4, and as we would prefer not to expose the inner state of our system, we
remove them, resulting in the overapproximated counterexample ¬L∧WH∧¬WL.
Integrating this into our candidate property results in

P 1
I = ((WH ∨WL) → L) ∨ (¬L ∧WH ∧ ¬WL)

= WL → L

Which is a valid property of the system and so we are done.

3 Future Work

To answer RQ1, we are investigating how to extend weakening to properties
expressed in state-based specification languages, such as as Deterministic Finite
Automata (DFAs), Buchi automata (which commonly correspond with LTL for-
mulae), and Abstract State Machines (ASMs). We are currently exploring how
these properties can be automatically weakened, based on the framework of au-
tomata learning with the L∗ algorithm [2].

Weakening goals is not the only way to weaken a specification: in contract-
based reasoning [11], strengthening the corresponding assumption serves the
same purpose, and may be a more natural solution for changes in the environ-
ment. This will contribute to answering RQ2. It remains to be seen when this
would be appropriate, and how exactly it would be done.

It may be more suitable to frame weakening as an interpolation problem [10]
— that is, finding a suitable interpolant between the desired and critical prop-
erties, subject to the constraint of being a valid property of the system. This
approach requires investigation.

Weakening Goals in Logical Specifications 5

References

[1] R. Alur, R. Bodik, G. Juniwal, M.M.K. Martin, M. Raghothaman, S.A.
Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. “Syntax-
Guided Synthesis”. In: Formal Methods in Computer-Aided Design. IEEE,
2013, pp. 1–8. doi: 10.1109/FMCAD.2013.6679385.

[2] D. Angluin. “Learning Regular Sets from Queries and Counterexamples”.
In: Information and Computation 75.2 (1987), pp. 87–106. doi: 10.1016/
0890-5401(87)90052-6.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-
Guided Abstraction Refinement”. In: Computer Aided Verification. Springer,
2000, pp. 154–169. doi: 10.1007/10722167_15.

[4] S. Conchon, A. Coquereau, M. Iguernlala, and A. Mebsout. “Alt-Ergo 2.2”.
In: International Workshop on Satisfiability Modulo Theories. 2018. url:
https://inria.hal.science/hal-01960203.

[5] J. Filliâtre and A. Paskevich. “Why3 — Where Programs Meet Provers”.
In: Programming Languages and Systems. Vol. 7792. LNCS. Springer, 2013,
pp. 125–128. doi: 10.1007/978-3-642-37036-6_8.

[6] P. Gärdenfors. Belief Revision. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1992. doi: 10.1017/CBO9780511526664.

[7] T.A. Henzinger, R. Jhala, and R. Majumdar. “Counterexample-Guided
Control”. In: Automata, Languages and Programming. Springer, 2003, pp. 886–
902. doi: 10.1007/3-540-45061-0_69.

[8] C.B. Jones. “Tentative Steps Toward a Development Method for Inter-
fering Programs”. In: ACM Transactions on Programming Languages and
Systems 5.4 (1983), pp. 596–619. doi: 10.1145/69575.69577.

[9] M. Luckcuck, M. Farrell, L.A. Dennis, C. Dixon, and M. Fisher. “Formal
Specification and Verification of Autonomous Robotic Systems: A Survey”.
In: ACM Computing Surveys 52.5 (2019), 100:1–100:41. doi: 10 . 1145/
3342355.

[10] K.L. McMillan. “Applications of Craig Interpolants in Model Checking”.
In: Tools and Algorithms for the Construction and Analysis of Systems.
Vol. 3440. Springer, 2005, pp. 1–12. doi: 10.1007/978-3-540-31980-1_1.

[11] B. Meyer. “Applying ‘Design by Contract’”. In: Computer 25.10 (1992),
pp. 40–51. doi: 10.1109/2.161279.

[12] A. van Lamsweerde and E. Letier. “Handling Obstacles in Goal-Oriented
Requirements Engineering”. In: IEEE Transactions on Software Engineer-
ing 26.10 (2000), pp. 978–1005. doi: 10.1109/32.879820.

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/10722167_15
https://inria.hal.science/hal-01960203
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1017/CBO9780511526664
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/3342355
https://doi.org/10.1145/3342355
https://doi.org/10.1007/978-3-540-31980-1_1
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/32.879820

Formal modelling and reasoning on Assurance
Cases expressed with GSN in Event-B

Christophe Chen1

INPT-ENSEEIHT/IRIT, University of Toulouse, France
christophe.chen@toulouse-inp.fr

1 Context

Critical systems must meet several types of requirements including safety, secu-
rity and process-related constraints. Once formalised, several formal techniques
such as testing, proof, model-checking, model animation, simulation, static anal-
ysis, and so on are set up. Due to the guarantees they offer, they play the role
of supporting evidence to show that requirements are fulfilled. However, keeping
track of the relationship between requirements and supporting evidence is often
unclear, informally stated, not explicit or even not expressed at all. The rela-
tionship between the evidence and a high-level goal is usually expressed through
arguments expressed using natural language.

In order to provide an explicit link between high-level requirements or goals
or claims and evidence provided by system models analyses, structured docu-
mentation models based on goal/claim decomposition have been proposed [6].
Such a model is useful not only for requirement validation but also for certifica-
tion purposes. This structured documentation model enables recursively break-
ing down high-level goals into smaller sub-goals, until a level where the evidence
becomes directly relevant and sufficient for validation is reached. The decom-
position mechanisms rely on an implicit logical framework that helps establish
connections between requirement goals and the supporting evidence.

Such a structured documentation model is called an Assurance Case (AC) [8].
When the AC regards safety (resp. security) goals or requirements, then it is also
called safety (resp. security) case.

The most common notation for AC is the Goal Structuring Notation
(GSN) [5,10], supported by a graphical language. An AC represented using GSN
has a hierarchical goal structure describing goal decomposition. Strategies de-
fine decomposition or inference rules that produce sub-goals and justifications
provide explanations for the adopted strategies producing these sub-goals. As-
sumptions may be introduced to define hypotheses associated to a goal. Contexts
in which goals are expressed are also described, and contribute to defining the
scope in which claims are stated. In most cases, such GSN features are described
using natural language statements, referring to system and safety engineering
concepts.

Figure 1 is an example of a goal structure taken from the GSN community
standard [4,1]. The main goal G1 (safety) is broken into two sub-goals G2 (haz-
ards mitigation) and G3 (standard SIL compliance), while making explicit the

mailto:christophe.chen@toulouse-inp.fr

Fig. 1. A safety argument from the community standard

definition of terms (C2, C3, C5) and their origins (C1, C4). Sub-goal G2 (resp.
G3) is furthermore decomposed according to strategy S1 (resp. S2), using as-
sumptions (A1) and justifications (J1). When goals are clearly defined at a low
level by employing decompositions, they are directly backed by evidence (solu-
tions) that reference various activities (Sn1..4) carried out by industries to fulfill
the requirements.

2 Motivation and Objectives

From Figure 1, we observe that the concepts (goal, context, justification, evi-
dence, etc.) of a goal structure graph are described using natural language, and
the links between these concepts are modelled using arrows. Despite the advances
in the definition of a methodology for developing AC using the GSN, establish-
ing the soundness of ACs relies essentially on expert reviews. The semantics of
GSN describing such goal structure construct is given using natural language
and semi-formal notations[4].

The lack of rigorous semantics for the GSN hinders the application of formal
methods to check the consistency of ACs which can be a subject of study to
ensure their correctness. Reasoning on ACs requires their formalisation, but
most provided formalisms only check structural well-formedness, and do not
control the content of the AC building blocks, nor the link between evidences in
terms of semantics, as evidences may rely on domain-specific knowledge. A recent
contribution formalises a subset of GSN in Lean [7], modeling goal contents as

propositions and generating proof obligations (POs) for the correctness of the
deductive reasoning. Other approaches based on the formalisation of deductive
systems allowing to reason on AC in a sequent calculus have been proposed by
[2,9].

We claim that formal methods can be applied to assist in reasoning and to
speed up the engineering process. More generally, we want to mechanize the
implicit human reasoning on assurance cases, that is, supplying AC with a rea-
soning system by clarifying hypotheses and objectives at each step.

An usual concern with AC is the propagation effect on node change. Many
suggest to see AC as a whole [4] (more like a graph than a tree) so asserting
the impact on their soundness requires the reader to study the whole AC again
which is a repetitive and laborious task.

The objective of our work is to design a logical (i.e., proof-based) framework
supporting the definition of formalised ACs, in order to assist system designers
and certification authorities in building goal structures and check their consis-
tency with respect to the formalised semantics and domain knowledge model
formalising system specific concepts. The proposed framework will be grounded
on the Event-B method and associated algebraic theories.

3 Next steps

First of all, our bibliographic work will be continuously updated in order to
follow the different contributions in the area of AC formalisation. As part of
the thesis work, and with the goal of producing a formal framework offering the
possibility to reason about ACs while preserving their consistency, the approach
we propose is based on different stages.

First, we propose to formalise the GSN as a parameterised algebraic theory of-
fering all the constructors needed to build ACs in this notation. Well-definedness
conditions will be associated with these constructors. The content of the different
concepts of an AC, which can be goals, assumptions, evidences, etc., generally
expressed in natural language, will be formalised as statements in the chosen
logical framework.

At the same time, a domain knowledge model, conforming to a knowledge
representation language, will be formalised. This shall describe all the domain-
specific information, together with the constraints that apply, related to the
system for which an AC is being proposed. The previously mentioned state-
ments will refer to this domain knowledge via an annotation mechanism to be
defined. This annotation relationship must maintain the AC’s consistency by
taking into account the associated knowledge and its related constraints. At this
point, consistency proof obligations will be generated and checked.

At this stage, the logical reasoning mechanism on ACs remains to be set up.
We therefore plan to define a reasoning mechanism to guarantee the consistency
of an AC. For example in the case of goal decomposition, the G1 G2

G deduction
rule meaning that sub-goals G1 and G2 entail main goal G, is one of several
possible goal decomposition reasoning rules. Other strategies than deduction,

like abduction or induction can be envisioned. In addition to consistency, relevant
properties, to be defined and formalised, associated to an AC could be checked
using the defined reasoning mechanism. The reachability of a goal based on
evidences, taking into account assumptions, is an example of such properties.

Another desirable feature is to formalise references to a specific part of the
system model like [3] which increase traceability and help the validation process.

Last, but not least, impact analysis on argument modification will be the
subject of a further study. Indeed, checking the consistency of an AC after a
change or among a set of ACs will be addressed as well.

All the points mentioned above will be driven by a set of case studies for-
malised with Event-B and its associated algebraic theories and developed on the
Rodin platform.

References

1. Cabot, J.: https://modeling-languages.com/goal-structuring-notation-int
roduction/

2. Cassano, V., Maibaum, T.S.E., Grigorova, S.: Towards Making Safety Case Ar-
guments Explicit, Precise, and Well Founded, pp. 227–258. Springer Singapore
(2021)

3. Foster, S., Nemouchi, Y., O’Halloran, C., Stephenson, K., Tudor, N.: Formal model-
based assurance cases in isabelle/sacm: An autonomous underwater vehicle case
study. In: Proceedings of the 8th International Conference on Formal Methods in
Software Engineering. p. 11–21. FormaliSE ’20, ACM (2020)

4. working group, T.G.: https://scsc.uk/gsn
5. Kelly, T., Weaver, R.: The goal structuring notation–a safety argument notation.

Proc Dependable Syst Networks Workshop Assurance Cases (01 2004)
6. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-

els to Software Specifications. Wiley Publishing, 1st edn. (2009)
7. Murphy, L., Viger, T., Sandro, A.D., Chechik, M.: Placidus: Engineering product

lines of rigorous assurance cases. In: Integrated Formal Methods: 19th International
Conference, IFM 2024, 2024, Proceedings. p. 87–108. Springer-Verlag (2024)

8. Rhodes, T., Boland, F., Fong, E., Kass, M.: Software assurance using structured
assurance case models. Journal of Research of the National Institute of Standards
and Technology 115, 209 (05 2010)

9. Rushby, J.: Logic and epistemology in safety cases. pp. 1–7 (09 2013)
10. Toulmin, S.E.: The uses of argument. Philosophy 34(130), 244–245 (1958)

https://modeling-languages.com/goal-structuring-notation-introduction/
https://modeling-languages.com/goal-structuring-notation-introduction/
https://scsc.uk/gsn

	preface
	author_index
	ABZ_Proceedings
	157280001
	157280002
	157280004
	Mathematical Proofs and Moving Trains: The Double Life of Atelier B

	157280013
	157280031
	 Using Symbolic Model Execution to Detect Vulnerabilities of Smart Contracts

	157280051
	Safely Encoding B Proof Obligations in SMT-LIB

	157280069
	On Writing Alloy Models: Metrics and a new Dataset

	157280087
	On Quantitative Solution Iteration in QAlloy

	157280105
	Proof Semantics of Railway Interlocking

	157280123
	157280141
	157280158
	Insider Threat Simulation ThroughAnt Colonies and ProB

	157280176
	Developing safe exception recovery mechanisms for CHERI capability hardware using UML-B formal analysis

	157280194
	Case Study: Safety Controller for Autonomous Driving on Highways

	157280203
	157280222
	Enhancing Decision-making Safety in Autonomous Driving Through Online Model Checking

	157280240
	Polychronous RSS in a Process-algebraic Framework - A Case Study
	1 Introduction
	2 Background
	2.1 Classic CSP Syntax and Semantics
	2.2 Classic CSP Semantics
	2.3 Isabelle, HOL, and HOL-CSP

	3 The Framework and its Rationale
	3.1 Discretization and Decision Points: The Demon
	3.2 An Extensible Model of Scenes
	3.3 Formally Defining Actor Behaviour
	3.4 Kinematics
	3.5 Actors and Demon Combined
	3.6 Safety-Proofs by Refinement

	4 A Safety Controller for Single Lane Scenarios
	4.1 Safety Requirements and Assumptions
	4.2 A First Safety Controller Formal Model
	4.3 A Refined Safety Controller: Achieving Polychrony

	5 Simulation and Evaluation
	6 Related Work
	7 Conclusion

	157280259
	On The Road Again (Safely): Modelling and Analysis of Autonomous Driving with Stark

	157280278
	Verification of Autonomous Neural Car Control with KeYmaera X

	157280297
	157280307
	Towards an End-to-End Toolchain for Traceable and Verifiable Railway Signalling Specifications

	157280315
	A reasoning and explicit algebraic theory for BBSL in Event-B: EB4BBSL framework

	157280324
	Model-Based Testing of Non-Deterministic Systems

	157280332
	Weakening Goals in Logical Specifications

	157280337
	Formal modelling and reasoning on Assurance Cases expressed with GSN in Event-B

